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Abstract

Pathological features in Alzheimer’s brains include mitochondrial dysfunction and dystrophic 

neurites (DNs) in areas surrounding amyloid plaques. Using a mouse model that overexpresses 

reticulon 3 (RTN3) and spontaneously develops age-dependent hippocampal DNs, here we report 

that DNs contain both RTN3 and REEPs, topologically similar proteins that can shape tubular 

endoplasmic reticulum (ER). Importantly, ultrastructural examinations of such DNs revealed 

gradual accumulation of tubular ER in axonal termini, and such abnormal tubular ER inclusion is 

found in areas surrounding amyloid plaques in biopsy samples from AD brains. Functionally, 

abnormally clustered tubular ER induces enhanced mitochondrial fission in the early stages of DN 

formation and eventual mitochondrial degeneration at later stages. Furthermore, such DNs are 

abrogated when RTN3 is ablated in aging and AD mouse models. Hence, abnormally clustered 

tubular ER can be pathogenic in brain regions: disrupting mitochondrial integrity, inducing DNs 

formation and impairing cognitive function in AD and aging brains
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INTRODUCTION

Alzheimer’s disease (AD) is the most common neurodegenerative disease and aging is the 

most common predisposing factor for the onset of AD and cognitive dysfunction (1). In 

brains of Alzheimer’s patients, common pathological features are the presence of amyloid 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
*Correspondence should be addressed to: Riqiang Yan, Ph.D., Department of Neurosciences, Lerner Research Institute, The 
Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH44195. Tel: 216-445-2690, Fax: 216-444-7927, yanr@ccf.org. 

Conflict of Interests
All authors declare no conflict of interest in this study.

HHS Public Access
Author manuscript
Mol Psychiatry. Author manuscript; available in PMC 2016 August 23.

Published in final edited form as:
Mol Psychiatry. 2016 September ; 21(9): 1263–1271. doi:10.1038/mp.2015.181.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms


plaques, neurofibrillary tangles and dystrophic neurites (DNs), as well as mitochondrial 

dysfunction (2, 3). Over the past two decades, many genetic and biochemical studies have 

revealed various molecular mechanisms that contribute to these pathological features (4-6). 

However, how changes in tubular endoplasmic reticulum (ER) contribute to AD pathologies 

has never been reported. This study provides both biochemical and morphological evidence 

that dysfunctional tubular ER induces increases in mitochondrial fission and formation of 

DNs, two commonly observed pathologies in AD brains.

The link between dysfunctional tubular ER and AD pathogenesis stems from our systematic 

study of DN origin using human and mouse brain samples. Tubular ER is part of the smooth 

ER structure and reticulon/Nogo proteins have been identified as tubular ER resident 

proteins, which function to shape tubular ER structure (7). The reticulon (RTN) family of 

proteins consists of four members (RTN1 to RTN4) in humans and rodents; each RTN 

protein is distinguished by the presence of a conserved C-terminal membrane-bound 

reticulon-homology domain (RHD), while the N-terminal sequences are completely 

divergent (8-10). The RHD dictates the RTN ω-shape membrane topology in which both the 

N- and C-terminal domains face the cytosolic side (7, 11). RTN proteins have been 

previously shown to interact with Alzheimer’s β-secretase (BACE1) and to negatively 

modulate BACE1 cleavage of amyloid precursor protein (APP) in releasing Aβ peptides, 

which are major components of amyloid plaques (12, 13). Intriguingly, RTN3, the main 

RTN expressed by neurons, is also abnormally enriched in DNs and can label broad and 

abundant populations of DNs in AD brains (14).

