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Abstract: Elastase is a globular glycoprotein and belongs to the chymotrypsin family. It is involved
in several inflammatory cascades on the basis of cleaving the important connective tissue protein
elastin, and is strictly regulated to a balance by several endogenous inhibitors. When elastase
and its inhibitors are out of balance, severe diseases will develop, especially those involved in
the cardiopulmonary system. Much attention has been attracted in seeking innovative elastase
inhibitors and various advancements have been taken on clinical trials of these inhibitors. Natural
functional peptides from venomous animals have been shown to have anti-protease properties.
Here, we identified a kazal-type serine protease inhibitor named ShSPI from the cDNA library of
the venom glands of Scolopendra hainanum. ShSPI showed significant inhibitory effects on porcine
pancreatic elastase and human neutrophils elastase with Ki values of 225.83 ± 20 nM and 12.61 ±
2 nM, respectively. Together, our results suggest that ShSPI may be an excellent candidate to develop
a drug for cardiopulmonary diseases.

Keywords: centipede; kazal-type inhibitor; human neutrophils elastase; ShSPI

Key Contribution: This study identified a kazal-type peptide ShSPI from the venom glands of
S. hainanum firstly. ShSPI inhibits elastase potently and can be regarded as the minimal functional
unit of the atypical kazal-type proteases inhibitor.

1. Introduction

Centipedes are predatory arthropods distributed on every continent except Antarctica. They prey
mainly by secreting venom from the venom glands, which are connected to the first pair forcipules.
Centipede venoms are comprised of proteins and peptides, which show a variety of biological
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activities [1]. More than 500 proteins and peptides in centipede venom have been found with
diverse pharmacological properties, including the activity of platelet aggregation, anticoagulation,
phospholipase A2 (PLA2), trypsin inhibition, ion channel inhibition, and antimicrobial [2–7]. Despite
the clear clinical implications following envenomation by Scolopendra hainanum (http://arachnoboards.
com/threads/scolopendra-hainanum.308202/), there is no related study on S. hainanum toxins, currently.

Elastase is a group of serine proteases that include the macrophage elastase, the fibroblast elastase,
the neutrophil elastase, and the pancreatic elastase, which can not only cleave the important connective
tissue protein elastin, but also facilitate the degradation of the extracellular matrix such as fibronectin;
laminin; collagens III, IV, and VI; and proteoglycans. Human neutrophil elastase (HNE) is a serine
protease (29 kDa) expressed by neutrophil upon activation, which can be secreted into the phagosome
during phagocytosis or released during neutrophil necrosis [8,9]. In physiological condition, the activity
of HNE is strictly regulated to a balance by several endogenous inhibitors, including elafin, serpins,
α1-antitrypsin, and secretory leukocytes proteinase inhibitor. When out of control, HNE can cause
severe diseases such as acute lung injury, acute respiratory distress syndrome, chronic obstructive
pulmonary disease, and pulmonary fibrosis [9]. To stabilize these diseases and ameliorate symptoms,
new and specific anti-proteases, especially elastase inhibitors, might be excellent candidates.

Numerous peptidic elastase inhibitors have been identified from the toxins of venomous
animals [10,11], e.g., secapin from bee venom [12], BmKTT-2 from scorpion venom [13], AvCI
from spider venom [14] and guamerin from leech secretions [15]. These elastase inhibitors exhibit
potent inhibitory effects to elastase and provide a valuable source for new drug development. Although
over 500 proteins or peptides with diverse pharmacological properties from the centipede venom have
been discovered, there is no report about the elastase inhibitor from the centipede toxins.

In this study, we investigated a novel elastase inhibitor named ShSPI, which belongs to the
atypical kazal-type proteases inhibitor and has the significant inhibitory effects on porcine pancreatic
elastase (PPE) and HNE. Sivelestat is a specific HNE inhibitor, which has been reported to mitigate
lung injury in several mouse models, including pulmonary fibrosis and acute lung injury [16,17].
Comparing to sivelestat, ShSPI demonstrates better inhibitory activity to elastases. Our results suggest
that ShSPI may be an excellent candidate to develop the drug for elastase related diseases, such as
cardiopulmonary diseases.

2. Results

2.1. Determination of the Primary Structure of ShSPI

A cDNA sequence encoding a precursor protein composed of 61 amino acid (aa) was found.
A hypothetical signal peptide (22 aa), pro-peptide (-QRNRR-), and a mature peptide (34 aa) were
identified (Figure 1A, marked by box) through online analysis (SignalP-5.0, http://www.cbs.dtu.dk/

services/SignalP/). BLAST search indicated that the mature peptide named ShSPI (Figure 1A, marked
by grey color) shares pair sequence similarity with other atypical kazal family (Figure 1C). The amino
acid sequence of ShSPI is indicated in Figure 1B: CPQVCPAIYQPVFDEFGRMYSNSCEMQRARCLRG.

