
fphys-12-767739 November 8, 2021 Time: 11:8 # 1

ORIGINAL RESEARCH
published: 10 November 2021

doi: 10.3389/fphys.2021.767739

Edited by:
Jie Wen,

Institute of Animal Sciences (CAAS),
China

Reviewed by:
Hamada A. M. Elwan,
Minia University, Egypt

Mahmoud Madkour,
National Research Centre, Egypt

*Correspondence:
Zhuocheng Hou

zchou@cau.edu.cn

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Avian Physiology,
a section of the journal
Frontiers in Physiology

Received: 31 August 2021
Accepted: 21 October 2021

Published: 10 November 2021

Citation:
Sun D, Li X, Yin Z and Hou Z

(2021) The Full-Length Transcriptome
Provides New Insights Into
the Transcript Complexity

of Abdominal Adipose
and Subcutaneous Adipose in Pekin

Ducks. Front. Physiol. 12:767739.
doi: 10.3389/fphys.2021.767739

The Full-Length Transcriptome
Provides New Insights Into the
Transcript Complexity of Abdominal
Adipose and Subcutaneous Adipose
in Pekin Ducks
Dandan Sun†, Xiaoqin Li†, Zhongtao Yin and Zhuocheng Hou*

Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, China Agricultural
University, Beijing, China

Adipose tissues have a central role in organisms, and adipose content is a crucial
economic trait of poultry. Pekin duck is an ideal model to study the mechanism of
abdominal and subcutaneous adipose deposition for its high ability of adipose synthesis
and deposition. Alternative splicing contributes to functional diversity in abdominal and
subcutaneous adipose. However, there has been no systematic analysis of the dynamics
of differential alternative splicing of abdominal and subcutaneous adipose in Pekin
duck. In our study, the Pacific Biosciences (PacBio) Iso-Seq technology was applied to
explore the transcriptional complexity of abdominal and subcutaneous adipose in Pekin
ducks. In total, 143,931 and 111,337 full-length non-chimeric transcriptome sequences
of abdominal and subcutaneous adipocytes were obtained from 41.78 GB raw data,
respectively. These data led us to identify 19,212 long non-coding RNAs (lncRNAs)
and 74,571 alternative splicing events. In addition, combined with the next-generation
sequencing technology, we correlated the structure and function annotation with the
differential expression profiles of abdominal and subcutaneous adipose transcripts.
This study identified lots of novel alternative splicing events and major transcripts of
transcription factors related to adipose synthesis. STAT3 was reported as a vital gene
for adipogenesis, and we found that its major transcript is STAT3-1, which may play
a considerable role in the process of adipose synthesis in Pekin duck. This study
greatly increases our understanding of the gene models, genome annotations, genome
structures, and the complexity and diversity of abdominal and subcutaneous adipose in
Pekin duck. These data provide insights into the regulation of alternative splicing events,
which form an essential part of transcript diversity during adipogenesis in poultry. The
results of this study provide an invaluable resource for studying alternative splicing and
tissue-specific expression.

Keywords: Pekin duck, abdominal adipose, subcutaneous adipose, full-length transcriptome, alternative splicing,
proliferation, differentiation

Abbreviations: Iso-Seq, isoform sequencing; AS, alternative splicing; PacBio, Pacific Biosciences; TFs, transcription factors;
lncRNAs, long non-coding RNAs; GPDH, glycerol-3-phosphate dehydrogenase; KEGG, Kyoto Encyclopedia of Genes and
Genomes; A3, alternative 3′ splice site; A5, alternative 5′ splice site; AF, alternative first exon; AL, alternative last exon, MX,
mutual exclusive exon; RI, intron retention; SE, exon skipping; PPARγ, peroxisome proliferative activated receptor, gamma;
STAT3, signal transducer and activator of transcription 3.
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INTRODUCTION

Duck is one of the most widely distributed waterfowl in the world.
After being artificially domesticated, Pekin duck stores a large
amount of lipids in abdominal and subcutaneous adipose tissues
(Kou et al., 2012; Lin et al., 2018), which is an ideal animal model
for studying the fat deposition process of birds. The previous
research showed that the lipid deposition patterns of the two
tissues were different during the growth periods, the content of
subcutaneous adipose tissue was higher than abdominal adipose
tissue (Ding et al., 2012). However, the difference of molecular
mechanism of lipid deposition with different adipose tissues of
Pekin duck is still not clear.

Accompanied by the progress of sequencing technology,
single-molecule sequencing was widely used in plant research,
such as corn (Guo et al., 2021), rice (Du H. et al., 2017), clover
(Chao et al., 2018), bamboo (Wang et al., 2017), etc. highlighting
the huge advantages of identification of alternative splicing
by full-length transcriptome. Single-molecule sequencing can
directly obtain all information of the RNA sequence without
assembly. However, there are fewer applications of single-
molecule sequencing technology in bird research. For ducks, only
PacBio Sequel was used to sequence the full-length transcriptome
of eight Pekin duck tissues, and identified 35,031 alternative
splicing events among 3,346 genes (Yin et al., 2019).

