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Abstract

Genomewide association studies (GWAS) have identified a large number of loci associated

with neuropsychiatric traits, however, understanding the molecular mechanisms underlying

these loci remains difficult. To help prioritize causal variants and interpret their functions,

computational methods have been developed to predict regulatory effects of non-coding

variants. An emerging approach to variant annotation is deep learning models that predict

regulatory functions from DNA sequences alone. While such models have been trained on

large publicly available dataset such as ENCODE, neuropsychiatric trait-related cell types

are under-represented in these datasets, thus there is an urgent need of better tools and

resources to annotate variant functions in such cellular contexts. To fill this gap, we collected

a large collection of neurodevelopment-related cell/tissue types, and trained deep Convolu-

tional Neural Networks (ResNet) using such data. Furthermore, our model, called Meta-

Chrom, borrows information from public epigenomic consortium to improve the accuracy via

transfer learning. We show that MetaChrom is substantially better in predicting experimen-

tally determined chromatin accessibility variants than popular variant annotation tools such

as CADD and delta-SVM. By combining GWAS data with MetaChrom predictions, we priori-

tized 31 SNPs for Schizophrenia, suggesting potential risk genes and the biological contexts

where they act. In summary, MetaChrom provides functional annotations of any DNA vari-

ants in the neuro-development context and the general method of MetaChrom can also be

extended to other disease-related cell or tissue types.

Author summary

A large number of genetic variants have been statistically associated with the risks of com-

mon diseases. However, whether such variants are actual risk variants and when and

where they function are often unknown. To address this challenge, machine learning
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methods have been developed to predict functional variants in specific cellular contexts.

These methods correlate DNA sequences with their biological functions, e.g. enhancer

activities, and can predict effects of single base mutations. Nevertheless, the training data

used by existing methods often lack neurodevelopment-related cell types, thus annotating

variant effects in neuropsychiatric genetics remains difficult. In this work, we fill this gap

by collecting a large set of regulatory genomic datasets from fetal and adult brain, from

iPSC-based cellular models and brain organoids. We trained deep learning models on this

data, and further improved its performance by borrowing information from large external

datasets, a strategy known as transfer learning. Our tool, MetaChrom, is substantially bet-

ter at predicting experimentally determined regulatory variants than current methods,

and helps us identify candidate risk variants of Schizophrenia. We believe MetaChrom

provides a valuable tool for the neuropsychiatric genetic community, and the software can

be of interest to researchers in other fields as well.

Introduction

GWAS of neuropsychiatric traits have identified hundreds of associated loci [1], however,

translating these associations into detailed molecular mechanisms remain difficult. Most of

variants in these loci are located in non-coding regions of the genome, with limited functional

information. This makes it difficult to identify causal variants and target genes [2, 3]. In paral-

lel to GWAS using common variants, sequencing studies also uncovered an important role of

rare non-coding variants in regulatory elements in autism [4] and developmental disorders

[5]. Given the low allele frequencies and reduced power of studying rare variants, having lim-

ited functional information of non-coding variations poses an even bigger problem. A key

challenge in neuropsychiatric genetics is thus better annotation of functional effects of non-

coding variants, ideally in a cell-type and allele-specific fashion [6].

To this end, experimental scientists have generated, in brain and neuronal cells, epigenomic

maps, including chromatin accessibility and various histone marks. These data, however, usu-

ally annotate regulatory elements of hundreds of base pairs, and do not provide functional

annotations at the base-level resolution. Various machine learning methods have been devel-

oped to fill in this gap. One class of methods, e.g. CADD [7], GWAVA [8], use conservation

and epigenomic features, to predict likely functional variants, often based on a training set of

known pathogenic variants. This approach, however, generally cannot predict allelic effects

and lacks single-base resolution. More importantly, the training sets are often limited, as a

result, these methods usually predict a general index of “pathogenicity” instead of context-

specific effects. Another class of methods directly predict epigenomic profiles, such as protein

binding sites, chromatin accessibility, histone marks and methylation, from DNA sequences

[9–15]. Once trained, these models can predict the regulatory effect of a DNA variant by com-

paring predicted epigenomic properties of different alleles [16, 17]. These sequence-based

methods can obtain single-nucleotide, and allele-specific prediction of variant effects on epige-

nomic features in specific cellular contexts. Because of these advantages, this approach has

received great attention in the past few years [18]. In particular, deep learning based methods,

such as Convolutional neural networks (CNNs), outperform traditional machine learning

models in sequence-based prediction of protein-DNA/RNA interaction and chromatin pro-

files [16–22].

Despite these successes, it remains challenging to annotate variant effects, which often vary

with cell types/tissues, in specific phenotypic contexts. Pre-trained models using public
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epigenomic datasets such as ENCODE and Roadmap Epigenomics Consortium [2, 23] may

not include the cell types of interest and thus not able to provide the correct variant annota-

tions in those cell types [24]. This is particularly the case for neuropsychiatric traits. Because of

the difficulty of collecting samples from developing human brain, publicly available epige-

nomic datasets contain only a limited set of postmortem brain samples (usually adult) [25–27].

As a result, cell and tissue types relevant to early neurodevelopment, which is important for

genetics of neuropsychiatric traits [25, 28, 29], are under-represented in the training set of

most current variant analysis tools, making it difficult to annotate functions of variants during

neurodevelopment.

We proposed to address this challenge, by collecting a large set of neurodevelopment

related epigenomic datasets, while taking advantage of additional datasets with a deep transfer

learning framework. We collected 31 datasets from both fetal and postmortem brains, and

from cellular models of early neurodevelopment, including brain organoid and induced Plu-

ripotent Stem Cell (iPSC) derived neuronal cells [30]. Regulatory sequences in these cellular

models, as our recent work demonstrated, differ substantially from those in adult brains, and

are enriched with risk variants of neuropsychiatric traits [29, 31]. Using these datasets, we

trained deep Convolutional Residual Networks (ResNet). ResNet is a technique that may train

very deep CNNs to enhance the predictive power, and has been proven effective in computa-

tional biology problems such as RNA binding motif discovery [32] and protein folding [33].