2.2. Refolding of ShSPI

We chemically synthesized linear ShSPI and refolded its two disulfide bridges with the glutathione
redox system (Figure 2A). C18 reverse phase-high performance liquid chromatography (RP-HPLC) was
conducted to purify the refolded ShSPI, with the elution of indicated gradients of acetonitrile (containing
0.1% (v/v) trifluoroacetic acid) at a flow rate of 1.5 mL/min. Matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI-TOF MS) was applied to determine the purity of peptides to
be higher than 95% (Figure 2B). Consistent with the predicted molecular weight (MW) of ShSPI, the
observed MW of refolded ShSPI was 3952.7 Da, indicating that the two disulfide bridges have been
refolded successfully.

http://arachnoboards.com/threads/scolopendra-hainanum.308202/
http://arachnoboards.com/threads/scolopendra-hainanum.308202/
http://www.cbs.dtu.dk/services/SignalP/
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Figure 1. Primary structure of ShSPI. (A) cDNA encoding the precursor of ShSPI. The sequence 
without signal peptide is boxed. The mature form, named ShSPI, is indicated by grey color. (B) The 
primary structure of ShSPI. The disulfide bond pairing mode is C1–C4/C2–C3. ShSPI consists of a 
cystine-stabilized α-helical (CSH) motif formed by residues Ser-23 to Arg-33, and a two-stranded 
antiparallel β-sheet (strand 1, Pro-11 to Asp-14; and strand 2, Gly-17 to Tyr-20). The putative P1–P1’ 
sites were suggested using HNE as reference enzyme and the nomenclature of Schechter and Berger 
[18,19]. (C) Similarity of ShSPI to selected atypical kazal family and classical kazal family. The percent 
identity (Per.Ident) (%) of ShSPI with each sequence has been shown to demonstrate their sequence 
similarity. The cysteine residues in domains are shown in grey color. The conserved residues are 
marked with #, and residues with high similarity are indicated by asterisk. 

 
Figure 2. Refolding of ShSPI. (A) Linear ShSPI was synthesized and refolding analysis was performed 
by C18 HPLC. (B) MALDI-TOF MS was used to confirm the purity of ShSPI to be higher than 95%. 
Average molecular weight of refolding ShSPI and linear ShSPI are 3952.8 and 3956.7 Da, respectively, 
which indicated that two disulfide bonds were formed successfully. 

2.3. ShSPI Inhibits Elastase Potently and Selectively 

Based on the sequence alignment analysis, we speculate that ShSPI may contain inhibitory 
activity on some proteases. The enzyme activity of ShSPI to a diversity of proteases was assayed. 
ShSPI (500 nM) exhibited significant inhibitory activity on porcine pancreatic elastase (PPE) and 
human neutrophil elastase (HNE), while it showed no inhibitory activity against factor Xa (FXa), 
factor XIIa (FXIIa), kallikrein, thrombin, trypsin, chymotrypsin, or cathepsin G (CG) (Figure 3A).  

Sivelestat (also known as ONO-5046), which is a potent elastase inhibitor, has been used as a 
clinical drug [20]. It has been reported that sivelestat has little inhibitory activity to PPE and strong 

Figure 1. Primary structure of ShSPI. (A) cDNA encoding the precursor of ShSPI. The sequence
without signal peptide is boxed. The mature form, named ShSPI, is indicated by grey color. (B) The
primary structure of ShSPI. The disulfide bond pairing mode is C1–C4/C2–C3. ShSPI consists of a
cystine-stabilized α-helical (CSH) motif formed by residues Ser-23 to Arg-33, and a two-stranded
antiparallel β-sheet (strand 1, Pro-11 to Asp-14; and strand 2, Gly-17 to Tyr-20). The putative P1–P1′ sites
were suggested using HNE as reference enzyme and the nomenclature of Schechter and Berger [18,19].
(C) Similarity of ShSPI to selected atypical kazal family and classical kazal family. The percent identity
(Per.Ident) (%) of ShSPI with each sequence has been shown to demonstrate their sequence similarity.
The cysteine residues in domains are shown in grey color. The conserved residues are marked with #,
and residues with high similarity are indicated by asterisk.
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Figure 2. Refolding of ShSPI. (A) Linear ShSPI was synthesized and refolding analysis was performed
by C18 HPLC. (B) MALDI-TOF MS was used to confirm the purity of ShSPI to be higher than 95%.
Average molecular weight of refolding ShSPI and linear ShSPI are 3952.8 and 3956.7 Da, respectively,
which indicated that two disulfide bonds were formed successfully.