Fortunately, the assembly of the high-quality Mallard genome
provides a vital support for us to accurately identify the isoforms
and alternative splicing events of genes (NCBI, 2019). Alignment
of different isoforms to the reference genome can effectively
identify the modes of alternative splicing of genes, especially
to improve the accuracy of long isoforms alignment (Kraft and
Kurth, 2020). At present, the process of alternative splicing
identification for species with reference genome is mature and
reliable (Song et al., 2020; Xu et al., 2021). Combined analysis
using transcriptome of short-read and long-read sequencing can
further improve gene structure annotation, verify splicing sites,
analyze tissue-specific or time-specific expression of different
isoforms (Hu et al., 2021).

Another advantage of single-molecule transcriptome
sequencing is the identification of TFs (Mazzocca et al.,
2021) and lncRNAs (Troskie et al., 2021) in tissues, which is
essential for the study of transcriptional regulation of fat-related
biological processes. Adipogenesis is a process characterized
by a complex network involving many TFs and lncRNAs that
regulate gene expression (Squillaro et al., 2020). LncRNAs
process multiple cellular functions and regulate chromatin
remodeling, transcriptional and post-transcriptional events to
affect gene expression. Recent investigations have shown that
these molecules play a key role in regulating the development
and activity of the white and brown/beige adipogenic process
(Squillaro et al., 2020). Overexpression and knockout methods
have been widely used to understand the contribution of TFs to
adipocyte development, providing a basic strategy for studying
the complexity of adipogenesis in vitro. So far, more than 12
transcription factors have been shown to play an important
role in adipocyte development (Farmer, 2006; Lee et al., 2019;
Ambele et al., 2020; Zhang et al., 2020). Comprehensive

analysis of different isoforms of TFs during adipocyte multiple
developmental time points can broaden our view of regulation of
different adipocyte development in birds.

Therefore, we performed ISO-seq and RNA-Seq analysis on
abdominal and subcutaneous adipocytes derived from the Pekin
ducks. We addressed the proliferation and differentiation of the
abdominal and subcutaneous adipocytes to identify potential
differences in isoforms. The results of this analysis allowed us
to expand our cognition of alternative splicing and differential
expression which indicate different regulation modes, and
provide a rich resource into the alternative splicing that forms
an essential part of transcript diversity and complexity during
abdominal and subcutaneous adipose synthesis and deposition.
These results will facilitate future functional genomics studies and
broaden our horizons of alternative splicing in poultry.

MATERIALS AND METHODS

Cell Culture and Differentiation Induction
The cell samples used in this experiment were primary
preadipocytes isolated from the abdominal and subcutaneous
adipose tissues of Pekin ducks provided by Beijing Golden Star
Ltd. The experimental procedure was in accordance with the
guidelines of the China agricultural University Animal Care
Committee. The isolation method referred to the method used
in our previous study (Wang et al., 2019). Ducks were sacrificed
under deep anesthesia with sodium pentobarbital (Sigma).
Abdominal and subcutaneous adipose tissue was collected under
sterile conditions and washed with PBS. The clean adipose
tissue was minced into fine sections and digested with 15 mL
of digestion Solution [DMEM/F12 (Dulbecco’s modified Eagle’s
medium/Ham’s nutrient mixture F-12), 100 mM HEPES, 4%
BSA, 2 mg/mL collagenase I (Invitrogen), pH 7. 4] for 65 min
at 37◦C in a water bath shaker. After incubation and stop
digestion by growth medium (DMEM/F12, 10% FBS, 100 U/mL
penicillin, and streptomycin). The mixture was filtered through
nylon screens with 70 µm mesh openings to remove undigested
tissue and large cell aggregates. The filtered suspensions were
centrifuged at 300 × g for 10 min to separate floating adipocytes
from preadipocytes. The harvested preadipocytes were then re-
suspended with 10 mL of Blood Cell Lysis Buffer (Invitrogen),
and incubated at room temperature for 10 min. The abdominal
and subcutaneous preadipocytes isolated were inoculated in a
growth medium. The cell culture was carried out at 5% CO2
concentration, 37◦C and 95% air humidity. Preadipocytes can
be induced to differentiate by adding oleic acid to the growth
medium (Shang et al., 2014).

Cell Counting Kit-8 Assay
Cell Counting Kit-8 (CCK-8) is a highly sensitive colorimetric
assay for cell proliferation. In order to determine the difference
of proliferation rate of preadipocytes in different parts of Pekin
duck, abdominal and subcutaneous preadipocytes divided into
4 × 103 cells/well were seeded in 96 wells cell culture plate.
100 ul medium was added to each well. After induction for 24 h,
48 h, 96 h, 144 h, 192 h, and 240 h, 10 ul CCK-8 (Dojindo
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Laboratories, JP) was added to the sample well, incubated at 37◦C
for 2 h, and the absorbance value at 450 nm was measured by the
multi-function microplate reader (Infinite F200, CH).

Determination of the Activity of
Glycerol-3-Phosphate Dehydrogenase
Glycerol-3-phosphate dehydrogenase (GPDH) is a rate-limiting
enzyme of fatty acyl-CoA biosynthesis, and its enzyme activity
increases significantly in the late stage of adipose differentiation,
so it can be an index to characterize the differentiation
degree of preadipocytes. In our experiment, abdominal and
subcutaneous preadipocytes were selected at 0 h, 48 h, and
96 h after inducing differentiation. GPDH activity was conducted
by using GPDH activity detection kit (Sigma, United States).
Three biological replicates (n = 3) were included at each
time point. Bovine serum albumin was used as the standard,
BCA protein detection kit (Sigma, United States) was used to
determine the protein concentration of cell culture homogenate
(Matsubara et al., 2005).