To further improve the performance of Resnet, we use transfer learning, a general machine

learning approach that leverages knowledge and models gained from one domain to a related

domain [34, 35]. Specifically, we use a CNN-based meta-feature extractor to learn rich

sequence features from the 919 external epigenomic profiles of diverse cell and tissue types [2,

23], and then combine them with ResNet to learn a sequence model for the neurodevelopmen-

tal epigenomic datasets. Our strategy thus has the advantage of rich representation of ResNet,

while avoiding overfitting by using sequence features learned from external datasets.

Our approached, called MetaChrom, outperforms previous deep learning methods [16]

and models without transfer learning, in predicting epigenomic profiles of our data. These

higher predictive accuracy translates to a better prediction of functional single nucleotide vari-

ants, as measured by their effects on chromatin accessibility. We leverage this ability of Meta-

Chrom to annotate likely effects of variants to study genetics of schizophrenia (SCZ), a

complex mental disorder. The risk of SCZ has been associated with more than 100 genetic loci

via GWAS, but in most loci, the causal variants remain unknown [1]. Combining neurodeve-

lopment-specific predictions of variant effects by MetaChrom with GWAS results, we high-

light 31 likely functional Single Nucleotide Polymorphism (SNPs) in 30 SCZ-associated loci.

Studying these variants points to putative causal genes in these loci and the cell types and

developmental stages in which these variants likely act.

Results

MetaChrom: Sequence-based prediction of epigenomic profiles and variant

effects using transfer learning

We have built a general deep learning model to annotate regulatory variant effects, using only

DNA sequences, with limited training data. Our training set consists of a set of DNA

sequences, 1000 bps in length, and their functional labels, e.g. whether a sequence is in open

chromatin region or not, in a given cell/tissue type. Additionally we have access to a large com-

pendium of publicly available epigenomic profiles—the reference epigenomic data, which will

be used to extract sequence features to improve model learning capability. The modular frame-

work we have built, MetaChrom has two major components (Fig 1A): (1) a meta-feature
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extractor (MetaFeat) pre-trained on the reference epigenomic data; (2) a ResNet based

sequence encoder. The meta-feature and the encoded sequence are then combined to predict

the epigenomic profiles of the sequence of interest. The meta-feature, i.e. transfer learning,

component learns important sequence features from the reference set. While precise interpre-

tation of sequence features in deep neural networks is generally difficult, conceptually these

sequence features can be viewed as certain “regulatory code”, e.g. TF binding motifs or syner-

gistic interaction between pairs of motifs. As shown later, learning such features would

improve the model performance. Once a sequence-to-function model is trained, MetaChrom

will be able to predict regulatory effects of genomic variants (Fig 1B), by comparing the pre-

dicted functional labels of two sequences differing in a single nucleotide.

MetaChrom accurately predicts epigenomic profiles across

neurodevelopment-related cell types

We applied MetaChrom to predict 31 epigenomic features, including chromatin accessibility

and histone marks of enhancers, derived from both fetal and adult brain tissues or neuronal

Fig 1. (A) Overall architecture of MetaChrom. The input sequence is fed into both MetaFeat and the ResNet sequence encoder. Their outputs are then concatenated for

the prediction of epigenomic profiles.(B) Pipeline for predicting variant effect on sequence epigenomic profiles.

https://doi.org/10.1371/journal.pcbi.1010011.g001
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cells (See Method 4.2, Table A in S1 Table). The test sequences were obtained from chromo-

some 7 and 8, which were not used in the training process. We compared MetaChrom with

other deep learning based methods in literature for predicting epigenomic profiles from DNA

sequences. We note that the architecture of those models may depend on specific training data

and it may not be easy to directly compare them with MetaChrom. For example, in the case of

DeepSEA, it was designed for a large set of 919 epigenomic datasets. We thus implemented a

baseline CNN model (BaseCNN) with 3 convolutional layers as representative of CNN based

methods such as DeepSEA and Basset [16, 17]. We are also interested in the question of

whether average epigenomic activities of a sequence across a large collection of cell types

would be a good predictor of its activity in a new cell type. Such possibility has been raised in

several recent papers [36, 37]. We thus obtained average epigenomic profiles, from DeepSEA,

across a broad range of 919 cell and tissue types/conditions, denoted as DeepSEA-average.

We evaluated the performance of these methods and MetaChrom in predicting sequence

labels in the testing data using Area under Precision-Recall curve (AUPRC) and Area under

Receiver Operating Characteristic (AUROC) curve. Across the 31 cell-types of interest, Meta-

Chrom achieved higher average AUROC (0.90), and AUPRC (0.53), than the BaseCNN model

and DeepSEA-average (Fig 2). Our results show the advantage of MetaChrom comparing with

standard CNN and off-the-shelf tools not trained for specific cell types of interest. To give a

detailed picture of how the models perform, we showed the Response-Operating Curves and

Precision-Recall curves of the three methods in Amygdala neurons in Fig A in S1 Text and the

complete results in Figs B and C in S1 Text.