2.3. ShSPI Inhibits Elastase Potently and Selectively

Based on the sequence alignment analysis, we speculate that ShSPI may contain inhibitory activity
on some proteases. The enzyme activity of ShSPI to a diversity of proteases was assayed. ShSPI
(500 nM) exhibited significant inhibitory activity on porcine pancreatic elastase (PPE) and human
neutrophil elastase (HNE), while it showed no inhibitory activity against factor Xa (FXa), factor XIIa
(FXIIa), kallikrein, thrombin, trypsin, chymotrypsin, or cathepsin G (CG) (Figure 3A).
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significantly inhibited the activity of PPE and HNE in a dose-dependent manner. However, ShSPI 
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Figure 3. ShSPI inhibits elastase selectively and potently. (A) ShSPI (500 nM) was tested against nine 
different serine proteases, and triplicates tests were performed. The activity of ShSPI on enzymes are 
illustrated with percentage. Compared with sivelestat, a potent elastase inhibitor, ShSPI could affect 
more activity of HNE (B) and PPE (C) at the same concentration. Each error bar shows mean ± SEM. 
p values were determined by student’s t test (*p < 0.05, ***p < 0.001). 

2.4. Enzymatic Kinetics of ShSPI on Elastase 

The enzymatic kinetics of ShSPI on elastase was further explored; varying doses of ShSPI (from 
0 to 885 nM) and elastase colorimetric substrate (30, 60, and 90 μg/mL) were used. The Dixon plot 
analysis showed that linear curves converged on the x-axis, suggesting that ShSPI is a non-
competitive inhibitor of elastase (Figure 4A,B) and the Ki values to PPE and HNE were 225.8 ± 20 nM 
and 12.6 ± 2 nM, respectively (Table 1).  

 

Figure 4. The enzyme and binding kinetics of ShSPI to elastase: the Dixon plots of ShSPI to PPE and 
HNE are indicated, respectively (A,B); and surface plasmon resonances of ShSPI to PPE and HNE 
were performed, respectively (C,D). ShSPI was immobilized on a sensor-CM5 chip and PPE or HNE 
was injected for 180 s at different concentrations, dissociation of the ShSPI-elastase complex was 
monitored more than 1000 s. “Langmuir binding” fitting model was used to fit the data. 

  

Figure 3. ShSPI inhibits elastase selectively and potently. (A) ShSPI (500 nM) was tested against nine
different serine proteases, and triplicates tests were performed. The activity of ShSPI on enzymes are
illustrated with percentage. Compared with sivelestat, a potent elastase inhibitor, ShSPI could affect
more activity of HNE (B) and PPE (C) at the same concentration. Each error bar shows mean ± SEM. p
values were determined by student’s t test (*p < 0.05, ***p < 0.001).

Sivelestat (also known as ONO-5046), which is a potent elastase inhibitor, has been used as a
clinical drug [20]. It has been reported that sivelestat has little inhibitory activity to PPE and strong
inhibitory activity to HNE with a Ki value of 200 ± 20 nM [21]. We compared the inhibitory activity
to PPE and HNE of ShSPI and sivelestat. As illustrated in Figure 3B,C, both ShSPI and sivelestat
significantly inhibited the activity of PPE and HNE in a dose-dependent manner. However, ShSPI
showed better inhibitory effect on PPE and HNE than sivelestat. At the concentration of 500 nM,
the inhibitory rate of ShSPI and sivelestat on PPE was about 18% and 65%, respectively. At the
concentration of 50 nM, ShSPI and sivelestat exhibited an effect on HNE with an inhibitory rate of 16%
and 44%, respectively.

2.4. Enzymatic Kinetics of ShSPI on Elastase

The enzymatic kinetics of ShSPI on elastase was further explored; varying doses of ShSPI (from
0 to 885 nM) and elastase colorimetric substrate (30, 60, and 90 µg/mL) were used. The Dixon plot
analysis showed that linear curves converged on the x-axis, suggesting that ShSPI is a non-competitive
inhibitor of elastase (Figure 4A,B) and the Ki values to PPE and HNE were 225.8 ± 20 nM and 12.6 ± 2
nM, respectively (Table 1).
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Figure 4. The enzyme and binding kinetics of ShSPI to elastase: the Dixon plots of ShSPI to PPE and
HNE are indicated, respectively (A,B); and surface plasmon resonances of ShSPI to PPE and HNE were
performed, respectively (C,D). ShSPI was immobilized on a sensor-CM5 chip and PPE or HNE was
injected for 180 s at different concentrations, dissociation of the ShSPI-elastase complex was monitored
more than 1000 s. “Langmuir binding” fitting model was used to fit the data.
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Table 1. Binding kinetics and affinity of ShSPI to elastase.