Despite the fact that a number of proteins such as APP, neurofilament, ubiquitin, and 

GAP-43 are reported to label DNs in areas surrounding amyloid plaques in AD brains 

(15-17), the finding of RTN3 in DNs is more important because RTN3 is the first known 

protein that can actively participate in forming DNs(18)[17]18[18]18(Hu et al., 2007)[17](Hu 

et al., 2007)18. We have demonstrated that transgenic mice overexpressing RTN3 under the 

control of prion promoter (Tg-RTN3) spontaneously develop DNs, also named as RTN3-

immunoreactive dystrophic neurites (RIDNs), in Tg-RTN3 hippocampi in an age-dependent 

manner (18). Such RIDNs can also naturally occur in aging wild-type mouse hippocampi 

(19), excluding possible artificial formation of RIDNs in this transgenic mouse model. More 

significantly, our functional and morphological studies demonstrate that the density of 

RIDNs correlates with impaired cognitive function (18, 20), implicating it as a contributing 

factor in aging and AD cognitive dysfunction.

To determine how RTN3 is enriched in RIDNs, we conducted a molecular study of RIDNs. 

We now show that RIDNs in a mouse model and in AD brains contain REEP2 and REEP5, 

which are ER proteins topologically similar to RTNs and also localized in the tubular ER 

(7); other types of ER structural proteins including ER stress proteins are not enriched 

within RIDNs. Morphological examinations of Tg-RTN3 mouse hippocampi revealed that 

formation of RIDNs was due to gradual accumulation of tubular ER in axonal termini. Such 

abnormally clustered tubular ER was readily detected in swollen axonal termini from biopsy 

samples of AD brains. Functionally, abnormally clustered tubular ER was clearly 

dysfunctional, as enhanced mitochondrial fission was correspondingly induced in the early 

stages of RIDN formation. Eventually, excessive clusters of tubular ER causes mitochondrial 
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degeneration at later stages. We also demonstrate that dysfunctional tubular ER-associated 

RIDNs are abrogated when RTN3 is ablated in aging and AD mouse models.

Hence, we show for the first time that clustering tubular ER is functionally impaired, as 

manifested by disrupted mitochondrial dynamics in aging and AD brains. RTN3, previously 

identified as a negative modulator of BACE1 (21), appears to play a critical role in this 

process via altering tubular ER organization. Our data suggest that targeting normal tubular 

ER organization is an alternative therapeutic strategy for preserving mitochondrial integrity 

and synaptic function.

Materials and Methods

Mouse strains, cell lines, human biopsy samples, and reagents

Tg-RTN3 mice and RTN3-null mice were generated and genotyping was performed as 

described previously(18, 22). Tg-APPsw/PSEN1DE9 mice (Tg-PA) were purchased from 

Jackson Laboratory (stock #004462). RTN3-null; APPsw/PSEN1DE9 mice (R3KOPA) were 

generated by crossing RTN3-null mice with APPsw/PSEN1DE9 mice. All mice in the study 

were maintained and used according to protocols approved by the Institutional Animal Care 

and Use Committee of the Cleveland Clinic Foundation. Human embryonic kidney 293 

(HEK-293) cells were maintained at 37°C in a humidified, 5% CO2-controlled atmosphere 

in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 50 

IU/ml penicillin, 50 mμ/ml streptomycin, and glutamine.

Human biopsy samples were taken from the frontal cortex of two patients (aged 55 and 64 

years) who had been included in other clinico-pathological studies with a definite history 

and clinical presentation of dementia and fulfilling the NINCDSADRDA working group 

criteria for probable AD. Corresponding tissue from two non-AD control cases (aged 35 and 

64 years) were also studied.

All RTN antibodies were generated in the Yan lab. Antibodies R458 and R459 recognize the 

C terminus of RTN3 and R461 is an antibody specific to the RTN4 C terminus and 

recognizes all RTN4-A, RTN4-B and RTN4-C isoforms (21). RTN1 and RTN2 antibodies 

were recently generated in the Yan lab and react with the C terminus of RTN1 or RTN2. 