To further investigate the importance of transfer learning and the contribution of model

architecture (ResNet vs. CNN) to the performance, we performed additional comparison of

MetaChrom against two variants of MetaChrom: one without transfer learning and one where

CNN instead of ResNet is used. When transferred knowledge is not used, our ResNet has aver-

age AUPRC = 0.28 and average AUROC = 0.80 across 31 cell types. ResNet with the meta-

Fig 2. (A) AUROC and (B) AUPRC performance comparison of MetaChrom and DeepSEA method across 31 epigenomic features. NPC, Glut, DN, GA: iPSC-derived

neurons. GZ, CP: germinal zone and cortical plate. OCR: open chromatin regions. See Table A in S1 Table for the list of cell/tissue types.

https://doi.org/10.1371/journal.pcbi.1010011.g002
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feature extractor dramatically improves the performance: increasing its AUPRC from 0.28 to

0.50 and AUROC from 0.80 to 0.89, as shown in Figs D and E in S1 Text.

Our results thus highlight the advantage of the transfer learning approach of MetaChrom.

We notice that our evaluation uses a large collection of 31 epigenomic features. We hypothe-

size that the advantage of MetaChrom over CNN would be even larger with smaller training

set. This is likely a more common scenario in practice when a researcher trains a model for

specific ell types of interest. To test this, we train MetaChrom and CNN on ATAC-seq data

from iPSC and four types of iPSC-derived neurons. Across the five tested cell types, Meta-

Chrom yielded AUROC of 0.87 and AUPRC of 0.82 while the average DeepSEA predictions

yielded AUROC of 0.63 and AUPRC of 0.57 as shown in Fig A in S1 Text.

In summary, we demonstrate that MetaChrom is a powerful framework of predicting epi-

genomic profiles from DNA sequences, outperforming existing methods. Its power lies in

both its ResNet architecture and its ability of transfer learning from external datasets.

MetaChrom predicted functional variants are supported by evolutionary

constraint and allelic effects on chromatin accessibility

Evolutionary constraint is a commonly used metric of functional sequences [38]. We thus eval-

uated the accuracy of MetaChrom in predicting functional DNA variants by assessing evolu-

tionary constraint on MetaChrom predicted variants. For all SNPs within peak regions of

epigenomic data of each cell type, we computed MetaChrom scores, defined as the absolute

value of the difference of MetaChrom predictions between reference and alternative alleles

(Fig 1B). From these SNPs, we chose top 10,000 as predicted functional variants, and randomly

sampled 100,000 variants from peak regions in the same cell type as control. We compared

GERP scores, a commonly used measure of inter-species conservation [39], between predicted

functional and control SNPs. In most cell types, MetaChrom top variants have significantly

higher GERP scores than random ones (Fig 3A for a subset of cell types, the rest in Fig F in S1

Text), suggesting stronger evolutionary constraint. These results were confirmed with Human

PhyloP scores from large 241-way mammalian alignment [40] (Fig G(A) in S1 Text). Given

that functional sequences in brain may evolve relatively recently, we also assess the

Fig 3. Validation of MetaChrom predicted functional variants with evolutionary constraint. (A) Distribution of GERP scores between MetaChrom predicted

functional variants and random variants. (B) Minor allele frequencies of variants defined by MetaChrom scores in four selected cell types. Only variants inside peak

regions of the epigenomic data were considered.

https://doi.org/10.1371/journal.pcbi.1010011.g003
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evolutionary constraint using only primate genomes. This analysis shows similar results (Fig G

in S1 Text). We next evaluated intra-species constraint of MetaChrom variants. Because of

purifying selection, functionally deleterious variants often occur at low frequencies in the pop-

ulation [41, 42]. We obtained minor allele frequencies (MAFs) from the gnomAD database of

all variants within peak regions of 31 epigenomic profiles. We observed a clear negative corre-

lation between MAFs and MetaChrom scores, with high scoring variants present at lower

MAFs (Fig 3B for two fetal and two adult cell types, the complete results in Figs H and I in S1

Text). This results thus support the deleterious effects of MetaChrom predicted functional

variants.

To further validate MetaChrom, we compare its predictions with experimentally deter-

mined regulatory variants in iPSC-derived neurons, based on allele-specific chromatin accessi-

bility (ASC) analysis [29]. ASC variants are defined by allelic imbalance in ATAC-seq

experiments, reflecting allelic effects on chromatin accessibility and potentially gene expres-

sion. These ASC variants in iPSC-derived neurons were enriched with variants associated with

gene expression, histone modification, DNA methylation, and neuropsychiatric traits [29]. We

focused on ASC variants from neural progenitor cells (NPC) and glutamatergic (iN-Glut) neu-

rons, two cell types with largest numbers of identified ASC variants. For all common single

nucleotide variants (SNVs) in open chromatin regions of these two cell types, we computed

their MetaChrom scores trained from the matched cell types. The top ranked 1,000 variants

show about 6 fold enrichment of ASC variants, comparing with randomly sampled variants in

open chromatin regions (Fig 4A). We also observed that MetaChrom scores from matched cell

types generally show higher enrichment than scores from other cell types, confirming the cell

type specificity of MetaChrom predictions (Fig J in S1 Text). For comparison, we also ranked

variants within open chromatin regions by four other tools, including CADD, deltaSVM, Fun-

Sig, as well as a baseline CNN model trained on our collection of 31 epigenomic datasets [7,

10, 16]. CADD is widely used to predict deleteriousness of variants using a combination of

evolutionary and epigenomic features. deltaSVM is a Support Vector Machine (SVM)-based

supervised model for predicting variant effects, trained on the ATAC-seq data of the target cell

types. Funsig is an aggregate measure of predicted regulatory effects, based on DeepSEA pre-

dictions from a large compendium of cell/tissue types (most are not from brain). Top variants

by all these methods show varying levels of enrichment in ASC, but at levels lower than

Fig 4. Validation of MetaChrom predicted functional variants with ASC variants. (A) Enrichment of ASC variants for predicted functional variants identified by

MetaChrom, Funsig, CADD, deltaSVM, baseline CNN score in iN-Glut and NPC cells. (B) The observed allelic imbalance vs. MetaChrom predicted effects on chromatin

accessibility of ASC variants in Glut neurons. (C) Accuracy of predicting directions of ASC variants in Glut and NPC cells.

https://doi.org/10.1371/journal.pcbi.1010011.g004
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MetaChrom (Fig 4A). These results are robust to the number of top variants, and evaluation

using Precision-Recall curve shows similar results (Fig K in S1 Text).