Compound ShSPI

Enzyme Injected PPE HNE

Enzyme kinetics Ki (nM) 225.83 ± 20 12.61 ± 2

Binding Kinetics

ka (M−1s−1) 4.5 × 104 4.5 × 103

kd (s−1) 4.7 × 10−3 1.9 × 10−4

KA (M−1) 9.7 × 106 2.4 × 107

KD (M) 1.0 × 10−7 4.2 × 10−8

2.5. Binding Kinetics of ShSPI on Elastase

To verify the direct interaction of ShSPI and elastase, surface plasmon resonance (SPR) biosensor
technology was used to determine the binding affinity of ShSPI to HNE and PPE. The ability of ShSPI
binding to elastase was reflected by the response values (RU) that were directly recorded by the Biacore
3000 instrument (GE Healthcare Life Sciences, Pittsburgh, PA, USA). As shown in Figure 4C,D, the RU
increased with increasing elastase (HNE or PPE) concentration, which indicated that ShSPI binds to
elastase in a concentration dependent manner.

The equilibrium dissociation constant (KD, M) of ShSPI to PPE was 1.0 × 10−7 and to HNE was
4.2 × 10−8 (as listed in Table 1). The binding of ShSPI with HNE was stronger than that with PPE,
which is consistent with the protease inhibition assays.

2.6. The NMR Structure of ShSPI

The three-dimensional structure of the ShSPI peptide was determined using two-dimensional (2D)
nuclear magnetic resonance (NMR) spectroscopy. The chemical shift analysis was used to identify the
disulfide-bonded or free-state cystein, and cis- or trans-conformation of the proline. The chemical shifts
of the cysteins Cβ are all between 35.85 and 40.98 ppm, indicating that the disulfide bonds were formed.
The initial structure calculations only with NOE restraints demonstrated the Cys-1 and Cys-31, and
Cys-5 and Cys-24 disulfide bond format. The Cγ values of prolines are 27.89 ppm (Pro2), 27.38 ppm
(Pro6), and 27.36 ppm (Pro11), respectively, indicating all of the prolines are in trans-conformation [22],
while the Cγ values for prolines with cis-conformation fall at 24.4 ± 0.7 ppm. The unambiguous and
strong H(i)-Hδ(i+1: Pro)(dαδ) nuclear overhauser effect (NOE) signals in the NOESY spectra also
confirmed the trans-conformation. The H(i)-Hδ(i+1: Pro)(dαδ) or Hα(i)-Hα(i+1: Pro)(dαα) NOEs
of Pro (i+1) and its immediate preceding residue (i) were used to assign the configuration of Pro
residues. The strong dαδ NOEs indicates the trans-configuration while strong dαα NOEs indicates the
cis-configuration. The structural statistics for the final 15 structure ensembles (Figure 5A,B) are given
in Table 2.

Table 2. Structural Statistics of the ShSPI domain (15 structures).

Experimental Restraints of ShSPI (C1–G34)

NOE distance restraints 448
Intra-residue 78

Sequential 167
Medium range (2 ≤ |i–j| ≤ 4) 100

Long range (|i–j| ≥ 5) 103
Hydrogen bonds constraints 4

Energies (kcal/mol)
Bonds 4.99 ± 0.39
Angles 39.88 ± 1.53

Improper 5.34 ± 0.35
Van del Waals (repel) 17.13 ± 2.00

NOE 30.16 ± 4.08
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Table 2. Cont.

Experimental Restraints of ShSPI (C1–G34)

r.m.s. deviations from idealized 1

Bonds (Å) 0.003 ± 0.000
Angles (deg) 0.521 ± 0.010

Improper (deg) 0.347 ± 0.012
NOE 0.048 ± 0.003

Ramachandran Plot
Most favored regions 93.8%

Additional allowed regions 6.2%

Mean pairwise RMSD (ShSPI P2-R33) (Å)
Backbone 0.49 ± 0.10

Heavy Atoms 1.16 ± 0.20
1 Quality of the structures was evaluated by MolProbity.
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Kazal inhibitors, including: anemonia elastase inhibitor (AEI) (grey) (D); domain 6 of the LEKT1 
(wheat tints) (E); and greglin inhibitor (F). Visible N- and C-termini in these orientations are labeled 
NH2 and COOH, respectively. Domain 6 of the LEKT1 (E) is rotated approximately 90° along the 