Determination of Relative Lipid Droplet
Content
Oil red O (Sigma, United States) staining could specifically stain
the neutral lipid in cells because it can be highly dissolved in
lipid. In our study, abdominal and subcutaneous preadipocytes
were collected at 0 h, 24 h, 48 h, 72 h, 120 h, and 240 h after
induction. Firstly, the cells were washed with PBS for three times,
fixed with 10% (v/v) paraformaldehyde at room temperature
for 30 min, then washed with PBS, stained with 1% oil red
O for 40 min, removed the supernatant, and added 1 mL of
100% (v/v) isopropanol to obtain the extraction. The absorbance
of the extraction at 500 nm was measured by the multi-
function microplate reader (Infinite F200, CH) to characterize
the relative lipid droplet content of each sample (Ramirezzacarias
et al., 1992). Three biological replicates (n = 3) were included
at each time point. The data were analyzed by independent
sample students’ test.

Sample Collection and RNA Preparation
All the Pekin duck used in this study were provided by
Beijing Golden Star Ltd. Inc. The abdominal and subcutaneous
adipose tissues were collected for the primary culture of the
preadipocytes. The detailed method of primary cell culture is
described in previous research (Matsubara et al., 2005). We
collected −48 h (48 h before the initiation of differentiation),
0 h (the initiation of differentiation), 12 h, 24 h, 48 h, and
72 h of abdominal and subcutaneous preadipocytes for RNA
extraction respectively. The cleaned adipocytes at all time points
were homogenized separately (10 µg per sample) in TRIzol
(Invitrogen, United States) and processed according to the
manufacturer’s protocol. RNA integrity number (RIN) values
were calculated using an Agilent 2100 Bioanalyzer (Agilent
Technologies, United States), and RNA concentration was
assessed using a NanoDropTM spectrophotometer (Thermo
Fisher Scientific, United States). All RNA samples had an RNA
integrity number value >8.0, and an optical density 260:280 ratio

>1.9. RNA was then used for mRNA-seq using the Illumina
sequencing platform.

Library Preparation and Pacific
Biosciences Sequencing
Abdominal and subcutaneous preadipocytes at 72 h after
differentiation were used for full-length transcriptome
sequencing. −48 h, 0 h, 12 h, 24 h, 48 h, and 72 h of abdominal
adipocytes were collected for RNA-Seq, and each time point
included six biological replicates (n = 6).

We constructed two Iso-seq libraries for abdominal and
subcutaneous adipocytes, which mixed equal amounts of RNA
from each sample (5 µg per sample). The libraries were
generated according to PacBio Iso-seq sequencing protocol.
Briefly, qualified RNA was first obtained for sequence library
construction, and the Clontech SMARTer cDNA synthesis kit
with Oligo-dT primers was used to generate first-strand and
second-strand cDNA from polyA mRNA. Size fractionation
and selection (<4 kb and >4 kb) were performed using the
BluePippinTM Size Selection System (Sage Science, Beverly, MA,
United States). The full-length cDNA was repaired to construct
the equal-mole hybrid library. The sequences without joints
at both ends of the cDNA were removed. Two SMRT bell
libraries were constructed with the Pacific Biosciences DNA
Template Prep Kit 2.0 and SMRT sequencing was then performed
using the Pacific Bioscience Sequel System. Approximately 5 µg
of total RNA was used for mRNA-seq using the Illumina
sequencing platform. Suitably sized fragments were selected
using AMPure XP beads (Beckman Coulter, United States) to
construct the cDNA libraries by PCR. Following construction,
double-stranded cDNA libraries were sequenced on an Illumina
HiSeq X-10 with PE150 mode (Novogene, CA, United States).
The methods of library construction and sequencing were as
described elsewhere (Wang et al., 2019). All sequencing data
were deposited in National Centre for Biotechnology Information
(NCBI) under the BioProject ID PRJNA723918. RNA-Seq data
of multiple differentiation stages of subcutaneous preadipocytes
were downloaded from NCBI (accession number: SRX4646736).

Data Analysis of ISO-Seq Raw Data
We obtained all raw data and processed it according to the
Iso-seq standard pipeline1. Firstly, the sequence adapters were
removed and the sequences shorter than 300 bp in length and
less than 0.75 accuracy were filtered to obtain subreads. After
quality control, the clean polymerase reads were processed to
separate reads of an insert with pass >0 and accuracy >0.75.
These reads of insert (ROI) were categorized into full-length,
non-full-length, and chimeric reads using the SMRT Iso-Seq
analysis pipeline. Full-length reads were determined by detecting
poly(A) tails, 5′ primers and 3′ primers. ROI was divided into
chimeric transcripts and non-chimeric transcripts according to
whether there were sequencing primers in the sequence. The cd-
hit-est (Li and Godzik, 2006) were used to remove redundant

1https://github.com/PacificBiosciences/IsoSeq_SA3nUP/wiki/Tutorial:
-Installing-and-Running-Iso-Seq-3-using-Conda
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sequences, and all reserved non-redundant sequences are used for
downstream analysis.

Analysis of Transcript Structure and
Alternative Splicing Identification
We aligned the non-redundant isoforms to the Mallard reference
genome using GMAP (Wu and Watanabe, 2005) software
(gmap.avx512), and sorted the aligned sam files and converted
it into bam files using Samtools (Pertea et al., 2016) (v1.9).
MatchAnnot (2015.06) software was used to compare the sorted
alignment files with the annotation files of the Mallard genome.
According to the exons information derived from annotation
files, the different matching results were scored. The scores
were marked into 0, 1, 2, 3, 4, and 5 to show the best
matching transcripts.