To test if MetaChrom can predict the effect sizes and directions of variants on chromatin

accessibility, we compared the observed allelic imbalance of ASC variants in NPC and iN-Glut

with the predicted differences between reference and alternative alleles. MetaChrom predic-

tions track the observed allelic imbalance ratio with Spearman correlations of 0.45 and 0.40 in

two cell types, respectively (Fig 4B and Fig L in S1 Text). Focusing on iN-Glut cells, we found

70% ASC variants show consistent signs in observed allelic imbalance and estimated effects

(Fig 4B). ASC variants that are predicted to have large effects by MetaChrom show even higher

agreement of predicted and observed directions of allelic imbalance. At MetaChrom

score> 0.05, the agreement reaches nearly 90%, and goes even higher with higher MetaChrom

score cutoff (Fig 4C). Together these results show that MetaChrom provides reasonable pre-

dictions of the regulatory effects of genetic variants.

MetaChrom assists interpretation of GWAS results

A single locus associated with a trait from GWAS could harbor hundreds of variants in linkage

disequilibrium (LD), making it difficult to distinguish causal from non-causal variants. Recent

work, including our own, have demonstrated that causal signals are enriched with variants dis-

rupting chromatin states [29, 43, 44]. Motivated by this observation, we use MetaChrom to

predict functional effects and identify putative causal variants of 145 SCZ-associated loci [45]

(Table B in S1 Table). We score all the common SNPs by the absolute differences of Meta-

Chrom predictions between two alleles in each of the 31 cell types we study. Additionally, we

take into account the evidence of SNPs being causal variants from previous statistical fine-

mapping analysis [45]. This analysis has identified candidate SNPs at each locus, known as

credible set, and quantified the evidence of individual SNPs by Posterior Inclusion Probability

(PIP), Bayesian posterior probability that a SNP is a causal variant given the GWAS data. We

then combine the PIP values with MetaChrom scores to prioritize putative SCZ causal

variants.

We identified 31 candidates in 30 SCZ-associated loci, based on several criteria: (i) plausi-

bility of being SCZ risk variants (PIP > 0.1), (ii) MetaChrom scores ranked at top 1% across all

common SNPs in at least one cell type, and (iii) MetaChrom scores are the very top among all

SNPs in the credible set of a given SCZ risk locus, in at least one cell type (Fig 5). The list

includes several high confidence SNPs with PIP > 0.5. Our results thus provide further sup-

port of the disease relevance of these SNPs, and additional information about how they may

function, in terms of the relevant cell types and the epigenomic features they target. The major-

ity of SNPs have moderate PIP values (0.1 to 0.5), and would not be considered causal SNPs by

themselves. Using cell type specific MetaChrom scores, we can learn the biological context

through which these variants work. Based on the cell types in which the MetaChrom score of a

candidate SNP is highest among all SNPs in the credible set, we classify a SNP as acting likely

in fetal stage (F) or in adult stage (A) or both (FA). Roughly equal number of SNPs in our can-

didates are classified as F or A, and six SNPs as FA. These findings are consistent with a recent

report that expression associated variants of fetal and adult brain make comparable contribu-

tions to SCZ heritability [28]. Interestingly, once the stage (F or A) is given, the MetaChrom

scores are often not very cell type specific. Most variants acting on adult stage have high scores

across multiple types of adult neurons (Fig 5).

Even when causal variants are identified, their target genes may not be clear because of pos-

sible long-range regulation. To assign putative target genes, we leverage brain expression

quantitative trait loci (eQTL) from post-morterm brain in GTEx [46] and CommonMinds
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Consortium (CMC) [47], and promoter-capture Hi-C data in iPSC-derived neurons [48]. A

large fraction of our SNPs can be associated with one or more genes in eQTL, Hi-C or are

located in the promoter and UTR regions. Combining these evidences and literature search,

we assign the most likely target genes at each of the 31 SNPs (Fig 5 and Table C in S1 Table).

Some these genes represent highly plausible risk genes of SCZ. For instance, FURIN and

TSNARE1 were shown to regulate neuron growth and synaptic development by CRISPR edit-

ing in iPSC derived neurons [49]. GRM3 is a glutamate receptor and is being explored as a

therapeutic target of SCZ [50]. ZNF356 is a transcription factor with an essential role in devel-

opment of a subset of forebrain neurons implicated in stress and social behavior [51].

We discuss the SNP, rs2304205, in depth to show how MetaChrom may assist the study of

genetics of complex traits (Fig 6). The region containing the SNP is strongly associated with

SCZ, with multiple SNPs having p-values below genomewide threshold (Fig 6, top). Statistical

fine-mapping is insufficient to resolve the causal variant in this locus. The credible set contains

12 SNPs, but the maximum PIP is below 0.2, suggesting the uncertainty of causal variants.

MetaChrom analysis highlights rs2304205 as the most plausible causal variant. It has high

scores across almost all cell types, in both fetal and adult stages (Fig 5). In 24/31 cell types we

examined, rs2304205 has highest MetaChrom scores among the SNPs in the credible set (see

four of these cell types, two each in fetal and adult stages, in Fig 6). The SNP is located in the

UTR regions of both IRF3 and BCL2L12. Only IRF3 is found as the likely target gene of

rs2304205 in brain eQTL data (Table C in S1 Table). IRF3 is a key regulator of the innate

Fig 5. MetaChrom score of 31 candidate SNPs across 31 cell types. Candidate SNPs are ordered by their posterior inclusion probability (PIP) values shown in the

middle. Three columns on the right indicate if a SNP is an eQTL (+/-), if a SNP has HiC targets (+/-) and if a SNP acts mostly in fetal stage (F) or in adult stage (A) or

both (FA).

https://doi.org/10.1371/journal.pcbi.1010011.g005
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immune system [52]. Recent studies show that it may be important in regulating the develop-

ment of neuronal progenitor cells [53], and physically interacts with other schizophrenia sus-

ceptibility genes, such as CREB1, AKT1 and ESR1 [52]. As another example, we performed

additional study of a region containing rs1080500, another SNP highlighted by MetaChrom.

