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Hexavalent chromium induces oxidative stress in the liver and kidney. Therefore an in vivo study was
designed to investigate the modulatory effect of biosynthesized AgNP against Cr (VI) induced hepatotox-
icity and nephrotoxicity. The organs index, serum level of ALT, AST, ALP, MDA, total protein and creatinine
were measured. The histopathology and micrometry of the liver and kidney were examined. The liver
index was significantly increased (0.098 ± 0.13 g) with slight increase in kidney index in Cr exposed
group. The serum level of ALT (163.0 ± 5.5 U/L), AST (484.0 ± 10.7 U/L), ALP (337.6 ± 9.6 U/L), MDA
(641.2 ± 29.2 U/L), and creatinine (2.9 ± 0.2 mg/dL) were significantly increased (P� 0.05) with significant
decrease in total protein level (2.9 ± 0.2 g/dL) (P � 0.05) in chromium treated group. In histopathology,
distorted hepatic cords, necrosis, damaged glomerulus and Bowman’s capsule were observed.
Micrometric studies of the liver and kidney showed significant increase in size of hepatocytes (1188.2
± 467.7 l2) and their nuclei (456.4 ± 206.7 l2), ACSA of Bowman’s capsule (11835.5 ± 336.7 l2) and
glomerulus (9051.8 ± 249.8 l2) in Cr (VI) treated group. The size of brush border (10.1 ± 3.0 l) was sig-
nificantly reduced in Cr (VI) treated group however the ACSA of lumen was not significantly changed.
With the administration of NSSE and Nigella sativa AgNPs, decreased the oxidative damage caused by
Cr (V).
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During human evolution, advanced technologies may become
the source of pollution in the air, soil, and water (Onita et al.,
2021) including heavy metals (Suchana et al., 2021). The heavy
metals (HMs), in the environment, remain stable and redistributed
among different components of the biological systems (Suchana
et al., 2021). As HMs persist for a long time, bio-accumulates and
biomagnified in the food chain (Kumar et al., 2019), especially
harmful for animals present at higher trophic levels of the food
chain like humans (Ali et al., 2019a, 2019b). In the human body,
heavy metals are distributed and compartmentalized in the tissues
and cells, where bind to nucleic acid and proteins causing damage
to these biomolecules, hence disrupting cellular functions and
induce damage in the liver, kidney, lungs, central nervous system
(Engwa et al., 2019) and reproductive system (He et al., 2020).
Chromium (III) is an essential element required for the metabolism
of proteins and lipids as well as a cofactor for insulin action (Balali-
Mood et al., 2021) whereas Cr (VI) is expendable and destructive to
life (Ukhurebor et al., 2021), linked with a chain of diseases.
According to International Agency for Research on Cancer report
(IARC 2018), Cr (VI) belongs to the group I category of an occupa-
tional cancer-causing agent (Balali-Mood et al., 2021). ROS, the
most significant free radicals produced by (Selamoğlu et al.,
2017) environmental exposure to Cr (VI), induces oxidative stress,
multi-organ toxicity including anemia, respiratory tract dysfunc-
tion, asthma, liver, kidney, and reproductive system failure in
males (Sankhla and Kumar, 2019). Oxidative stress may also result
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by weak antioxidant defense system, may lead to condition where
antioxidant compounds from external sources must be delivered in
order to maintain normal body functions (Selamoğlu et al., 2009,
2015; Selamoğlu & Yılmaz, 2014).

The liver is a vital organ that involves in the bioaccumulation,
transformation, detoxification, and excretion of toxicants, more
susceptible to damage (Suchana et al., 2021) resulting in hepato-
cyte toxicity and cirrhosis (Ye et al., 2018). Furthermore, the main
site of serum protein especially albumin synthesis occurs in liver
cells. Low level of protein content and low mobility present
changes in the rate of production and degeneracy of proteins. Ele-
vated activities of biochemical markers for the liver such as serum
aspartate aminotransferase or glutamic-oxaloacetic transaminase,
serum alanine aminotransferase or glutamic pyruvic transaminase,
and alkaline phosphatase in blood or tissues reflect their outflow
from the liver due to impairment in hepatocytes (Trivedi et al.,
2021). Whereas the kidney is involved in osmoregulation as well
as metabolic excretion of toxicants leading to histopathological
alterations (Suchana et al., 2021). Nigella sativa (NS) belongs to
the family Ranunculaceae (Bashir et al., 2021), a traditionally used
medicinal plant (Hannan et al., 2021). Nigella sativa seed oil is a
notable source of bioactive compounds, vital oils, fatty acids,
polyphenols, tocopherols, and phytosterols. Thymoquinone (TQ)
is the most important bioactive compound with lot of health-
promoting properties (Mazaheri et al., 2019). Black seeds possess
a broad spectrum of activities including antihypertensive
(Maideen et al., 2021), antidiabetic (Vijayakumar et al., 2021),
antimicrobial (Hossain et al., 2021), anticancer (Almatroudi et al.,
2020), diuretic (Aghamirei et al., 2022), immunomodulatory,
anti-inflammatory (Ikhsan et al., 2018), anti-schistosomiasis, anal-
gesics, antioxidant, gastroprotective, hepatoprotective (Almatroudi
et al., 2020) and renal protective activities (Hannan et al., 2021).