In order to identify the alternative splicing (AS) events of the
genes, firstly, The alignment file was filtered for 90% alignment
coverage and 90% alignment identity and corresponding GFF
files generated using cDNA_Cupcake (Gordon et al., 2015)
(v18.1.0). SUPPA2 (Trincado et al., 2018) (v2.2.1) identified the
AS events from annotation files (GFF/GTF format). The AS
events were detected by SUPPA2 (v2.2.1), including alternative
5′ splice site or alternative 3′ splice site (A5/A3), skipping exon
(SE), first exon/last exon alternative splicing (AF/AL), mutually
exclusive exons (MX) and intron retention (RI).

Functional Annotation of the Full-Length
Transcriptome
In order to annotate non-redundant full-length transcripts, we
used Blast (McGinnis and Madden, 2004) (v2.2.26; e value = 1-
e5) to align the sequences with the NT (NCBI nucleotide
sequences), Swiss-Prot (A manually annotated and reviewed
protein sequence database), and KOG (Karyotic Ortholog
Groups) databases, and the results with the highest alignment
score were used as the annotation. At the same time, we used
the known transcription factors of human in the AnimalTFDB
database to annotate full-length non-redundant sequences, which
is essential for understanding the diversity of transcription
factors in adipose. We performed GO (Gene Ontology) and
KEGG (Kyoto Encyclopedia of Genes and Genome) functional
annotations on the Metascape website (Zhou et al., 2019).

Differentially Expressed Isoforms in
Abdominal and Subcutaneous
Preadipocytes Cells
The clean reads of abdominal and subcutaneous preadipocytes
cells were mapped to the Mallard reference genome
(Anas_platyrhynchos.ASM874695v1.dna.toplevel.fa, Ensembl
Release 104, CAU-Wild1.0) by Hisat2 (v2.1.0). Then samtools
(v1.9) were used to sort and convert the comparison files.
Stringtie (Pertea et al., 2016) (v2.0.6) was used to calculate
the abundance of full-length transcripts in each sample by
annotation files. The DEseq2 (v1.28.1) was used to analyze
differentially expressed transcripts (DETs). Transcripts with the
fold change >1.5 and FDR < 0.05 were considered DETs.

RNA Isolation and Real-Time
Quantitative RT-PCR
The total RNA of abdominal and subcutaneous preadipocytes
were extracted with e.z.n.a. total RNA kit II reaction kit (Omega
Bio-Tek, United States). The RNA quality and quantity were
determined using 1% agarose gel electrophoresis and NanoDrop
1000 (Thermo Scientific, Wilmington, DE, United States),
and 2 µg of total RNA from abdominal and subcutaneous
preadipocytes were reverse-transcribed with PrimeScriptTM RT
reagent Kit with gDNA Eraser reaction kit (Takara bio, CA,
United States) (Kang et al., 2017). Using total RNA as template
and oligo (DT) primer, the first strand of cDNA was inverted.
The specific primer pairs of transcripts were designed using
the Primer-BLAST software2. We tested different annealing
temperatures to optimize each pair of primers using conventional
PCR to exclude the presence of unspecific products or primer
dimer synthesis; the PCR products were analyzed by 2% agarose
gel electrophoresis. Real-time fluorescence quantification PCR
(RT-qPCR). Real-time fluorescence quantification PCR (RT-
qPCR) was performed using TB green premix Ex TaqTM

fluorescence quantitative kit (Takara, CA, United States) and
7500 Fast Real-Time PCR system (Applied Biosystems, v2.0.6).
Each qPCR reaction had a final volume of 20 µL of the reaction
mixture, which consisted of 10 µL 2X TB Green Premix Ex Taq,
0.4 µL ROX Reference DyeII, 6.8 µL DNase/RNase-Free water,
0.4 µL forward and reverse specific primers for each transcript
and 2 µL of cDNA template (Madkour et al., 2021). The PCR
reaction conditions were pre denaturation at 95◦C for 30 s, using
40 cycles (95◦C for 5 s and 60◦C for 30 s), and each sample was
technically repeated three times. Fluorescence data were acquired
at the end of the extension step. The primer sequences used
in RT-qPCR reaction are shown in Supplementary Table S5.
Results of the data were obtained by 7500 fast Real-Time PCR
system. GAPDH was used as the internal reference gene in each
sample to standardize the expression level of the transcripts,
and the relative expression was calculated by 2−11CT relative
quantitative method.