The SNP effect is likely limited to adult neurons and is also an eQTL in adult brain (Fig M in

S1 Text). The target gene based on eQTL, GNL3, is known to regulate neuron differentiation

[54]. Taken together, these case studies highlight the potential of MetaChrom in prioritization

of putative causal variants.

Identification of biologically relevant motifs from MetaChrom

To better understand what have been learned by our model, we extracted representative

sequence patterns from our model using TF-MoDISco [55] and TOMTOM [56] (See Method

4.9). To focus on cell-type specific sequence features, we first sampled DNA sequence bins

from our test set with mutually exclusive epigenomic feature labels. That is, each sampled

Fig 6. Likely causal variant rs2304205 and its MetaChrom functional annotations. The candidate SNP rs2304205 is chose as the reference variant for computing LD

and it is highlighted by the red dash line in each panel. The upper panel shows significance of GWAS SNPs, LD between SNPs and genes in this region. The next panel

shows credible set SNPs identified by fine-mapping (PIPs) in this region. The remaining panels show MetaChrom scores in four cell types, two in fetal stage (FB OCR and

Glut) and two in adult stage (VLPEC neuron and PUT neuron).

https://doi.org/10.1371/journal.pcbi.1010011.g006
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sequence fragment is marked positive in only one of the 31 epigenomic features. Then we

computed the gradient with respect to the input sequence for cell-type-specific saliency signals

and used it as the input to TF-MoDISco. The sequence patterns generated by TF-MoDISco are

then matched to known TF (transcription factor) binding motifs at human CIS-BP [57] using

TOMTOM [56].

As shown in Fig 7, our model detected known TF binding motifs specific to certain epige-

nomic features as well as motifs shared by multiple epigenomic features. For example, we

detected binding motifs of the FOS and JUN families that form the activator protein 1 (AP-1)

complex across various epigenomic features. These protein and protein complex are known to

be associated with brain development [58, 59]. We detected many iPSC-specific motifs such as

CTCF, an important regulator for chromatin structure [60], and POU5F1B(OCT4-PG1), a key

player in the stem cell induction process [61]. In dopaminergic (DN) cell, we found motifs of

proneural transcription factor FOXP4 that plays an important role in neural development [62]

and FOXO6, a transcription factor closely related to cortical development [63, 64]. We discov-

ered OLIG2, a transcription factor associated with cortical neurogenesis [65] and EN2 a tran-

scription factor links to many stages of neural devlopment [66] in samples from the human

neocortex(GZ, CP) [25].

Discussion

Computational prediction of functional non-coding variants can facilitate the discovery and

interpretation of disease risk variants. In this paper we presented a deep transfer learning

method, MetaChrom, combined with a large collection of epigenomic data from brain and

neuronal cells, to predict regulatory effects of base-level DNA variants. By coupling ResNet

[67] with transfer learning, we show that MetaChrom is accurate in predicting neurodevelop-

mental epigenomic profiles. Using a combination of evolutionary constraint and experimen-

tally determined ASC variants, we validated the utility of MetaChrom in predicting functional

Fig 7. (A)Distribution of matched motifs in each epigenomic assay and (B)selected binding motifs identified by our method and their matches in the CIS-BP

database.

https://doi.org/10.1371/journal.pcbi.1010011.g007
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effects of variants. In particular, variants predicted by MetaChrom are substantially more

enriched with ASC variants than the baseline CNN model and deltaSVM, two commonly used

approach for annotating regulatory variants [43, 68]. We also illustrated how MetaChrom

facilitates the prioritization of risk variants in GWAS loci associated with SCZ. The pre-trained

models of MetaChrom are available online, and a user can query the likely functions of any

variant(s) of interest using our server. We note that while the model was developed in the con-

text of neurodevelopment, the approach and software is generic and can be applied to other

user-provided epigenomic data in other biological contexts.

Many deep learning methods have been developed recently to study regulatory sequences

and predict their effects. These models are generally based on CNN, e.g. DeepBind, DeepSEA,

Basset, DeFine, and occasionally RNN (DanQ) [16, 17, 19, 22, 69]. It is not easy, however, to

directly compare all these methods, as these models are optimized for specific training data.

For instance, the popular DeepSEA method was trained on a larger set of 919 epogenomic fea-

tures. For a fair comparison, we implemented an CNN model, which is currently the dominant

architecture, and optimized the CNN model with our training data. As shown in our compari-

son, MetaChrom, by a combination of ResNet and transfer learning, outperforms the baseline

CNN models in both epigenomic feature classification (Fig 2) and variant effect prediction

(Fig 4).