Antibodies against Aβ-amyloid peptide (6E10; catalog #NE1003-100UL, RRID: 

AB_564201), calnexin (C4731, RRID: AB_476845), flag (catalog# F 1804), PDI (catalog # 

P7496), REEP3 (catalog # SAB 2900870), REEP4 (catalog # HPA042683), and spastin 

(catalog # S7074) were purchased from Sigma-Aldrich. Antibodies against FIS1 (catalog# 

10956-1-AP), GRP78 (BIP, HSPA5; catalog # 11587-1-AP), MFF (catalog # 17090-1AP), 

MFN1 (catalog # 13798-1-AP), MFN2 (catalog # 12186), REEP1 (catalog # 17988-1-AP), 

REEP2 (catalog # 15684-1-AP), REEP5 (catalog # 14643-1-AP), and REEP6 (catalog # 

12088-1-AP) were purchased from Protein Tech. Anti-DLP1 (catalog #611112) antibody 

was purchased from BD Transduction Lab. Anti-atlastin (catalog # 2728) antibody was 

obtained from Cell Signaling Technology. DP1 (K-20; catalog # sc-610) and anti-myc 

(catalog # SC-40) were purchased from Santa Cruz Biotechnology, Inc. Alexa Fluor 488- 

and 568-labeled secondary antibodies were purchased from Invitrogen. Complete protease 

inhibitor tablets were purchased from Roche Biosciences. Four to 12% Bis-Tris NuPAGE 
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gels were purchased from Invitrogen. All RTN3 mutants were prepared as described 

previously (23).

Immunoprecipitation and western blot assays

For immunoprecipitation experiments with Tg-RTN3 mice brain extract, snap-frozen brain 

sections were homogenized on ice in 1% CHAPS extraction buffer containing complete 

protease inhibitors (Roche Bioscience) and 0.1 mM Na3VO4 for inhibiting phosphatase. The 

homogenates were rotated for 30 min at 4°C to ensure extraction of membrane proteins. 

After centrifugation at 15,000xg for 120 min, supernatants were collected and protein 

concentrations were measured with the BCA protein assay reagent (Pierce). 

Immunoprecipitation with transfected cell lysate was performed as described previously 

(23). Briefly, HEK293 cells were first grown in Dulbecco’s modified Eagle’s medium for 24 

h in 60-mm plates to ~80% confluence and then transfected with the indicated expression 

constructs. After being cultured for 48 h, cells were lysed and equal amounts of lysates 

(500μg in 1ml) were used for immunoprecipitation with Myc or Flag-conjugated beads 

overnight. The extensively washed immunoprecipitates were resolved on a 4–12% NuPage 

Bis-Tris gel purchased from Invitrogen for Western blot assays. Following incubation with 

the indicated primary antibody, an appropriate horseradish peroxidase-conjugated secondary 

antibody was added for incubation. Immunoreactivity was detected by chemiluminescence 

using Super Signal West PICO reagent (Pierce).

Immunohistochemistry and immunofluorescent confocal microscopy

Immunohistochemical and confocal experiments were performed according to standard 

methods as described previously(21). Brain tissues from AD patients and mice were 

sectioned in the sagittal plane at a 14 μm thickness using a cryostat after 4% 

paraformaldehyde fixation and O.C.T. compound embedding. Brain sections were stored at 

-80°C. After three washes in PBS (1x), sections were incubated in 0.3% Triton X-100 in 

PBS (1x) for 30 min. After additional washes in PBS (1x), sections were blocked in 5% goat 

serum in PBS (1x) for 30 min. Sections were then incubated with the indicated primary 

antibodies overnight. Sections were washed in PBS (1x) three times and incubated in 

secondary antibody goat anti-mouse or anti-rabbit IgG conjugated with either Alexa Fluor 

488 or Alexa Fluor 568. Lipofucsinautofluorescence is common in human brain sections and 

produced robust auto-fluorescence in all confocal channels. To reduce auto-fluorescence, 

fixed AD brain sections were treated with 3% Sudan Black B for 10 min. Nuclei were 

stained using To-pro dye (1:1000) for 15 min. Images were examined and captured with a 

Leica SP5 confocal microscope.