Various studies manifested the application of Nigella sativa in
diverse fields, but meager reports exist to reveal the application of
Nigella sativa against the Cr (VI) induced hepatotoxicity and renal tox-
icity. Recently, their scanty investigation found regarding the protec-
tive action of Nigella sativa against chromium caused hepatotoxicity
and renal toxicity in mice. Hence the current study was designed to
find out the protective potential of Nigella sativa against chromium
(VI) induced damage to the liver and kidney inmale albino mice.
2. Materials and methods

2.1 Paul###

The trial techniques for all animals were managed and regu-
lated as per local and international controls. The protocol for the
present study was allowed by the institutional bio-ethical commit-
tee of the Government College University, Lahore with reference
No. GCU-IIB-364 dated 6th October 2020. All animal trials were
executed according to local and worldwide procedures followed
by the Wet op de dierproeven (article 9) of Dutch law (interna-
tional) and an associated rule planned via the Bureau of Animal
Research Licensing, Local University as detailed in our earlier
papers (Hussain et al., 2020; Ara et al., 2020; Ali et al., 2019a,
2019b, 2020; Khan et al., 2019; Mumtaz et al., 2019; Mughal
et al., 2019; Dar et al., 2019). The rearing and use of animal were
carried out using NIH Publication ‘‘Guide for the Care and Use of
Laboratory Animals” (NRC 2011) and by the local bioethical com-
mittee of the University on animal experimentation.
2.2. Chemicals used

The tested chemical K2Cr2O7 with 99% purity was procured
from Merck (Merck, Darmstad, Germany). Black seeds were used
2

in the study and purchased from the local market in Lahore. All
other chemicals of analytic grade were used in the experiment.
Distilled water was used to prepare stock solutions. All working
solutions were prepared fresh from stock solution with distilled
water.
2.3. Preparation of Nigella sativa seed extract

The seed extract was prepared by using the method followed by
(Kannayiram et al., 2019) with slight modification. Nigella sativa
seeds were purchased from Akbari Store, Lahore, washed with
water, and dried in air at room temperature. The seeds were
ground into a fine powder via sieving mesh and soaked in ethanol
(10 g powder into 100 mL ethanol). The mixture was allowed to
shake well on an orbital shaker for 24 hrs. The NSSE was filtered
by using Whatman filter paper No.1 and at 37 �C dried in the incu-
bator. The resultant powder was kept at 4 �C for further use. The
dose was prepared from NSSE by using body weight, 50 mg/ kg BW.
2.4. Preparation of Nigella sativa AgNPs

Nigella sativa seed powder (5 g) was mixed with 100 mL of dis-
tilled water, and boiled for 20 min at 100 �C. 10 mL seed extract
was added with 0.1 mM solution of AgNO3 with constant stirring
for 10 min at 25 �C. The mixture was incubated for the next 2 h
at 80 �C. The reaction mixture was placed at 25 �C for 24 h in a dark
room. After 24 h, the mixture was turned from light brown to a
dark brown color indicating the reduction of Ag+ ions. To remove
impurities mixture was washed with ethanol (twice) and distilled
water thrice at 12000 rpm, the pellet contained NS AgNPs. Pre-
pared NS AgNPs were dried at 70 �C for 72 h. in over and stored
at 4 �C for future use (Chand et al., 2021). The dose was prepared
from Nigella sativa AgNPs by using body weight, 50 mg/ kg BW.
2.5. Experimental design

During the experiment, Mus musculus (male) of age 2 to
3 months, weight 30 to 40 g were kept as model animals. The
albino male mice were purchased from the animal house of the
Department of Zoology, Government College University, Lahore,
Pakistan. Mice received feed no. 14 and drinking water ad-
labium. The temperature in the animal house was maintained at
23 ± 2 �C, humidity at 45–50 %, and 12 hrs. dark-light cycle.
2.6. Administration of dose

After 15 days of acclimatization, forty mice were divided into 8
equal groups i.e., 5 mice each, including one control group and
seven other treatment groups. The newly prepared solutions
(0.2 mL for every one mouse of each representative group) of
Nigella sativa seed extract and Nigella sativa mediated silver
nanoparticles at the dose rate of 50 mg/kg BW were administered
orally employing gavage once a day. Chromium solution 1.5 mg/kg
BW, orally from K2Cr2O7 was provided orally.