One main application of deep learning based sequence models is the prediction of func-

tional genetic variants. We demonstrated that MetaChrom predictions helped prioritize puta-

tive risk variants of SCZ and by combining with other datasets, revealed mechanistic insights

of these variants. One limitation is that we do not yet have a single quantitative metric that

combines statistical associations with deep learning based functional predictions. In our recent

study [29], we show that it is possible to use ASC variants as functional information as prior in

Bayesian fine-mapping. It would be interesting to extend such strategy to MetaChrom predic-

tions. One possibility, for instance, is to combine MetaChrom predictions with experimental

ATAC-seq data to have better power of detecting ASC variants. Such functionally informed

genetic variant mapping has been used in eQTL studies and GWAS [70, 71]. The resulting set

of deep learning-enhanced ASC set, when used as prior, may provide high resolution for fine-

mapping GWAS loci.

In conclusion, we developed a deep learning based tool for predicting functional genetic

variants. We demonstrated its accuracy using known regulatory variants in neuronal cells and

its potential of revealing risk variants of GWAS of mental disorders. This tool is generally

applicable and may enable researchers to better translate GWAS associations into mechanistic

insights.

Materials and methods

Reference epigenomic profile data

We downloaded the epigenomic profile dataset from the DeepSEA website (http://deepsea.

princeton.edu) [16]. This dataset consists of 919 chromatin features derived from the

ENCODE and Roadmap Epigenomics [2, 72]. The epigenomic features are computed by first

binning the reference genome (GRCh38/hg38) into 200-bp sequence fragments. The frag-

ments were then intersected with the downloaded peaks from the public databases. Each bin

was assigned a binary vector l 2 Rd(d = 919) as its label, each dimension representing an epige-

nomic feature i from a specific cell type with corresponding sequencing assay. If a fragment is

at least 50% overlapped with the peak present in the sequencing assay i, the corresponding

dimension in l is assigned 1 (i.e., li = 1), otherwise 0 (i.e., li = 0). After computing the features,

the fragments were extended to 1kb to include surrounding sequences [16, 73]. All the
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fragments were then split into training, validation, and test sets such that all fragments from

chromosomes 7 and 8 are held out for test, and the rest are randomly split into training and

validation sets. The training set we used contains 4,400,000 sequence fragments with at least

one positive chromatin feature. We have trained our meta-feature extractor (MetaFeat) on this

chromosomal-based split so we can fine-tune the feature extractor using the test sequence. We

also employed the same chromosomal-based split in our case study for neurodevelopment

related tissues data(Table A in S1 Table) which ensures the test sequences are never seen by

our model before test time to avoid potential training bias.

Epigenomic profiles from neurodevelopment related tissues and cell types

To comprehensively capture the epigenomics landscape of the human neurons and brain, we

collected data from 31 different epigenomic assays, from the early developmental stages to

fully developed adult brain tissues. For the early developmental stages, we obtained a set of

ATAC-seq peaks from iPSC derived neuronal cells described in [29], with a total of five differ-

ent cell types. These cell types are good models of neurodevelopment. We also obtained one

fetal brain DNase-seq sample from the Roadmap Epigenomics Project [23]; chromatin accessi-

bility data from brain organoid samples at three different time points [74]; ATAC-seq profiles

from two early human neocortex samples in germinal zone (GZ) and cortical plate (CP) [25];

and one fetal brain H3K27ac profile from [75]. For the adult brain, we collected fourteen neu-

ronal ATAC-seq profiles from the BOCA project [76]; and five chromatin and histone features

from the PsychENCODE project [77].

We processed the peaks from each epigenomic profile in a similar way as the aforemen-

tioned reference epigenomic profile data. In our dataset, each dimension in the label l 2 R31

represents if a segment is active or not in a given epigenomic profile, i.e., if it is at least 50%

overlapped with the peaks in each epigenomic assay. We choose our test set such that all frag-

ments from chromosomes 7 and 8 are held-out when the rest of the genome are randomly

split for training and validation. After processing, we obtained 3,165,290 sequence fragments

that’s active in at least one epigenomic assay for training and validation; our test set contains

390,380 sequence fragments for model evaluation.

MetaChrom model architecture

MetaChrom as shown in Fig 1A has two major modules: 1) a CNN-based meta-feature extrac-

tor pre-trained on a large public dataset(MetaFeat). 2) a ResNet-based sequence model that

learns cell-type-specific features directly from the input sequence. To predict the regulatory

profile of a DNA sequence fragment i of 1kbp in length, we first encode the sequence fragment

as a one-hot matrix and fed it into the meta-feature extractor, which will output a vector repre-

sentation Fmeta of the input sequence while the sequence is also fed to the ResNet-based

sequence encoder simultaneously to obtain a cell-type-specific feature representation F seq. The

two feature representations are concatenated to form a new joint vector representation F joint,

which is fed into a fully connected dense network to predict epigenomic features A 2 Rnout ,

Where nout is the number of epigenomic features of interest.

MetaFeat is a CNN model consisting of three 1-D convolutional layers with kernel length 7

and channel sizes 320, 480 and 960, respectively. This feature extractor takes a one-hot

encoded sequence (of dimension 1000 × 4) as input and outputs a vector representation(R919)

of the input sequence fragment. Each convolutional layer in this feature extractor is followed

by a ReLU [78] layer for activation and a max-pooling layer with a kernel size of 4 for down-

sampling. We used a smaller kernel size (7), while previous methods use a large kernel size

(19) for model interpretability [17], but it has been shown that with appropriate interpretation

PLOS COMPUTATIONAL BIOLOGY Non-coding variants annotation via deep transfer learning in neuropsychiatric environment

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010011 May 16, 2022 13 / 22

https://doi.org/10.1371/journal.pcbi.1010011


tools [37, 55] meaningful binding motifs may be detected with a smaller kernel. The final con-

volutional layer connects to two fully connected layers, which in turn generate a vector of 919

chromatin features to represent the input.

Our ResNet-based sequence encoder maps the input sequence (encoded as a one-hot

matrix of dimension 1000 × 4) to a cell-type-specific representation, which is a vector of 31 ele-

ments. The ResNet model consists of one 1D convolutional layer and eight residual blocks.