RESULTS

Phenotypic Difference of Abdominal and
Subcutaneous Preadipocytes in Pekin
Duck
Adipogenesis includes the proliferation and differentiation of
preadipocytes. In order to compare the phenotypic differences
between abdominal and subcutaneous preadipocytes in Pekin
duck, the proliferation and differentiation ability of abdominal
and subcutaneous preadipocytes in different stages were
determined. CCK8 cell proliferation assay results showed that the
proliferation rate of abdominal preadipocytes was higher than
subcutaneous preadipocytes at 96 h, and the number of living
cells in the abdominal preadipocytes group was significantly
higher than that of subcutaneous preadipocytes at 144 h, 192 h,

2www.ncbi.nlm.nih.gov/tools/primer-blast
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and 240 h (P < 0.05) (Figure 1A). These results show that the
proliferation ability of abdominal preadipocytes was significantly
stronger than subcutaneous preadipocytes. GPDH activity assay
showed that GPDH activity of subcutaneous preadipocytes was
significantly higher than abdominal preadipocytes at 0 h and
48 h (P < 0.05) (Figure 1B). Meanwhile, the relative lipid
droplet content of subcutaneous and abdominal preadipocytes
at different time points after induction showed that the lipid
droplet content of subcutaneous preadipocytes was higher than
abdominal preadipocytes at each stage, and the difference was
significant at 48 h and 72 h (P < 0.05) (Figure 1C). These
results indicate that the differentiation ability of subcutaneous
preadipocytes is stronger than abdominal preadipocytes.

Generating Transcript Isoforms in Duck
Adipose Tissues
In order to develop a comprehensive catalog of transcript
isoforms, size-fractionated libraries (1–10 kb and 4–10 kb)
were constructed. Combining the two libraries, a total of
41.78 GB of raw data was obtained, of which the raw data
of abdominal and subcutaneous adipose were both 20.89 GB.
For the sequencing data, after filtering and quality control, the
number of circulating consensus sequences (CCS) of abdominal
and subcutaneous adipose were 240,094 and 184,457, with an
average length of 3,858 bp and 3,692 bp. As expected, the
average length of these ROI (reads of insert) were consistent
with the selected library size. In the study, we classified ROI

and obtained full-length non-chimeric transcripts and non-full-
length non-chimeric transcripts. 143,931 (59.95%) and 111,337
(60.36%) full-length non-chimeric transcripts of abdominal and
subcutaneous adipose were obtained respectively (Table 1).
The full-length non-chimeric transcripts of abdominal and
subcutaneous adipose were combined and subjected to cluster,
and 89,289 full-length non-redundant sequences were obtained,
with an average length of 3,985 bp (Figure 2). All full-length
non-redundant sequences were used for downstream analysis
(Supplementary Figure S9).

Identify the Complex Isoforms of
Transcription Factors and Long
Non-coding RNAs
The transcription factor annotation of Mallard duck in
AnimalTFDB3.0 database contains 865 annotated transcription
factors from 71 families. The 4,544 full-length non-redundant
transcripts in our study were annotated 527 transcription factors
which belong to 64 gene families (Supplementary Table S1).
In most eukaryotes, long-non-coding RNAs (lncRNAs) play an
important role in regulating the protein-coding gene expression.
In the study, we evaluated the coding potential of the transcripts
and obtained 35,134 potential lncRNAs. Then we filtered
the transcripts which have high similarity to the known
protein sequences. Finally, 19,212 high-confidence lncRNAs were
obtained. The length of most of the lncRNAs was 4,000–6,500 bp

FIGURE 1 | Proliferation rate, GPDH activity, and intracellular lipid droplet accumulation of abdominal adipose and subcutaneous adipose of ducks cultured in
differentiation medium (induction). (A) Relative quantification of cell proliferation rate within 24–240 h after induction. (B) Analysis of GPDH activity at 0 h, 48 h, and
96 h after induction. (C) Relative quantification of lipid droplet accumulation within 240 h after induction. The line graph represents the SD of the average (n = 3).
*Indicates that there is a statistically significant difference between abdominal and subcutaneous preadipocytes at the same time (P < 0.05). The statistics data of
subcutaneous preadipocytes in panels (B,C) were cited by Wang et al. (2019).
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TABLE 1 | Full length transcript data information.

Process Information Abdominal Subcutaneous

Sequencing
data output

Cell number 1 1

cDNA size 1–10 k,
4–10 k

1–10 k, 4–10 k

Polymerase read bases 20.89 20.89

Polymerase reads 545895 545895

Polymerase read N50 68983 68983

Polymerase read length 38266 38266

ROI cDNA size 1–10 k 1–10 k

Reads of insert 240094 184457

Read bases of insert 926290963 681050538

Mean read length of insert 3858 3692

Mean read quality of insert 0.9775004 0.9783864

Mean number of passes 15 16

Classify cDNA size 1–10 k 1–10 k

Number of reads of insert 240094 184457

Number of five–five prime
reads

7347 4919

Number of three–three
prime reads

79460 60854

Number of adaptor reads 65 81

Number of filtered short
reads

65 81

Number of full-length
non-chimeric reads

143931 111337

FIGURE 2 | Length distribution of full-length non-redundant transcript.

(Figure 3A), with an average length of 4,469 bp, which is
significantly longer than the known length of lncRNAs (1,284 bp).
Because lncRNAs is involved in a variety of cellular processes,
the diversity and expression difference (Figure 3B) of lncRNAs
reflects the complexity of regulatory processes in adipose tissue.