Figure 5. The nuclear magnetic resonance (NMR) structure and plasma stability of ShSPI. The disulfide
bonds’ connectivity is shown in yellow ball-and-stick format and color-coded (A–F). (A) Backbone
traces of the ShSPI structural ensemble, with the secondary structure region (shown in cyan) and the
disorder loops (indicated in gray). (B) Cartoon diagram of ShSPI illustrating the locations of α-helix
and anti-parallel β-sheets. The cysteine residues are labeled as ball-and stick format. (C) Superposition
of the structure of ShSPI (cyan) and silver pheasant ovomucoid third domain (OMSVP3, classical
kazal-type) (green). (D–F) Comparison of ShSPI (cyan) with atypical Kazal inhibitors, including:
anemonia elastase inhibitor (AEI) (grey) (D); domain 6 of the LEKT1 (wheat tints) (E); and greglin
inhibitor (F). Visible N- and C-termini in these orientations are labeled NH2 and COOH, respectively.
Domain 6 of the LEKT1 (E) is rotated approximately 90◦ along the vertical axis compared with Figure 5D
for the clarity of the first disulfide bond. (G) Plasma stability was assayed by the enzyme inhibitory
activity of ShSPI to PPE and HNE, which is consistent with the activity of ShSPI without incubated
with human plasma. Data represent three independent experiments.
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The structure of ShSPI consists of a cystine-stabilized α-helical (CSH) motif formed by residues
Ser-23 to Arg-33, and a two-stranded antiparallel β-sheet (strand 1, Pro-11 to Asp-14; and strand 2,
Gly-17 to Tyr-20). The N-terminal loop is stabilized by the formation of disulfide bonds. The NOE
pattern demonstrates that Cys-1 (C1) forms a disulfide bond with Cys-31 (C4), while Cys-5 (C2) with
Cys-24 (C3). This is further evidenced by the partial reduction and MS data (data not shown). Taken
together, ShSPI contains the C1–C4 and C2–C3 disulfide bond connectivity (Figure 1B).

2.7. ShSPI is an Atypical Kazal Domain and the Minimal Functional Unit

As the serine protease inhibitors, the canonical kazal domain is composed of one α-helix and
three-stranded anti-parallel β-sheet, six cysteins forming three disulfide bonds with the pattern of
C1–C5, C2–C4, and C3–C6. Kazal domains with two disulfide bonds and the absence of the third and six
cysteines were referred as atypical kazal domains [23]. The ShSPI belongs to this class. The structure
superimposition with the canonical kazal domain OMSVP3 (pdb: 1IY5) is demonstrated in Figure 5C,
which shows that the tertiary structure of ShSPI resembles the core structure of canonical kazal domain.

To gain insights into the difference between ShSPI and other atypical kazal inhibitors, we
superimposed the three-dimensional structures of ShSPI with other reported atypical kazal domain
structures, including anemonia elastase inhibitor (AEI, pdb: 1Y1B) (Figure 5D), domain 6 of LEKT1 (pdb:
1H0Z) (Figure 5E), and Greglin (pdb: 4GI3) (Figure 5F). Compared with ShSPI, other atypical kazal
domains show either NH2- or COOH-terminal long or short extensions. The structural comparison
demonstrates that the ShSPI motif with 34 residues is the core structure contained by all of the atypical
kazal domains. Meanwhile, ShSPI contains very short sequence with only three residues between
the first two cysteines, instead of 6–13 residues in the typical kazal domains (Figure 1C, bottom).
Together with its activity, to the best of our knowledge, the ShSPI could be regarded as the minimal
functional unit.

2.8. Point Mutations Confirm the Important Residues of ShSPI

The sequence analysis of the kazal-family shows that P3, the second conserved cysteine residue,
and P15′ with the residue asparagine are highly conserved, while the remaining ten contact residues
are hypervariable. The numbering is according to the nomenclature of Schechter and Berger and using
HNE as reference enzyme [18,19]. We supposed that ShSPI conforms to this regular pattern. The ShSPI
mutant C5A (P3) and N22A (P15′) of ShSPI are not soluble or show no activity (Ki > 1 mM) (Table 3),
indicating that the point mutation disrupts the global fold and the mutant could not fold properly (data
not shown). These results confirm the essential importance of residues in the P3 and P15′ positions.

Table 3. Enzyme inhibitory activity of mutants of ShSPI to HNE.

Ki Value of ShSPI to HNE: 12.61 nM

Position 2 Mutants Ki (nM) Position 2 Mutants Ki (nM)

P6 P2A 100.56 P3 C5A insoluble
P5 Q3A 113.74 P2′ Y9A >1 mM
P4 V4A 13.16 P15′ N22A insoluble
P2 P6A 105.05 P18′ E25A >1 mM
P3′ Q10A 13.55

P14′ S21A 16.84
2 The numbering is according to the nomenclature of Schechter and Berger and using HNE as reference enzyme
[18,19]. Important positions are indicated in Figure 1B.