Electron microscopy

All human biopsy and mouse brain tissues were fixed in 1.5% glutaraldehyde in cacodylate 

buffer and post-fixed with 1% osmium tetroxide for 1 h. Tissue was dehydrated in graded 

ethanols and propylene oxide, embedded in Epon 812, and sectioned at silver interference 

color. Grids were viewed at 60 kV using a JEOL 100CX electron microscope. Tissue 

obtained at biopsy was used to determine the cytoarchitecture of DNs in senile plaques. The 

state of preservation compared well with published studies of optimally preserved tissue 

taken from animals.
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Tubular ER drawing, quantification of mitochondrial numbers, and measuring the size of 
mitochondria

Nine to ten EM pictures per mouse (three mice in each genotype) were obtained at 23000x 

magnification, focusing on the neurites near a cell body. The drawing of tubular structure, 

quantification of mitochondria, and measurement of each mitochondrial area were 

performed by experimenters blinded to genotypes of the mice. To draw the tubular ER, the 

cell body was first separated by drawing a thin line (blue) from nearby clustered neurites and 

the tubular structure in neurites was drawn using Image J software. Mitochondria in somata 

and in clustered neurites were counted from each EM microgram. The area of each 

mitochondrion was also quantified using Image J and the size of mitochondria was 

determined by normalizing obtained values with 1μm2 area scale of the same EM pictures.

RESULTS

Specific interactions between RTN3 and REEP proteins in neurons

To determine the in vivo role of RTN3 in forming RIDNs, we aimed to investigate the 

molecular composition of RIDNs by identifying proteins that co-exist with RTN3. By 

performing co-immunoprecipitation (co-IP) experiments using Tg-RTN3 mouse 

hippocampal protein lysates, we screened a panel of proteins, mainly ER-related or vesicle 

trafficking proteins, for potential interactions with RTN3. The proteins examined included 

calnexin, calreticulin, protein disulfide isomerase (PDI), human glucose regulated protein 78 

(GRP78), double strand RNA activated protein kinase endoplasmic reticulum kinase 

(PERK), ATF-6, IRE1, atlastin-1, DP1, spastin, REEP family members, GM130, EEA1, 

Rab5, APP, etc. We found that only REEP2 and REEP5 effectively co-IPed with RTN3 (see 

examples in Figure 1a). The rodent REEP family has six members (24) and the interaction 

between RTN3 with other REEP members in cortical or hippocampal neurons were not 

detected (data not shown). Unlike the prior report of morphogen complex which contains 

RTN, REEP, atlastin and spastin (25), we also failed to detect interaction between RTN3 

with spastin or atlastin under our IP condition.

To further verify the interaction between RTN3 and REEPs, we conducted a domain 

mapping assay by utilizing various previously-generated RTN3 truncated mutant constructs 

(23). We showed that the mutated RTN3 (R3ΔN97), lacking the first transmembrane (TM1) 

domain, failed to co-IP with ectopically-expressed REEP2, while all other RTN3 truncated 

mutants effectively co-IPed with REEP2 (Figure 1b). The RTN3 mutant (R3ΔC91), lacking 

the second TM, did not significantly affect the interaction with REEP2. These results 

suggest that the TM1 domain of RTN3 is more critical for the proper docking of RTN3 on 

the membrane and for interactions with REEP proteins.

We also tested whether REEP2 interacts with other members of the RTN family (RTN1, 

RTN2 and RTN4), as all RTN members have a common TM1 region within the RHD 

domain. Co-IP results showed that REEP2 effectively interacted with all RTN family 

members (Figure 1c). Since RTN and REEP proteins are suggested to shape tubular ER, 

these two families of proteins should have resided in close proximity. Our confocal staining 

confirmed co-localization of these two proteins in cultured COS7 cells (data not shown).
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RIDNs contain only tubular ER proteins