Control: Group I was continued to receive chromium-free
drinking water (ad-labitum) (60 days).

Cr: Group II was continued to receive chromium 1.5 mg/kg BW,
via gauge once a day (60 days).

NS: Group III was continued to receive Nigella sativa seed
extract, 50 mg/kg BW, via gauge once a day (60 days).

NS + NP: Group IV was continued to receive Nigella sativa
AgNPs, 50 mg/kg BW, via gauge once a day (60 days).

NS (P): Group V was continued to receive NS seed extract,
50 mg/kg BW + Cr, 1.5 mg/kg BW, via gauge once a day (60 days).
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NS + NP (P): Group VI was continued to receive Nigella sativa
AgNPs, 50 mg/kg BW + Cr, 1.5 mg/kg BW, via gauge once a day
(60 days).

NS (T): Group VII was continued to receive Cr, 1.5 mg/kg BW
(30 days) followed by Nigella sativa seed extract, 50 mg/kg BW,
via gauge once a day (next 30 days).

NS + NP (T): Group VIII was continued to receive Cr, 1.5 mg/kg
BW (30 days) followed by Nigella sativa AgNPs, 50 mg/kg BW, via
gauge once a day (next 30 days) (Fig. 1).
2.7. Collection of Samples

The blood sample was collected by puncturing the vein from a
cephalic vein or jugular vein of every mouse on the 61st day of
the experiment. The blood collected from the mouse was shifted
in EDTA coated 3 mL ImuMed vacutainer and stored at 4 �C for bio-
chemical analysis. Blood was centrifuged to analyze biochemical
parameters at 25 �C for 10 min at 2000 rpm to separate serum.
Under deep anesthesia liver and both kidneys were removed via
a long abdominal incision in the middle part. Samples were pre-
served in formalin for later use.
2.8. General observations

Behavioral modifications in mice for all groups were observed
and recorded on regular basis. Each animal from all groups was
weighed weekly, and the dose was administered accordingly. Sim-
ilarly, the water consumption in terms of per gram body weight
was obtained on daily basis. Liver and kidney weight were noted
for each animal after collection.
Fig. 1. Experimental
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2.9. Biochemical parameters

Blood was centrifuged to analyze biochemical parameters at
25 �C at 2000 rpm for 10 min to separate serum. The aliquots were
stored at � 20 �C till further analysis. Alanine aminotransferase
(ALT) (Helmy et al., 2019), aspartate aminotransferase (AST)
(Helmy et al., 2019), alkaline phosphate (ALP) (Trapero et al.,
2018, creatinine (Khamis et al., 2018) and total protein (Yılmaz
and Ergün, 2018) were measured by commercially accessible diag-
nostic kits as described in Table 1.
2.10. Histopathology of liver and kidney

For histopathological analysis, the liver and kidney of each ani-
mal of each group, affixed with 10% formalin were processed by
the traditional method using ascension grades of alcohol and
xylene, paraffin wax embedding followed by microtomy at 5 lm.
The tissue sections were stained by hematoxylin and eosin (H&E)
staining for microscopic examination. The liver damage was stan-
dardized by steatosis, necrosis, hepatocyte degeneration, and
micrometric analysis. Moreover, kidney criteria were steatosis,
necrosis, regenerating nephron, fibrosis, nuclear fragmentation &
condensation, and micrometric analysis (Khalaf et al., 2020).
2.11. Micrometric analysis

The micrometrical observations recorded include the size of
hepatocytes and their nuclei and brush border. ACSA of Bowman’s
capsule, glomerulus, and lumen of proximal convoluted tubule
were measured. All the data was put into a graph pad prism. The
data was obtained from photographs at 40X from a microscope.
scheme of study.



Table 1
Layout for kits used in current study.

Sr No Biochemical parameter Particulars of Kit Reference

1 Alanine aminotransferase (ALT) ALT diagnostic kit (Helmy et al., 2019)
2 Aspartate aminotransferase (AST) AST diagnostic kit (Helmy et al., 2019)
3 Alkaline phosphate (ALP) Commercial double-antibody sandwich ELISA kits (Trapero et al., 2018)
4 Malondialdehyde (MDA) Commercial Photometry diagnostic kits (Teb Pazhouhan Razi (TPR), Tehran, Iran) (Amri et al., 2021)
5 Total protein Commercial test kits (Bioanalytic Diagnostic Industry, Germany) (Yılmaz and Ergün, 2018)
6 Creatinine QuantiChromTM CRNN assay kit (QC, CA) (Khamis et al., 2018)
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Following formula was used to calculate the CSA in each case
(Ahmad et al., 2012):