Structure Annotation
In this study, the amount of multi-exon transcripts were
sequenced using PacBio Iso-Seq. At the isoform level, there
were 29,320 transcripts from 18,490 wild duck gene models.
By comparing with wild duck reference annotation, 62,469
full-length non-redundant transcripts were identified from

11,834 Pekin duck gene models. We found that 71.15% of
the genes in the original annotation were defined by a single
transcript isoform. After analysis of the Iso-Seq data, only
42.21% of the genes are defined by only a single transcript. The
percentage of gene models with at least three isoforms in the
full-length non-redundant transcripts was higher than that in
the reference transcripts (42.52% vs. 12.83%). On average, there
were 5.28 transcripts per gene, compared with 1.59 transcripts
in the reference notes (Figure 4A). In addition, the full-length
non-redundant sequences were annotated in the study. The
different scores in the annotation results correspond to the
consistency with the known reference transcripts (Figure 4B).
The sequences with matching degree < 2 were poor matching,
accounting for 35.35%, while the sequences with potential
alternative splicing (score ≥ 2) accounted for 64.66%. These
results indicate that the full-length non-redundant transcripts
can predict new transcripts based on known transcripts. The
exons differences in the number and structure of transcripts
show that the AS increases the transcriptome complexity
significantly in Pekin ducks.

Identification of Alternative Splicing
Events Based on Mallard Genome
Alternative splicing can increase protein diversity by changing
the protein structure. In the full-length non-redundant
sequences, 74,571 AS events were identified from 4,046
gene models (Figure 5 and Table 2). The 3′ and 5′ AS (A3/A5)
were the main AS events, accounting for 66.59%. The rest AS
events included RI (11.80%), SE (5.89%), AF (8.87%), Al (4.51%),
and MX (2.33%). A3, A5, IR, and SE AS events are common in
genes. Most genes have only one AS type, while only 71 genes
have each type. We found that AS events are correlated with
the number of exons. With the increase of exons, AS enhanced
the diversity and complexity of abdominal and subcutaneous
adipose transcripts in Pekin duck.

Functional Annotation of Transcript
Isoforms
In order to obtain the annotation of the full-length transcripts, we
annotated full-length transcripts of abdominal and subcutaneous
adipose of Pekin duck by NT, Swiss-Prot, and KOG databases
for further study of gene function (Figure 6, Supplementary
Table S2, and Supplementary Figures S1, S2). In NT, Swiss-
Prot, and KOG databases, at least 88,388 (98.99%) transcripts
were annotated from 89,289 full-length transcripts. The results
showed that 88,349 (98.94%) transcripts were annotated in
NT database, and 58,149 (65.43%) transcripts were annotated
in all databases. The above results show the reliability and
accuracy of the full-length transcripts. All genes corresponding
to full-length transcripts were subjected to functional annotation,
about 9,495 genes were annotated by GO and KEGG.
In GO and KEGG databases, the majority gene symbols
of abdominal and subcutaneous adipose were represented
by protein binding (671), nucleoplasm (379), and protein
ubiquitination (42) in ‘Molecular Function’ category, ‘Cellular
Component’ category, and ‘Biological Process’ category, analysis
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FIGURE 3 | (A) Length distribution and full-length transcripts of lncRNAs in abdominal and subcutaneous adipose. (B) The number of DET of lncRNA in abdominal
adipose and subcutaneous at each time point.

FIGURE 4 | (A) Quantity distribution of mallard duck reference genome and full-length non-redundant transcripts. (B) Proportional distribution of structural
annotations of full-length transcripts. (Score = 0, isoform overlaps gene, but little or no exon congruence; Score = 1, Some exons overlap, overlaps are 1-for-1 where
they exist; Score = 2, The best match among all transcripts with score of 1; Score = 3, One-for-one exon match, but sizes of internal exons disagree; Score = 4, Like
5, but leading and trailing edge sizes differ by a larger amount than the score-5 transcript found for this gene; Score = 5, Iso-Seq exons match annotation exons
one-for-one. Sizes agree except for leading and trailing edges).

of the KEGG annotations revealed that most genes were enriched
in ‘metabolic’ pathway (72).

Specific Expression of Isoforms in
Different Types of Adipocytes
Our study explored 36 mRNA-Seq libraries to investigate
expression level differences between abdominal and
subcutaneous adipocytes at six time points. We identified
14054, 12226, 11995, 12854,12255, and 18627 DETs at−48 h, 0 h,
12 h, 24 h, 48 h, and 72 h (Figure 7). The data (Supplementary
Table S4) indicate that there may be differences in the number
and function of transcriptional regulators before and after
differentiation, which reflects the complexity of the regulation
mode in the process of Pekin duck fat deposition.

Discovery of a Specific Transcription
Factor During Fat Development
Many transcription factors play vital roles in the regulatory
pathways of preadipocyte STAT3 is signal transduction and

transcriptional activator. It is a crucial factor for the biological
functions of eukaryotes, such as embryonic development,
immunity, hematopoiesis, and cell migration (Liu et al., 2021).
STAT3 regulates VSTM2A (V-set and transmembrane domain-
containing 2A) (Al Dow et al., 2021) and JAK (Janus kinase)
(Zhang et al., 2011) in preadipocytes and promotes white adipose
tissue development. According to the results of AS events and
annotation of full-length transcripts in the study, STAT3 has
17 isoforms and 4 alternative splicing events, including A5,
A3, AF, and RI (Figure 8). The length and number of exons
vary among different transcripts. These transcripts contain 5–
26 exons, and the transcript with the largest number of exons
has two more exons than STAT3 in the reference genome. The
number of STAT3 improved the richness of the transcript AS.
For example, STAT3-12 contains 24 exons and 4 types of AS. The
main AS events of STAT3 are A3 and A5, which involve trans-
activated domain and tandem donor reflecting the diversity of
transcripts structure.