To further confirm the important residues for the interaction between ShSPI and HNE, point
mutation method was applied. Through the structural analysis, several ShSPI mutants were synthesized,
including P2A, Q3A, V4A, P6A Y9A, Q10A, S21A, N22A, and E25A. The inhibitory effects of these
mutants to HNE were tested. Mutants Y9A, N22A, and E25A did not show any inhibitory activity
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to HNE, demonstrating that these three residues are vital for the inhibitory activity of ShSPI. Other
residues of ShSPI, such as Pro2, Gln3, and Pro6, are also important for the inhibitory to elastase. The
single mutation significantly decreased their HNE activity. The Ki values of these mutants are listed in
Table 3.

2.9. ShSPI Showed Plasma Stability

The structural information shows that ShSPI is the minimal functional unit and the folding is
stabilized through the two intra-disulfide bonds and the tertiary structure. To investigate the stability
of ShSPI in physiological condition, ShSPI was co-incubated with human plasma over 48 h. ShSPI was
found to be remarkably stable in human plasma, with no significant degradation over 48 h. Compared
with the basal inhibitory activity, the inhibitory percentage to HNE and PPE was still around 12% and
17%, respectively (Figure 5G). Stability of ShSPI in plasma could support the hypothesis that ShSPI
could be stable and affect strongly in vivo.

3. Discussion

Venomous creatures are considered to be a very distinctive class of species among animals [22].
Venomous animals are equipped with venom glands and venoms, which provide them outstanding
advantages for their existence [24–26]. Toxins from centipedes have been well studied. Some of them
have been established as important tools for predation, and some of them are useful candidates for
drug design [22,27]. To the best of our knowledge, as a novel member of centipedes distributed only
in Hainan and Guangxi province, China, the bioactive peptides from venom of S. hainanum have
not been reported [26,28]. For the first time, we identified a new serine protease inhibitor (SPI) from
S. hainanum, named as ShSPI and characterized as an atypical kazal motif. Through the sequence and
structural analysis, the ShSPI is considered as the minimal functional unit. The core motif includes
the reactive loop with extended conformation and appropriate backbone geometry, the two disulfide
bonds-stabilized α-helical (CSH) motif, and two-stranded anti-parallel β-sheet. It is missing two
cysteine residues and the corresponding disulfide bond is not essential for inhibitor reactivity and
stability [23].

SPIs are widely distributed in a variety of species [29,30]. They are able to inhibit the catalytic
activity of proteolytic enzymes and guarantee the inhibiting proteolysis of proteinase, which are
important in poisonous animals’ biological processes for survival [31,32]. Among kazal-type SPIs,
most domains described so far contain six highly conserved cysteine residues, with the formation of
three intra-domain disulfide bonds. In our study, ShSPI has only two disulfide bonds, thus belongs to
atypical kazal family. However, the tertiary structure of ShSPI resembles the core structure of canonical
kazal domain, which may provide the primary interaction site of ShSPI to proteinases. Classical SPIs
with multiple kazal domains show broad-spectrum inhibition on serine proteinases such as trypsin,
subtilisin, thrombin, chymotrypsin, and elastase potently. Despite the single kazal domain instead
of multiple kazal domains in other SPIs, ShSPI has a stable structure which exhibits strong activity
against elastase. In consistence with this, our results show that ShSPI specifically inhibits elastase with
Ki values of 225.83 ± 20 nM to PPE and 12.61 ± 2 nM to HNE.

Other atypical kazal family inhibitors have shown narrower specificity compared to the classical
kazal family. However, ShSPI is more specific. The structural similarity and difference within these
inhibitors may give some explanation. All of the atypical kazal family inhibitors have the similar
core structure, while ShSPI does not have the additional NH2- or COOH-terminal extensions and
contains very short sequence with only three residues between the first two cysteines, instead of 6–13
residues in the typical kazal domains. It was reported that, when rigidity increases near the reactive
site, the inhibitor is more likely to show narrower specificity. For example, compared with wild-type
AEI, the AEI analog (just one aa between the first two cysteines) did not show inhibitory activity
against PPE, while it retained almost the same potent inhibitory activity toward Streptomyces griseus
protease B [33]. As a result, the characteristics of ShSPI can make it easier to reach the interaction site of
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elastase, and ShSPI could be a potential probe to study the interaction characteristics between SPIs and
enzymes, which could provide us a clue to design the inhibitors with high specificity and selectivity.

Sivelestat, the selective neutrophil elastase inhibitor has been safely used in specific clinical
scenarios, including refractory Kawasaki disease [34] and acute lung injury [16,35]. It also has been
found that sivelestat can improve the survival in the clinical relevant animal models of sepsis, in which
not only did damage occur in the lung, but also other organs including kidneys, liver, and heart were
impaired [36–39]. From the results, we found that ShSPI exhibited better effects on the inhibitory of
PPE and HNE than that of sivelestat at the same concentration. ShSPI might be an excellent candidate
to develop the drug for the diseases sivelestat treated.