CSA ¼ length�widthð Þ
4

p

Fig. 2. Water intake measurement in experimental groups, Con; Control; Cr:
chromium treated; NS: NSSE treated; NS + NP: Nigella sativa AgNPs treated; P:
prevention; T: treatment. Different letters showing significant different of treat-
ment groups with that of Cr treated group. Results represented in term of
mean ± SEM. P � 0.05. Different letters showing significant different of treatment
groups with that of Cr treated group. Statistical icons: a,b,c,d,e,f,g = P � 0.05. aa,bb,
cc,dd,ee,ff,gg = P � 0.01. aaa,bbb,ccc,ddd,eee,fff,ggg = P � 0.001.
2.12. Data analysis

Data obtained were analyzed and presented as mean ± SEM.
Kolmogorov–Smirnov test was used to evaluate the normality of
the data and then statistically analyzed by one-way ANOVA, with
Dunnett’s multiple comparison test, to find any significant differ-
ence among the means of treatment groups. GraphPad Prism ver-
sion 5.0 for Windows (GraphPad Software, San Diego, CA, USA)
was employed for data analysis. The P � 0.05 were observed as sig-
nificant values.

3. Results

3.1. Water intake

Water intake was significantly different among different
groups. In Cr treated group water intake was significantly
increased (0.11782 ± 0.02222 mL/g/day) as compared to control
(0.09024 ± 0.01412 mL/g/day) (P � 0.05). Administration of
50 mg/kg BW dose of NSSE and Nigella sativa AgNPs decreased
the water intake as compared to Cr treated group. In treatment
groups, water intake was reduced significantly in NS (P) (0.06935
± 0.01357 mL/g/day) and NS (T) (0.06807 ± 0.01364 mL/g/day).
However, in NS + NP (P) (0.09067 ± 0.01660 mL/g/day) and
NS + NP (T) (0.11310 ± 0.02333 mL/g/day) reduction was not up
to significant level (Fig. 2).

3.2. Physiological parameters

During the study, aggressive behavior was observed in chro-
mium exposed mice that deceased over time. However, no signs
of mortality were observed. An increase in hepatosomatic index
(0.098 ± 0.13 g) up to a significant level (p < 0.05) was observed.
However, in renal somatic index no significant difference was
observed in chromium groups vs. treatment groups after 60 days
(Table 2).

3.3. Biochemical parameters

The values of biochemical parameters (ALT, AST, ALP, MDA,
total protein, and creatinine) were measured after 60 days of expo-
sure to 1.5 mg/kg BW Cr and other treatments including NSSE and
Nigella sativa AgNPs. Continuous Cr intake exerted negative effects
on redox balance and treatment of NS and NS + NP modulated the
toxic effects significantly.

ALT level was significantly elevated in all Cr exposed animals
(163 ± 4.1 U/L) as compared to control (42.4 ± 1.9 U/L)
(P� 0.05). Administration of 50 mg/kg BW dose of NSSE and Nigella
sativa AgNPs significantly inhibited the level of ALT as compared to
4

Cr groups. In treatment groups, ALT level was reduced significantly
in NS (P) (92 ± 4.4 U/L), NS + NP (P) (80.4 ± 3.6 U/L), NS (T)
(121.8 ± 3.3 U/L), and NS + NP (T) (107.8 ± 3.5 U/L) (Fig. 3).

AST level was significantly elevated in all Cr exposed animals
(484 ± 8.1 U/L) as compared to control (84.2 ± 1.5 U/L)
(P� 0.05). Administration of 50 mg/kg BW dose of NSSE and Nigella
sativa AgNPs significantly inhibited the level of AST as compared to
Cr groups. In treatment groups, AST level was reduced significantly
in NS (P) (188.4 ± 10.8 U/L), NS + NP (P) (145 ± 10.6 U/L), NS (T)
(214.6 ± 13.9 U/L), and NS + NP (T) (200.2 ± 11.8 U/L) (Fig. 3).

ALP level was significantly elevated in all Cr exposed animals
(337.6 ± 7.2 U/L) as compared to control (106.2 ± 4.9 U/L)
(P� 0.05). Administration of 50 mg/kg BW dose of NSSE and Nigella
sativa AgNPs significantly inhibited the level of ALP as compared to
Cr groups. In treatment groups ALP level was reduced significantly
in NS(P) (189.6 ± 15.6 U/L), NS + NP(P) (187.2 ± 8.8 U/L), NS (T)
(245.8 ± 10.1 U/L) and NS + NP (T) (194.8 ± 7.1 U/L) (Fig. 3).