Next, we asked whether interactions between RTN3 and REEP proteins impact the 

formation of RIDNs. Fixed brain sections of Tg-RTN3 mice were immunostained with 

REEP2 or REEP5 antibody. Remarkably, both REEP2 and REEP5 antibodies specifically 

labeled neuronal somata and RIDNs in the hippocampal region where RIDNs are developed 

in this mouse model overexpressing myc-tagged RTN3; no RIDNs were formed in cortical 

regions of Tg-RTN3 mice and only neurons were positive in staining (Figure 2a). The 

merged panels show that RTN3 and REEP2 or REEP5 largely co-existed in the hippocampus 

(Figure 2, merged), indicating that RIDNs contain another family of tubular ER-shaping 

proteins. This is the first evidence that two families of tubular shaping ER proteins co-exist 

in RIDNs.

We further examined whether REEPs would also label RIDNs in AD brains. An antibody 

specific to REEP5 was found to label abundant RIDNs, similar to that shown by RTN3 

antibody (Figure 2b). In addition, REEP5 similarly labeled RIDNs in transgenic mice 

overexpressing swAPP/PS1DE9 (Figure 2c). Noticeably, the size of RIDNs in the AD 

mouse model was significantly smaller, perhaps related to the age-dependent growth of 

RIDNs. It should be noted that RIDNs are uniquely labeled by tubular shaping ER proteins 

REEP2/5 and RTN3, as many other ER proteins, such as the smooth ER protein calnexin 

(top panels in Supplemental Figure 1) and the ER membrane enzyme PDI (middle panels in 

Supplemental Figure 1) are not found in RIDNs. ER stress-related proteins, such as GRP78 

(lower panels in Supplemental Figure 2), ATF-6, IRE1, and PERK (data not shown), which 

are more enriched in the ER cisternae (flat ER), were also absent in RIDNs. Taken together, 

these data show that REEP protein family members label abundant populations of DNs in 

AD brains similar to RTN3 and that RIDNs predominantly accumulate tubular ER proteins, 

rather than general smooth ER or stress-activated ER proteins.

Clustering of axonal tubular ER in brains of AD mouse models and AD patients

The above observation prompted us to test a novel hypothesis that RIDNs originate from 

tubular ER and that aging facilitates tubular ER clustering. To test this hypothesis, we 

examined the tubular ER ultrastructure by standard electron microscopy (EM) using fixed 

hippocampal samples from wild-type (WT) and Tg-RTN3 mice. Compared to WT 

hippocampal samples, we observed that 3-month-old Tg-RTN3 mouse brain samples, which 

had just begun to develop RIDNs, showed curvier and shorter tubular ER clustered in axonal 

areas (ER tubules in yellow, Figure 3a-b; unmarked originals in Supplemental Figure 2a-b). 

At the age of 11 months, compared to normally distributed tubular ER in WT samples, the 

accumulation of clustered tubular ER in the axonal terminus was remarkable (Figure 3c) and 

tubular ER morphology was more evident in an enlarged view (see enlarged inset in Figure 

3d). Clustered tubular ER was not seen in non-transgenic littermates (Supplemental Figure 

2c-d). Clear accumulation of RTN3 within the tubular by ER body was validated immuno-

EM results (Supplemental Figure 3). These results suggest that the alteration of tubular ER 

structure was the beginning of the formation of RIDNs and that tubular ER is abnormally 

distributed and appears to move toward the axon terminus in an age-dependent manner.
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To determine whether clustered tubular ER structures are present in human brains, we 

examined surgically-collected cortical biopsy samples from two AD patients and readily 

observed accumulation of abnormally clustered tubular ER structures within the inclusion 

body in all samples (Figure 3e; clearer morphology in the enlarged views in f). Such an 

abnormal tubular ER accumulation was not detected in non-demented control biopsies (data 

not shown). Thus, ultrastructural examination confirmed that abnormal accumulation of 

tubular ER is not only present in mouse models, but also in human AD brains, mainly as 

DN-like inclusion bodies.

Dysfunction of tubular ER

To understand whether clustering of tubular ER causes functional changes, we chose to 

examine mitochondrial dynamics first, as we noted changes in mitochondrial morphology. 