Total transcripts of STAT3 show various expression patterns
during differentiation (Figures 9, 10). STAT3-2, STAT3-3, and
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FIGURE 5 | Alternative splice event distribution of abdominal and
subcutaneous adipose.

TABLE 2 | The number of alternative splicing (AS) event.

Items Gene counts (%) Event counts (%)

A3 2064 (51.01%) 23873 (32.01%)

A5 2283 (56.43%) 25788 (34.58%)

AF 848 (20.96%) 6611 (8.87%)

AL 134 (3.31%) 3362 (4.51%)

MX 198 (4.89%) 1742 (2.33%)

RI 1906 (47.11%) 8802 (11.80%)

SE 1733 (42.83%) 4393 (5.89%)

Total 4046 74571

A3, alternative 3′ splice site; A5, alternative 5′ splice site; AF, alternative first
exon; AL, alternative last exon; MX, mutual exclusive exons; RI, intron retention;
SE, exon skipping.

STAT3-13 have low-level gene-expression, and STAT3-1 of
abdominal and subcutaneous adipocytes are expressed at a
considerably higher level than any minor transcripts of the
STAT3 during all stages. STAT3-1 has one more exon at the
3′ than the SATA3 in the reference genome. At the early
stage of differentiation (12 h, 24 h, and 48 h), the expression
level of STAT3-1 in subcutaneous adipocytes was significantly
higher than that in abdominal adipocytes (P < 0.05). STAT3-10,
STAT3-15, STAT3-16, and STAT3-17 have significant difference
during preadipocytes differentiation (P < 0.05). In abdominal
and subcutaneous adipocytes, the expression of STAT3-4,
STAT3-8, STAT3-10, STAT3-12, STAT3-16, and STAT3-17 were
significantly different at several consecutive stages (P < 0.05).
These results reflect that the differences in the expression
of transcripts lead to the complexity of gene expression
among different tissues, which is a potential factor causing the
functional complexity of different tissues. Our study analyzed the
expression profiles of other transcription factors, such as PPARγ

(Supplementary Figures S3, S4), BCL6 (Supplementary Figures
S5, S6), and GATA2 (Supplementary Figures S7, S8). The results

FIGURE 6 | Number distribution of functional notes of full-length
non-redundant transcripts of abdominal and subcutaneous adipose in NT,
KOG, and Swiss-Prot databases.

indicate that the differences in transcript abundance may be
mostly attributed to splicing.

RT-qPCR Assays for Validation of
Isoforms
In the current study, three samples of abdominal and
subcutaneous preadipocytes from 0 h were randomly selected
for RT-qPCR to validate some key genes involved in the
proliferation and differentiation of preadipocytes. Including
PPARD (Peroxisome Proliferator-Activated Receptor Delta),
SMAD3 (SMAD Family Member 3), STAT3, FHL2 (Four and
A half LIM domains 2), and SLC16A2 (Solute Carrier Family
16 Member 2) (Figure 11). We choose two transcripts with
the highest expression (transcript 1) and lower expression
(transcript 2) for each gene. The expression patterns of these
transcripts were highly consistent with the mRNA-Seq results.
The results showed that transcription factors usually have an
obvious dominant expression transcript in adipocytes, which may
mainly perform gene functions.

DISCUSSION

Duck is an important economic waterfowl, and it is also a model
animal for adipose deposition and immune research (Li and Lu,
2011; Zheng et al., 2014). Although the duck genome sequence
has been released, its information of genome and transcriptome
still needs to be further explored. At present, the research
related to transcriptome has been reported in ducks. Wang et al.
(2019) analyzed the dynamic transcriptome information of the
proliferation and differentiation of subcutaneous preadipocytes,
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FIGURE 7 | Histogram of the number of different expression transcript (DET) in different tissues at different time of abdominal and subcutaneous adipose.

FIGURE 8 | STAT gene transcripts structure diagram.

Qiu et al. (2018) and Xu et al. (2019) discussed the relationship
between gene expression and adipose distribution. These findings
lay the foundation for understanding duck fat synthesis and
deposition. These studies only paid attention to the expression
changes of transcripts, but not reported the above alternative
splicing and SNP. Yin et al. (2019) published the full-length
transcripts information of the pectoral muscle, heart, uterus,
ovary, testis, hypothalamus, pituitary gland, and 13-day-old
embryos of Pekin duck, and identified lncRNAs and AS events,
which improved genome annotations and informative basis
with the functional genomics of other birds. The drawback
with this study is that it lacks information about the full-
length transcripts of adipose, which hinders the accurate analysis

of the gene function related to the adipogenesis of Pekin
duck. In our study, Iso-seq analysis was performed on the
abdominal and subcutaneous adipocytes of Pekin duck, 62,469
full-length transcripts were identified from 11,834 gene models,
transcription factors, lncRNAs, and alternative splicing events
were identified to facilitate functional genomics in adipose of
Pekin duck. The number of transcription factors identified was
less than the total transcription factors of wild ducks, which might
be due to some transcripts could not be detected because of the
specificity of adipose tissue expression (Rodriguez et al., 2020).