MDA level was significantly elevated in all Cr exposed animals
(641.2 ± 22.1 U/L) as compared to control (158 ± 3.7 U/L)
(P� 0.05). Administration of 50 mg/kg BW dose of NSSE and Nigella
sativa AgNPs significantly decreased the level of MDA as compared
to Cr groups. In treatment groups, MDA level was reduced signifi-
cantly in NS (P) (288 ± 61.9 U/L), NS + NP (P) (253 ± 9.3 U/L), NS (T)
(348 ± 41.2 U/L), and NS + NP (T) (349.6 ± 31.7 U/L) (Fig. 3).

Total protein level was significantly decreased in all Cr exposed
animals (2.94 ± 0.2 g/dL) in comparison to control (8.42 ± 0.5 g/dL)
(P� 0.05). Administration of 50 mg/kg BW dose of NSSE and Nigella
sativa AgNPs significantly elevated the level of total proteins as
compared to Cr groups. In treatment groups total proteins level
was improved significantly in NS (P) (6.16 ± 0.5 g/dL), NS + NP
(P) (7.96 ± 0.3 g/dL), NS (T) (4.36 ± 0.2 g/dL) and NS + NP (T) (5.2
8 ± 0.4 g/dL) (Fig. 3).

Creatinine level was significantly increased in all Cr exposed
animals (4.0 ± 0.1 mg/dL) in comparison control (0.8 ± 0.0 mg/d
L) (P � 0.05). Administration of 50 mg/kg BW dose of NSSE and
Nigella sativa AgNPs significantly decreased the level of creatinine



Table 2
Comparison in hepatosomatic index (HIS) and renal somatic index (RSI) of treatment groups.

Treatment groups

Organ Con Cr NS NS + NP NS (P) NS + NP (P) NS (T) NS + NP (T)

HIS (g) 0.05 ± 0.07 0.098 ± 0.13aaa 0.0577 ± 0.11bbb 0.0493 ± 0.041ccc 0.0474 ± 0.031ddd 0.0548 ± 0.0307eee 0.0545±0.0793fff 0.047 ± 0.03ggg
RSI (g) 0.01 ± 0.02 0.02 ± 0.06 0.02 ± 0.004 0.015 ± 0.007 0.015 ± 0.01 0.01616 ± 0.0246 0.01551 ± 0.0244 0.015 ± 0.0184

Con; Control; Cr: chromium treated; NS: NSSE treated; NS + NP: Nigella sativa AgNPs treated; P: prevention; T: treatment. Different letters showing significant different of
treatment groups with that of Cr treated group. Results represented in term of mean ± SEM. P � 0.05. Different letters showing significant different of treatment groups with
that of Cr treated group. Statistical icons: a,b,c,d,e,f,g = P � 0.05. aa,bb,cc,dd,ee,ff,gg = P � 0.01. aaa,bbb,ccc,ddd,eee,fff,ggg = P � 0.001.

Fig. 3. Analysis of ALT, AST, ALP, MDA, Total Protein and Creatinine measurement in experimental groups. Con; Control; Cr: chromium treated; NS: NSSE treated; NS + NP:
Nigella sativa AgNPs treated; P: prevention; T: treatment. Results represented in term of mean ± SEM. P � 0.05. Different letters showing significant different of treatment
groups with that of Cr treated group. Statistical icons: a,b,c,d,e,f,g = P � 0.05. aa,bb,cc,dd,ee,ff,gg = P � 0.01. aaa, bbb, ccc, ddd,eee,fff,ggg = P � 0.001.
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as compared to Cr groups. In treatment groups creatinine level was
reduced significantly in NS (P) (2.0 ± 0.1 mg/dL), NS + NP (P) (1.7
± 0.1 mg/dL), NS (T) (2.8 ± 0.1 mg/dL) and NS + NP (T) (2.3 ± 0.2
mg/dL) (Fig. 3).

3.4. Histopathology of liver and kidney

Histological slides of liver and kidney tissue of control groups
showed well-organized histological structures including hepato-
cytes, hepatic cords, central vein, glomerulus was encircled by
bowman’s capsule, proximal convoluted tubules were with brush
border, however distal convoluted tubule with intact endothelium.
In Cr treated group abnormalities in liver and kidney sections were
observed. During the microscopic examination, different alter-
ations were found including nuclear fragmentation, atrophid
5

nuclei of hepatocytes, derangement in hepatic cords and abnormal
sinusoids, microvesicles, and microvesicles in hepatocytes indicat-
ing steatosis, massive vacuolar degeneration of hepatocytes with
necrosis, a large number of Kupfer cells (Fig. 4) and bile duct meta-
plasia were the notable features (Supplementary Fig. 1). The differ-
ent tissue section of kidney in the Cr group represented numerous
histological alterations including degeneration of renal tubules,
glomerular degeneration and disorganized bowman’s capsule,
necrosis (Fig. 5), fatty cell infiltration and microvesicles indicating
steatosis, fibrocytes infiltration and fibrosis in interstitial tissues,
nuclear fragmentation, and condensation, eccentric nuclei, and
vacuolation (Fig. 6) were major features observed. However, in
the treatment groups, liver and kidney structures recovered
significantly.