Mitochondria were visibly smaller in areas near clustered tubular ER in 2-month-old Tg-

RTN3 brains when compared to controls (Figure 3b). Strikingly, mitochondria were either 

absent or barely visible when tubular ER was extensively enriched within the inclusion body 

in 11-month-old Tg-RTN3 brains (Figure 3d) and in human biopsy samples (Figure 3e). 

However, the morphology of mitochondria in other neuronal compartments, where tubular 

ER was not clustered, appeared comparable in size and electron density to WT controls. To 

validate this morphological difference, we quantified mitochondria and measured their sizes 

on captured EM micrograms. The average number of mitochondria was clearly increased in 

the Tg-RTN3 CA1 region (Figure 4a, 14.7142±1.8898 vs. 22.5714±3.9096 per microgram, 

n=28, P<0.01), while the size and area of mitochondria were significantly reduced (Figure 

4b; 0.1699±0.0329 vs. 0.0980±0.0256 in areas, P<0.01), implicating an increase in 

mitochondrial fission. We noted that these obvious differences in mitochondrial numbers and 

sizes between WT and Tg-RTN3 CA1 regions were due to a significance increase in 

mitochondrial fission in tubular ER enriched area (TER, 6.5714±1.9023 vs. 15.8571±5.9561 

for numbers and 0.1382±0.0349 vs. 0.0767±0.0107 for area, respectively; n=28, P<0.01), 

but not in somata, where rough and smooth flatted ER is enriched (8.1428±1.9518 vs. 
6.7142±4.3861 with P=0.18 for numbers and 0.2027±0.0734 vs. 0.1476±0.0449 with P= 

0.09 for area, respectively).

To decipher the underlying molecular mechanism, we examined levels of proteins that are 

important for mitochondrial fusion and fission, such as MFN1, MFN2, DLP1, and FIS1. 

MFN2 levels were the most noticeably decreased in Tg-RTN3 hippocampi, where RIDNs 

are normally formed, but were less obvious in the cortex (Figure 4c-d). Changes in other 

examined proteins were less evident. Since tubular ER is suggested to contact mitochondria 

and to control mitochondrial dynamics in cells (26), altered tubular organization appears to 

disrupt such a balance.

Prevention of tubular ER clustering

Because levels of RTN3 appear to positively correlate with the formation of RIDNs and 

aging facilitates RTN3 expression (19, 27), we further asked whether RTN3 deletion would 

impact RIDN formation. Since we identified that REEP2 and REEP5 co-exist with RTN3 in 

RIDNs of Tg-RTN3 mice (Figure 2), it became possible to address such a question. By 

examining different ages of brain samples (3-24 months old), we showed that both REEP2 
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and REEP5, similar to RTN3 (19), existed in RIDNs in aged brains starting at 12 months of 

age and were more abundant at 24 months (Supplemental Figure 4a). However, contrary to 

the age-dependent expression of RTN3, protein levels of REEP2 and REEP5 were not 

altered during the aging process (Supplemental Figure 4b). When RTN3 expression was 

knocked out in mice (22), dispersed RIDNs were no longer detectable by REEP2 or REEP5 

antibody in aging RTN3-null mice (Figure 5a), indicating that RTN3 deficiency is sufficient 

to prevent the formation of RIDNs. We also noted that REEP2 protein expression was not 

altered when RTN3 was ablated in mouse brains, but REEP5 protein levels appeared to be 

elevated (Figure 5b), likely in order to preserve certain tubular ER functions upon RTN3 

deficiency. Together, out data suggest that the level of RTN3 is more critical for the 

formation of RIDNs during aging.