In conclusion, a potent elastase inhibitor, named ShSPI, was identified and characterized from the
centipede S. hainanum for the first time. ShSPI has a stable three-dimensional structure and strongly
binds to the catalytic site of elastase, which confirmed the inhibitory effect on elastase. Our findings
have important implications for the design and development of new drugs for diseases related with
the destruction of HNE.

4. Materials and Methods

4.1. RNA Extraction and cDNA Synthesis

The venom glands of S. hainanum were collected. Total RNA was isolated by using TRIzol reagent
(15596018, Invitrogen, Waltham, MA, USA), and cDNA was reverse-transcribed using SuperScript
II Reverse Transcriptase and oligo(dT)12−18 primer with the SMART™ PCR cDNA synthesis kit
(Clontech, Palo Alto, CA, USA). The clones of cDNA (>350 bp) were selected and sequenced by Sangon
Biotech (Shanghai, China).

4.2. Peptides Synthesis and Refolding

Linear ShSPI and its mutant peptides were synthesized by GL biochem (Shanghai, China). Single
site mutation peptides were designed according to the method described [40].

Peptides were refolded in a solution (pH 7.2) containing 10 mM glutathione (V900456, Sigma,
Saint Loui, MO, USA) and 100 mM oxidized glutathione (V900363, Sigma, Saint Loui, MO, USA).
The refolding solution was placed at 28 ◦C for 24 h. Then, we separated the different fractions
using Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) techniques and C18

column (Waters, Milford, MA, USA, 5 µm particle size, 250 mm × 4.6 mm). Matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS, Autoflex speed TOF/TOF,
Bruker Daltonik GmbH, Bruker Corporation, Germany) was performed to determine the purity of the
peptides, and refolded ShSPI with purity higher than 95% was collected for further research.

4.3. Assignment of the Disulfide Bonds

Refolded ShSPI (1 mg) was dissolved in 100 µL of 6 M guanidine hydrochloride (pH 6.0, G4505,
Sigma, Saint Loui, MO, USA), and incubated for 30 min at 37 ◦C. Afterwards, 100 µL of 0.1 M TCEP
(75259, Sigma, Saint Loui, MO, USA) were added to the sample and maintained for 3 min at 37 ◦C,
and then 800 µL of 0.1% TFA-H2O were added immediately. Fractions were purified by using C18

RP-HPLC (Waters Corporation, 34 Maple Street Milford, MA, USA) with a linear acetonitrile gradient
(0–60% over 60 min). The intermediate peptides were gathered, lyophilized, and alkylated with 0.5 M
iodoacetamide (pH 8.3, I1149, Sigma, Saint Loui, MO, USA) for 1 min at 25 ◦C. Alkylated peptides
were isolated and desalted by C18 RP-HPLC, and Edman degradation was performed on a Shimadzu
protein sequencer (PPSQ-31A, Shimadzu, Nakagyo-ku, Kyoto 604-8511, Japan).

4.4. Protease Assays

Human neutrophils elastase (HNE, E8140), porcine pancreatic elastase (PPE, E0127), cathepsin G
(CG, C4428), human trypsin (T6424), α-chymotrypsin from human pancreas (C8946), and thrombin
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from human plasma (T4393) were all purchased from Sigma-Aldrich (USA). Factor Xa (FXa, HFXa
1011) and Factor XIIa (FXIIa, HFXIIa 1212a) were from Enzyme Research Laboratories (South Bend, IN,
USA). Kallikrein from human plasma (420307) was from Merck Millipore (Billerica, MA, USA).

Substrate for HNE and PPE (MeOSuc-Ala-Ala-Pro-Val-pNA, 324696) was purchased from
Merck Millipore (USA). Substrates for CG (Succinyl-Ala-Ala-Pro-Phe-pNA, 573462), trypsin (Nalpha-
Benzoyl-L-arginine 4-nitroanilide hydrochloride, B3133), FXa (CH3OCO-D-CHA-Gly-Arg-pNA-AcOH,
F3301), chymotrypsin (N-Succinyl-Gly-Gly-Phe-pNA, S1899), thrombin (β-Ala-Gly-Arg-pNA diacetate,
T3068), and kallikrein (Z-Phe-Arg 7-amido-4-methylcoumarin hydrochloride, C9521) were purchased
from Sigma-Aldrich (USA).