Fig. 4. Histopathology of Liver (40X) A: control; B: Cr; C: NS; D: NS + NP; E: NS (P);
F: N + NP (P); G: NS (T); H: N + NP (T) treated groups. CV: central vein, Yellow
arrows: sinusoids, purple arrow: normal hepatocytes, white arrow: kupfer cells:
black arrow: necrosis, red arrow: micro vesicles in hepatocytes, green arrow:
degenerating hepatocytes, blue arrows: hepatic cords.

Fig. 5. Histopathology of Kidney (40X). Yellow arrows: Bowman’s capsule: black
arrow: glomerulus: orange arrow: distal convoluted tubule, blue arrow: proximal
convoluted tubule, white arrow: micro vesicles and eccentric nucleus, black arrow:
distorted glomerulus, green arrow: necrosis.

Fig. 6. Selected regions of the histological section of Cr (VI) treated kidney showing
histopathology (40X). Blue arrows: bowman’s capsule: yellow arrow: atrophy of
glomerulus: white arrow: fibrocytes, dark green arrow: fibrosis in interstitial
tissues, light green arrow: micro vesicles and nucleus disappeared, black arrow:
macrovesivles, green arrow: necrosis, light blue arrow: brush border, dark blue
arrow: necrosis, red arrow: nuclear fragmentation and condensation, dark pink
arrow: eccentric nucleus, light pink arrow: vacuolation, orange arrow: mage
nucleus.
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3.5. Micrometry of liver and kidney

The micrometric analysis of the liver includes the size of hepa-
tocytes and size of hepatocytes nucleus in Fig. 7. Whereas kidney
micrometric analysis includes measurement of ACSA of Bowman’s
capsule, ACSA of the glomerulus, ACSA of the lumen of proximal
convoluted tubule, size of brush border in Fig. 7. A significant
increase in the size of hepatocytes and their nucleus were observed
in Cr treated groups 1188.191 ± 467.698 l2 and 456.419 ± 206.739
l2 (P � 0.05) as compared to control (836.778 ± 223.984 l2, 254.
269 ± 105.453 l2) respectively. With the administration of
50 mg/kg BW dose of Nigella sativa seed extract and Nigella sativa
AgNPs, the size of hepatocytes was reduced up to a significant level
in treatment groups including NS (P) (631.595 ± 155.019 l2),
NS + NP (P) (669.454 ± 165.959 l2), NS (T) (707.928 ± 233.903
l2) and NS + NP (T) (707.928 ± 707.928 l2) up to significant level
(Fig. 7).

A significant increase in bowman’s capsule and glomerulus was
observed in Cr treated groups 11835.47 ± 336.66 l2 and 9051.82
± 249.81 l2 (P � 0.05) as compared to control (9106.81 ± 522.18
l2,7136.26 ± 261.61 l2) respectively. Administration of 50 mg/kg
BW dose of Nigella sativa seed extract and Nigella sativa AgNPs,
the size of Bowman’s capsule was reduced up to the significant
level in treatment groups including NS (P) (7481.91 ± 455.10 l2),
NS + NP (P) (9304.56 ± 658.89 l2) and NS (T) (7128.01 ± 320.03
l2), however in NS + NP (T) (10586.26 ± 871.53 l2) reduction
6

was not up to significant level (Fig. 8). In glomerulus size was also
reduced in treatment groups NS (P) (6291.00 ± 631.46 l2), NS + NP
(P) (5676.29 ± 326.25 l2) and NS (T) (6070.99 ± 213.25 l2), how-



Fig. 7. Analysis of Hepatocyte and their nucleus size measurement in experimental
groups. Con; Control; Cr: chromium treated; NS: NSSE treated; NS + NP: Nigella
sativa AgNPs treated; P: prevention; T: treatment. Results represented in term of
mean ± SEM. P � 0.05. Different letters showing significant different of treatment
groups with that of Cr treated group. Statistical icons: a,b,c,d,e,f,g = P � 0.05. aa,bb,
cc,dd,ee,ff,gg = P � 0.01. aaa, bbb, ccc, ddd,eee,fff,ggg = P � 0.001.
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ever in NS + NP (T) (7951.64 ± 1134.21 l2) reduction was not up to
significant level.