Exploring functional differences requires accurate transcript
annotations. Alternative splicing increases the richness of
transcripts, which has great significance for functional genomics
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FIGURE 9 | Expression level of new transcripts of STAT gene at different time points of differentiation. Statistical change was determined by Student’s test (two
tailed), *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001 as fat.

research. In this study, 74,571 AS events were identified from
4,046 gene models. A5 and A3 involving 2,283 and 2,064 genes
had the highest ratio of alternative splicing events. Xu et al. (2016)
used the next-generation sequencing to analyze the AS of breast
muscle and subcutaneous adipose. Their results showed that A5
and A3 were the main AS events, which were consistent with the
results of our study. But the results of this study are different
with Yin et al. (2019). Their main AS types are RI and SE. The
results of this study and Yin et al. (2019) reflect the differences
in the types of AS between adipose tissue and other tissues. AS
increases the complexity and diversity of transcripts, which may
be the basis for the inheritance and regulation of tissues and
organs performing different functions. The AS events identified
in this study provide clues for subsequent studies, such as tissue-
specific expression, a difference of homologous genes function in
different tissues, and so on.

Transcription factors play an important regulatory role in
the process of adipogenesis. As an important transcription
factor, STAT3 can be activated under the action of IL-11
(interleukin-11) to promote the proliferation and migration
of mouse adipose mesenchymal stem cells (Yang et al.,
2020), and can synergistic effect with HMGA2 (High Mobility
Group AT-Hook 2) to promote the process of adipogenesis
in mice (Yuan et al., 2017). In humans, STAT3 can activate
the expression of CD36 (CD36 molecule) and promote
preadipocyte differentiation and lipid deposition (Rozovski
et al., 2018; Su et al., 2020). In poultry, the JAK-STAT
signaling pathway regulates the proliferation and apoptosis
of chicken chondrocytes (Chen et al., 2021) and embryo

development (Zhang et al., 2017), and STAT3 affects the
angiogenesis of chorioallantoic membrane in female chicken
embryos by mediating the VEGF/NO (vascular endothelial
growth factor/nitric oxide) pathway (Su et al., 2012). STAT3
encodes different transcripts (Qi and Yang, 2014), and it
was found that STAT3α2 generated by exon skipping may
play a major role in STAT3 signal transduction on grass
carp, which is consistent with the function of STAT3α1
(Du L. et al., 2017). In our study, STAT3-1 was the major
expression transcript, which was generated by A3 and A5
alternative splicing. Studies have shown that STAT3 can affect
preadipocyte differentiation by regulating the activity of the
PPARγ promoter and regulate the process of adipogenesis
(Su et al., 2020). The specific function of STAT3-1 needs
to be further confirmed. For example, the three exons at
the 3′ ends of STAT3 of the reference genome belong to
the nitrogen-terminal domain affecting protein interaction
(Schwalie et al., 2018). Compared with the reference genome,
there is an extra exon at the 3′ ends of STAT3 in full-
length transcripts, which may affect the binding affinity to
the target genes. The expression of STAT3-1 of Pekin duck’
s subcutaneous at 12 h, 24 h, and 48 h was higher than
that of abdominal fat (P < 0.05), which may be one of
the factors affecting the differentiation ability of subcutaneous
than abdominal preadipocytes. Therefore, in this study, A3
of STAT3-1 was a potential key AS event in the regulation
of preadipocyte differentiation. The transcription factors can
regulate the binding of other genes, promote or inhibit the
differentiation of preadipocytes, but the binding efficiency of
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FIGURE 10 | Heatmap of STAT gene transcripts expression.

FIGURE 11 | RT-qPCR relative expression. (A) Expression of different transcripts of subcutaneous adipose. (B) Expression of different transcripts of abdominal
adipose, *P < 0.05.

different transcripts of the same gene is also different. Alternative
splice-form plays a key role in the process of gene regulation
by generating different transcripts. Further studies can be
carried out through knockdown, knockout, and overexpression

experiments to explore the specific functions of different
transcripts in adipogenesis.

Previous studies showed that abdominal and subcutaneous
adipose have different transcriptional characteristics

Frontiers in Physiology | www.frontiersin.org 11 November 2021 | Volume 12 | Article 767739

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-767739 November 8, 2021 Time: 11:8 # 12

Sun et al. The Full-Length Transcriptome of Adipose

(Burl et al., 2018; Schwalie et al., 2018; Merrick et al.,
2019). The process of adipogenesis is characterized by
changes in cell morphology (Sebo and Rodeheffer, 2019).
The shape of the cells evolves from flat to round cells
with triacylglycerol-rich lipid droplets. The material and
energy requirements for cytoskeleton reorganization and
accumulation of lipids are necessary (Del et al., 2019; Calvo
and Izquierdo, 2021; Zhang et al., 2021). Cytoskeleton
is composed of protein fibers, which is consistent with
the protein binding process in our function annotation
study. Subcutaneous and abdominal adipose mediate the
adipose synthesis and immune regulation, such as fibrosis,
lipid deposition, angiogenesis, and inflammation (Caputo
et al., 2021). The above processes are closely related to
metabolism, which is consistent with the KEGG annotation
results of our study.

In summary, Iso-seq and RNA-Seq conducted a global
analysis for the differentiation process of the abdominal
and subcutaneous preadipocytes in Pekin duck. This study
provided full-length transcripts, AS events, lncRNAs and
transcription factors, analyzed expression levels at different
stages of preadipocyte differentiation, and initially explored
the regulation of AS of abdominal and subcutaneous adipose
in Pekin duck. These results definitively provide valuable
information for the alternative splicing, gene expression and
regulation of adipose tissue in Pekin duck. Furthermore, the
information generated will promote future investigations of
functional genomics.
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