The 1D convolutional layer has a kernel length 4 and channel size 48. Each residual block con-

tains two 1D convolutional layers, each followed by a ReLU activation layer. The eight residual

blocks have channel sizes of 96, 96 128, 128 256, 256, 512 and 512, respectively and kernel

length 7. Finally, the last residual block connects to two fully connected layers, which generate

the cell-type-specific representation for the input sequence segment.

The outputs from MetaFeat and the sequence encoder are concatenated to form a integra-

tive vector representation of the input sequence, which is then fed into three fully connected

layers to predict the probabilities of epigenomic profiles.

Other methods for comparison

To compare our proposed method with other alternatives in the community, we implemented

a baseline CNN model(BaseCNN) with 3 convolutional layers [16] and trained the models on

our curated dataset for comparison. We also compared our predictions with the mean epoge-

nomic profile predicted by DeepSEA(DeepSEA_avg) for each test sequence which was directly

obtained from their server [16]. CADD scores and funsig scores are downloaded from the

respective server [7, 16]. See Fig L in S1 Text for the details.

Predicting variant effects on regulatory profiles by MetaChrom

To predict the variant effect on a given sequence’s epigenomic profile, two sequences of length

1kb differing only at and centered at the variant position are used. One of them corresponds to

the reference allele and the other corresponds to the alternative allele. As shown in Fig 1B, we

pass those two sequences into MetaChrom separately to predict their epigenomic profiles as

Aref and Aalt. Then we compare the predicted regulator profile and compute the disparity as

absolute difference |Aref − Aalt| or log odds ratio log Aref
1� Aref

� �
� log Aalt

1� Aalt

� ��
�
�

�
�
� for measuring vari-

ant effects.

Model training and testing

We trained our transfer learning framework in two phases. In phase one we train the meta-fea-

ture extractor on the public epigenomic profile data (see Data section) using binary cross-

entropy as the loss function and the Adam optimizer [79]. In phase two we jointly train the

ResNet model and the meta-feature extractor [35] with stochastic gradient descent(SGD)

accelerated by Nesterov momentum [80], starting from the trained feature extractor in the

first phase with binary cross-entropy loss function on the targeted cellular context data. In

both phases, sequence bins from chromosome 7 and 8 are held-out for test and the training/

validation sets are randomly split from the remaining bins. For model selection, we searched

batch sizes of (16, 32, 64, 128, 256), ten learning rates in (1e-5, 1e-3) equally divided in log

scaled distance, as well as kernel sizes of (4,6,8) for the pre-training phase. For the joint train-

ing phrase, we searched on different batch sizes of (16, 32, 64, 128, 256), learning rates in (1e-

5, 1e-3) equally divided with log scaled distance. We also tested different learning decay rates

and Nesterov momentum. All models are trained on an NVIDIA 2080Ti GPU in 5 hours.
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Assessing evolutionary constraint on MetaChrom predicted functional

variants

A variant is scored by MetaChrom using the absolute value of the difference in MetaChrom

output between reference and alternative alleles. The score ranges from 0 to 1. For top Meta-

Chrom predicted variants in 31 cell types, we calculated and compared their GERP scores and

PhyloP scores [39] with control variants, chosen randomly in peak regions of the same cell

types. GERP scores were obtained from ANNOVAR [81], PhyloP scores were obtained from

https://cglgenomics.ucsc.edu/data/cactus/ and http://hgdownload.cse.ucsc.edu/goldenpath/

hg38/phyloP17way/, and were compared between MetaChrom predicted and control variants

using the Wilcoxon Rank-Sum Test.

Minor allele frequencies (MAFs) of all variants were obtained from the Genome Aggrega-

tion Database (gnomAD) [82] using ANNOVAR. We split variants into two sets of 5 bins

based on the MetaChrom score: 0–0.05, 0.05–0.1, 0.1–0.15, 0.15–0.2, 0.2–1.0 and 0–0.05, 0.01–

0.02, 0.02–0.03, 0.03–0.04, 0.04–1.0. In each bin, mean MAFs were calculated to investigate the

correlation between MAFs and MetaChrom scores.

Evaluation of MetaChrom prediction using ASC variants

We used a recently published dataset of allele-specific chromatin accessibility (ASC) variants

to compare several methods for predicting functional variants [29]. ASC variants are defined

by allele imbalance in read counts from ATAC-seq experiments. A total of 5,611 and 3,547

ASC SNPs, at FDR< 0.05, were identified in neural progenitor cells (NPC) and gutamatergic

neurons (iN-Glut), respectively.

To identify putative functional variants, we limit to single nucleotide variants (SNVs) in

open chromatin regions in 2 cell types. The SNVs are retrieved from the 1000 Genomes Project

with MAF > 5% [83].

We calculated scores of all these SNVs from several tools. Funsig scores were obtained from

the DeepSEA Server [16] and CADD scores [7] were obtained from ANNOVAR. For del-

taSVM [10, 84–86], we followed the training strategy from Shigaki et al [87]. Specifically, we

trained gkm-SVM models on 300 bp sequences centered on ATAC-seq data of iN-Glut and

NPC cells with LS-GKM. We set parameters -l(word length) to 11, -k(number of informative

column) to 7, -d(maximum number of mismatches to consider) to 3, -t(kernal function) to 2,

and other parameters follow default values. deltaSVM scores were then obtained with the

trained gkm-SVM model and script deltasvm.pl. Software and scripts for deltaSVM can be

found in http://www.beerlab.org/deltasvm/. Baseline CNN scores were obtained from the

baseline CNN model that were trained on 31 epigenomic profiles. We chose the top 1,000 vari-

ants ranked by MetaChrom, Funsig, deltaSVM, CADD, baseline CNN score in descending

order as predicted functional variants for each method. We then counted the number of ASC

variants in predicted functional variants vs. control variants. The enrichment of ASC variants

is then calculated by Fisher Exact Test.