In the glomerulus, size was also reduced in treatment groups NS
(P) (20.249 ± 3.130 l2), NS + NP (P) (19.324 ± 4.897 l2), NS (T) (19.
070 ± 8.116 l2), and NS + NP (T) (17.819 ± 3.766 l2) up to signif-
icant level (Fig. 8).

The lumen of the proximal convoluted tubule was also not
changed up to the significant level in chromium treated group
(1049.63 ± 168.57 l2) as compared to the control group (841.85 ±
114.96 l2) (p > 0.05) (Fig. 8). In the proximal convoluted tubule,
the brush border decreased in Cr group and changed up to a signif-
icant level in chromium treated group (10.070 ± 3.031 l) as com-
pared to the control group (20.086 ± 2.593 l) (Fig. 8).
4. Discussion

Chromium compounds switch their oxidative state and do not
withdraw into the ecosystem. Cr (VI) in comparison to Cr (III) is
more toxic and easily passes through cell membranes with the
aid of anion carriers (Xueting et al., 2018). The current study on
albino mice aimed to evaluate whether Nigella sativa seed extract
and Nigella sativa AgNPs supplementation can turn down the
effects of Cr (VI) toxicity (by examining the level of ALT, AST,
ALP, MDA, total protein, creatinine, and histopathology of liver
and kidney). We observed that Nigella sativa seed extract and
Nigella sativa AgNPs supplementation played a protecting role by
turning down the Cr (VI) induced toxicity in the liver and kidney.
Although Nigella sativa is a top-ranked herbal medicine with mirac-
ulous healing power (Kazmi et al., 2019) effective in various
chronic diseases (Rashidmayvan et al., 2019). This is the foremost
study on the ameliorative potential of Nigella sativa seed extract
and Nigella sativa AgNPs on water intake HIS, RSI, ALT, AST, ALP,
MDA, creatinine, and histopathology of liver and kidney against
Cr (VI). That’s why data is not sufficiently available for comparison.
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There was an inexplicable change in the body weight with Cr
(VI) administration (Shil and Pal, 2019) whereas the weight of
the liver was increased (El-Demerdash et al., 2021). According to
already published data Cr (VI) caused lesions, chronic inflamma-
tion, an increase in Kupfer cells, and fatty degeneration resulting
change in the weight of the liver (Suljević et al., 2021), resulting
in high HIS whereas RSI was not changed up to the detectable level
when compared to control. However, mice treated with NSSE
showed a detectable recovery in liver weight. It is established that
Cr (VI) toxicity causes oxidative stress and cellular damage
(Awasthi et al., 2018). The liver is involved in detoxification, Cr
(VI) exposure induces ROS synthesis to result in oxidative damage
that is visible in liver tissue sections (Yang et al., 2022). Liver dys-
trophy and inflammation were observed, and hepatocytes with fat
vesicles were related to poor regulation of lipid reserves due to
toxicity. As similar to previous studies hepatocytes atrophy,
nuclear condensation and fragmentation, derangement of hepatic
cords, and lateral side arrangement of the nucleus were seen in tis-
sue section that may be due to deposition of lipids and glycogen
precipitation. Necrosis in hepatocytes was because of the increased
number of neutrophils and lymphocytes (Buchko and Havryliak,
2021). With the administration of NSSE and biosynthesized AgNP
in the present study, the liver structure was improved.

Evaluation of the kidney functions had been made in the cur-
rent study by estimating ALT, AST, ALP, and total protein. In the
current study the elevated level of ALT, AST, and ALP can be attrib-
uted to a high level of ROS and pointed out liver damage that mod-
ified the membrane permeability and transport function along
with the outflow of enzymes from hepatocytes into the blood-
stream a clear indication of hepatotoxicity (El-Demerdash et al.,
2021). With the administration of NSSE levels of these enzymes
were reduced (Mazhar, 2022) due to the action of TQ (Fadishei
et al., 2021). Cr (VI) decreases the protein level due to impaired
protein synthesis machinery, most probably due to bioaccumula-
tion of Cr (VI) (Trivedi et al., 2021), NSSE and biosynthesized AgNP
treatment improved the level of total proteins.