As mentioned in our previous study [29], experiments for protease inhibitory activity were assayed
in buffer (0.05 M Tris-HCl, pH 7.8) at 37 ◦C. The proteases (FXa, 0.1 nM; FXIIa, 10 nM; kallikrein,
400 nM; thrombin, 10 nM; chymotrypsin, 400 nM; trypsin, 10 nM; CG, 0.02 U/mL; HNE, 0.001 U/mL;
and PPE, 1 µg/mL) and varying doses of ShSPI or sivelestat (MB1318, Meilun Biotehmology, Dalian,
China) were pre-incubated for 10 min at 37 ◦C. At the end of the incubation, the reaction was initiated
by the addition of the exclusive substrate solution and monitored by recording the absorbance at
405 nm every 30 s for 30 min. Enzyme activity in each well was calculated based on the initial slope of
the reaction curve, and percentage of the initial slope of the uninhibited reaction was expressed. The
inhibition constant Ki value was determined according to the Dixon method [41].

4.5. Surface Plasmon Resonance (SPR) Biosensor Analysis

Sensor chips CM5 (BR100012), 10 mM acetate buffer (BR100350, pH 4.0), amine coupling kit
(BR100050), and HBS-P buffer (BR100826, used as running buffer) were all obtained from GE Healthcare
Bio-sciences AB (Uppsala, Sweden). Data were collected and analyzed by BIAcore System (Version
3000, GE Healthcare Life Sciences, Pittsburgh, PA, USA) and BIA evaluation software (Version 3.0,
GE Healthcare Life Sciences, Pittsburgh, PA, USA).

Before testing, ShSPI (100 µg/mL in acetate buffer, pH 4.0) was immobilized to the surface of CM5
chip. Following a standard amine coupling chemistry, running buffer was used to reach equilibration.
HNE or PPE (doubling dilution) was injected over the immobilized ShSPI at a flow rate of 10 µL/min,
and the association rate (ka, M−1s−1) was determined. After 3 min, running buffer was applied to the
surface, and the dissociation rate (kd, s−1) was determined over 15 min for PPE and 30 min for HNE,
and another 500 µL of running buffer were injected at a flow rate of 20 µL/min to rebalance the chip.
The equilibrium association constant (KA, M−1) and the equilibrium dissociation constant (KD, M)
were determined by ka/kd and kd/ka, respectively [42].

4.6. NMR Experiments

The ShSPI nuclear magnetic resonance (NMR) samples contained ~1.5 mM protein in a buffer
containing 25 mM HEPES, pH 6.8, 50 mM KCl, and 5 mM DTT in either 90% H2O/10% D2O or in 100%
D2O. NMR data were collected at 298 K on a Bruker Avance 800 MHz spectrometer. Two-dimensional
(2D) homonuclear total correlated spectroscopy (TOCSY) was recorded with mixing times of 60 and
80 ms. The data for t1 × t2 were 512 × 2048. 2D nuclear overhauser effect spectroscopy (NOESY) was
collected for sequential residue assignments, with mixing time of 100, 200, and 300 ms. The data for t1
× t2 were 1024 × 4096. In addition, 2D 1H-13C heteronuclear single-quantum correlation spectroscopy
(HSQC) was carried out with 2048 × 4096 complex points at natural abundance. 1H-13C TOCSY-HSQC
spectra were recorded to help the sequential assignment [43], with the recording data of 1042 and 4096
complex points, respectively.

To demonstrate the hydrogen bonds within the peptide, hydrogen–deuterium (H/D) exchange
experiments were also collected. D2O was used to dissolve the lyophilized peptide. A set of 1D spectra
was collected. The time points included 20 min, 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h, respectively.
When the H/D exchanged for 8 h, the TOCSY spectrum was also recorded. We used NMRPipe [44] and
SPARKY (https://www.cgl.ucsf.edu/home/sparky) to process and analyzed the data.

https://www.cgl.ucsf.edu/home/sparky
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The NOE were analyzed and assigned manually, and then converted into distance constraints.
The program xplor-NIH [45] was used to calculate the structure. The quality of the NMR ensembles
was evaluated by MolProbity [46].

4.7. Plasma Stability

Lyophilized human plasma (400100, Cayman, Ann Arbor, MI, USA) was resuspended in sterile
water according to the instruction, then ShSPI was added to each equivalent volume with a final
concentration of 500 nM, and samples were co-incubated at 37 ◦C for two days. Triplicate samples
were collected at selected time points (0, 6, 12, 18, 24, 30, 36, 42, and 48 h) and protease activity was
tested as described above.

4.8. Statistical Analysis

Experimental results were tested statistically by an unpaired two-tailed student’s t-test and
expressed as mean ± SEM by GraphPad Prism (Version 5.0, GraphPad Software, San Diego, CA, USA).
Data were considered statistically significant when p < 0.05.
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