In the analysis involving effect size and direction of SNPs, we define the observed allelic

imbalance as log(Rref/Ralt), where Rref and Ralt denote the number of reads mapped to the two

alleles, and the MetaChrom predicted effects on chromatin accessibility from our model as log

(Aref/Aalt). Correlation between observed allelic imbalance and MetaChrom predicted effects

on chromatin accessibility is calculated by Spearman’s rank correlation coefficient.

We also estimated the percent of MetaChrom predicted variants are actually experimentally

determined ASC variants. For iN-Glut cells, among top 1000 MetaChrom variants, 462 SNPs

are evaluated for allele imbalance test (not all SNPs are heterozygous in the study), and 123
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(27%) are reported as ASC variants. For NPC, 445 SNPs, among top 1000, are evaluated for

allele imbalance test and 87 (20%) are ASC variants.

Motif identification and visualization

Our model learns context-specific sequence patterns to predict epigenomic profiles. Many of

these patterns may correspond to cell-type-specific transcription factor (TF) binding motifs.

One way to interpret the models is to extract sequence patterns (motifs) from the filters of the

first convolutional layer [17, 19, 69], but this strategy often yields patterns that are hard to

interpret. This is because CNNs learn a distributed representation of sequence motifs and

thus, an individual filter may correspond to only a partial motif that cannot be easily identified

[55, 88]. Some methods assess the importance of each position in a given sequence to measure

individual nucleotide contribution [89], but they do not yield interpretable motifs directly.

To extract meaningful sequence motifs from our deep model, here we used the recently-

developed tool TF-MoDISco [55] that combines position-wise single-nucleotide contribution

scores to generate cell-type-specific sequence patterns. We then use TOMTOM [56] to match

the identified sequence patterns to known TF binding motifs in the CIS-BP database for fur-

ther analysis [57]. To apply TF-MoDISco, we first randomly select 2,000 DNA bins from our

testing set with mutually exclusive epigenomic features, in which each sequence bin is only

marked active in one epigenomic feature but not others. Then we generate position-wise con-

tribution score with saliency map [90], which is the gradient of the output with respect to the

one-hot encoded input. The gradient is then gated by the observed nucleotide to generate

importance score, i.e., only the gradient of the observed nucleotide is kept and the gradient of

unobserved nucleotide is set to 0. The importance score is fed into TF-MoDISco to generate

predictive sequence patterns, which were searched against the human CIS-BP [57] database

for TF binding motifs using TOMTOM [56] with E-value = 1e-4.

Supporting information

S1 Text. Fig A. ROC and PRC plot for Amygdala neurons across different tested models. Fig

B. (i) Average ROC and PRC plot for 31 epigenomic features across different tested models.

(ii) Average ROC and PRC plot for five iPSC-derived neuronal cell types. The Average PRC

performance appears better for the five cell-types model than the 31-cell-types model because

some of the other cell types in the 31-cell-types model have low AUPRC values which resulted

in lower average AUPRC. Fig C. ROC and PRC plot for (A) CNN, (B) ResNet, (C) MetaFeat-

CNN, (D) MetaFeat-ResNet models on 31 epigenomic features. Fig D. Average ROC and PRC

plot for 31 epigenomic features across different tested models. CNNBase and ResNet are base-

line CNN and ResNet models without transfer learning. MetaFeat-CNN: CNN model with

transfer learning. Fig E. (A) AUROC and (B) AUPRC performance comparison of Meta-

Chrom and other methods across 31 epigenomic features. See Table A in S1 Table for the list

of cell/tissue types. Fig F. Distribution of GERP scores between MetaChrom predicted func-

tional variants and random variants sampled from the peak regions in each cell type. P-values

testing the difference were computed from Wilcoxon Rank-Sum Test. Fig G. Evolutionary

constraint evaluated by Human PhyloP scores (A) 241-way mammalian alignment from the

Zoonomia Project (B) 17-way primate specific alignment. Fig H. Minor allele frequencies of

variants defined by MetaChrom scores in 10 epigenomic profiles in fetal brain cell types. Only

variants within peak regions of the data were considered. Fig I. Minor allele frequencies of var-

iants defined by MetaChrom scores in 17 epigenomic profiles in adult brain cell types. Only

variants within peak regions of the data were considered. Fig J. Number of experimentally

determined ASC variants (two cell types, Glut—left and NPC—right) in top 10,000
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MetaChrom predicted functional variants across 31 cell types. Fig K. Comparison of methods

in predicting ASC variants (A) Zoomed-in Precision-Recall (PR) curve with Recall in [0,0.2]

and Precision in [0,0.25]. (B) Number of ASC variants in top K prioritized variants. Fig L. The

observed allelic imbalance vs. MetaChrom predicted effects on chromatin accessibility of ASC

variants in NPC neurons. Fig M. Likely causal variant rs1080500 and its MetaChrom func-

tional annotations. The candidate SNP rs1080500 is chosen as the reference variant for com-

puting LD and it is highlighted by the red dash line in each panel. The upper panel shows the

significance of GWAS SNPs, LD between SNPs and genes in this region. The next panel shows

credible set SNPs identified by fine-mapping (PIPs) in this region. The remaining panels show

MetaChrom scores in four cell types, two in the fetal stage (FB_OCR and Glut) and two in the

adult stage (VLPFC neuron and OFC neuron). Fig N. Baseline CNN model Architecture.

(DOCX)

S1 Table. Table A. Cell type information. Table B. Creditable SNPs set. Table C. GWAS Can-

didate SNPs.

(XLSX)
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