The kidney is the vital target organ for the accumulation of Cr
(VI), and the elimination of toxicant (Kakade et al., 2020) reactive
species synthesized by Cr (VI) effect cell membrane lipids and
induce peroxidation of unsaturated fatty acids (Suljević et al.,
2021) and necrosis in kidney tissue (Yin et al., 2019). Upon expo-
sure to Cr (VI), massive destruction was found in the renal cortex
including fatty cell infiltration representing lipid accumulation
due to ROS species (Hanan et al., 2019). Regarding renal filtration,
in our study, there were inconsistent forms of histopathological
changes were observed such as glomerulus degeneration, necrosis,
fibrosis, sloughing of tubular epithelial cells, and cytoplasmic vac-
uolation. According to previous studies, cytoplasmic vacuolation is
the job of reactive species that aid the discharge of lysosomal
enzymes and upcoming protein oxidation of the cell, convert them
into fragments, and set apart them into vacuoles as part of the cel-
lular defense mechanism, protecting the interference with cell
metabolism (Sorour and Abd-Elgalil, 2019). As nephritis in the
tubule and glomerulus damage are linked with irregular flow of
the glomerular filtrate. The slow or blocked condition of glomeru-
lar filtrate results in shrinkage of the glomerulus (Hanan et al.,
2019). In Cr treated animals water consumption was maximum,
as ammonia execration requires more water and animals drink
more water compared to other groups. This indicates reno-
hepatic toxicity (Abbas et al., 2016). With the administration of
NSSE in the present study, the architecture of the renal cortex
was improved (Baloch et al., 2020) and water consumption was
reduced as observed in our study.

Evaluation of the kidney functions had been made in the cur-
rent study by estimating MDA and creatinine. In our study Cr
(VI) exposure elevated the level of MDA and creatinine in serum.



Fig. 8. Analysis of ACSA of Bowman’s capsule, glomerulus, lumen of proximal convoluted tubule and brush border size measurement in experimental groups. Con; Control;
Cr: chromium treated; NS: NSSE treated; NS + NP: Nigella sativa AgNPs treated; P: prevention; T: treatment. Results represented in term of mean ± SEM. P � 0.05. Different
letters showing significant different of treatment groups with that of Cr treated group. Statistical icons: a,b,c,d,e,f,g = P � 0.05. aa,bb,cc,dd,ee,ff,gg = P � 0.01. aaa, bbb, ccc,
ddd,eee,fff,ggg = P � 0.001.
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MDA is the biomarker for lipid peroxidation and protein damage
results in an elevated level of MDA in serum (Muller et al., 2022).
MDA, the final product of lipid peroxidation, used as indicator for
liver injury (Selamoğlu et al., 2014). Serum creatinine level indi-
cates acute tubular necrosis caused by renal toxicity
(Alsuhaibani, 2018) and also provides a rough estimate of the rate
of glomerular filtration (Franca and Prince, 2019), the glomerulus
injury leads to a reduction in the diffusion process by thickening
of capillary basement membrane resulting slower rate of filtration
(Deshmukh and Manjalkar, 2021) and NSSE and biosynthesized
AgNP administration reduced level of creatinine.

As per the micrometric analysis of the liver showed in Cr group
the size of hepatocytes and their nucleus were increased may be
due to disruption of nuclear function, which might be due to pro-
tein DNA interaction and transcriptional activity of hepatocytes
(Fedchenko et al., 2022). In the kidney, an increase in glomerular
size increase may be due to glomerulus damage, and crescent for-
mation (Bouteldja et al., 2021) may increase in the size of the Bow-
man’s capsule. In NSSE and biosynthesized AgNP treated groups
size were significantly reduced.

Our results indicated that the administration of Nigella sativa
and Nigella sativa mediated AgNPs in mice produced marked mod-
ulatory effects against chromium (VI) and caused hepatic, renal,
and biochemical alterations. Based on the results, Nigella sativa
and Nigella sativa mediated AgNPs seems to have an ameliorative
mechanism in hepatotoxicity and renal toxicity. We selected equal
quantity of dose for Nigella sativa seed extract and Nigella sativa
mediated AgNPs in order to compare the ameliorative potential
against particular quantity of chromium. If we use small quantity
of dose of nanoparticles then it may be more beneficial. Further
we will investigate this dose dependent response”. Also, further
studies are required to explicitly interpret the definite mechanism
of mitigation by Nigella sativa and Nigella sativa mediated AgNPs.
5. Conclusion

In conclusion, chromium (VI) treatment resulted in lipid perox-
idation, interference in the natural antioxidant defense system,
8

biochemical parameters, and histological alterations in the liver
and kidney. Furthermore, Nigella sativa supplementations to chro-
mium Cr (VI) treated mice modulated oxidative damage and reha-
bilitate the disturbance in the majority of the measured
parameters. Its effect is noticeable in the prevention group. So,
Nigella sativa had strong antioxidant potential in amelioration of
Cr (VI) toxicity by reduction of free radicals synthesis and enhanc-
ing the antioxidant defense system; additionally, our data reinforce
the use of Nigella sativa as a hepatic protective and renal protective
natural-born product.
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