In an AD mouse model (i.e. Tg-APPsw/PS1ΔE9), we noted that DNs visualized by EM in 

fixed brain samples showed extensive accumulation of electron-dense materials, perhaps 

related to induced multi-laminar, multi-vesicular, or autophagic vesicles by overexpressed 

mutant APP (28, 29). Notably, the inclusion body that was filled with tubular ER was also 

present and was commonly found near amyloid plaques in Tg-APPsw/PS1ΔE9 hippocampi 

(abbreviated as PA in Figure 5c and enlarged in 5d). This type of inclusion body was no 

longer present when RTN3 was knocked out in Tg-APPsw/PS1ΔE9 hippocampi (R3KOPA 

samples; Figure 5e and enlarged in 5f). While the overexpression of mutant APP can also 

disrupt certain neuronal functions such as autophagic functions by facilitating the formation 

and accumulation of high density, multi-body, vacuole-like structures near amyloid plaques 

in transgenic mice, our data indicate that RTN3 is critical for the formation of DNs enriched 

in abnormally clustered tubular ER.

DISCUSSION

ER, the largest cellular organelle with a network-like membranous structure, consists of 

rough ER, which is associated with ribosomes and controls protein translation, and smooth 

ER, which includes the nuclear envelope, cytoplasmic cisternae, and tubules (30, 31). 

Smooth ER is more commonly distributed along the axon to mediate proper organization of 

the microtubule cytoskeleton and mitochondria (32, 33). Tubular ER is a part of smooth ER 

and emerging evidence suggests that it is likely to mediate vesicle transport and/or organelle 

contacts, to control cellular communications, and to regulate mitochondrial fusion and 

fission (34). RTN and REEP proteins are two identified classes of proteins that are required 

for the formation of tubular ER (35).

In established mammalian cell lines, both RTN and REEP proteins have been shown to be 

localized in the tubular ER (36-38). Interestingly, tubular ER in primary cultured 

hippocampal or cortical neurons and normal neurites has not yet been reported. Localization 

of RTN3-GFP along axons has been observed (36), but localization of RTN3-GFP in the 

tubular ER in neurites was not clear. By transfecting RTN3-GFP in cultured hippocampal 

neurons, we showed that RTN3-GFP was in a tubular structure within a bouton by highly 

magnified imaging (supplemental Figure 5). Hence, tubular ER is normally distributed along 

axons.
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In this study, our biochemical, morphological, and mouse genetic results revealed an 

abnormal tubular ER distribution in hippocampal neurons, and such an abnormal distribution 

has never been reported. We show that a significant increase in neuronal RTN3 expression is 

sufficient to alter tubular ER organization by clustering tubular ER together, mainly in 

axons. RTN3 protein levels are elevated in aging mouse brain(19) and were not readily 

detectable in human brain samples under the age of 60, but were easily detectable in samples 

from people over the age of 65 under the same staining conditions (27). We noted that the 

levels of REEP2/5 were not significantly altered during aging (Supplemental Figure 4). 

Significantly elevated RTN3 during aging is likely sufficient to induce tubular ER clustering, 

demonstrating the physiological relevance.

How elevated RTN3 induces tubular ER clustering remains to be fully investigated. 

However, it is established that RTN3 can naturally form dimers, multimers, and oligomers as 

previously demonstrated (18-20). Likely, elevated expression of RTN3 in hippocampal 

neurons increases contacts between RTN3 or RTN3 and REEP2/5 on the ER tubules and 

alters tubular curvatures and eventually induces such abnormal clustering of tubular ER in 

axons. When tubular ER is no longer evenly distributed along axons, but instead is enriched 

as an inclusion body (aka, RIDNs), normal tubular ER distribution is disrupted. Future 

cellular model should be established for this validation.

Abnormal tubular ER distribution in axons causes pathological consequences. We show here 

that mitochondria, which are normally in contact with tubular ER, are eventually excluded 

from the tubular ER inclusion body (see Figure 3e, f). The loss of mitochondria in the 

inclusion body is not only seen in older Tg-RTN3 mouse brains, but also in AD biopsy 

samples (Figure 3d, e). The loss of normal mitochondria in DN-like inclusion bodies appears 

to be a sequential process, as increased mitochondrial fission occurred prior to or at the time 

of the formation of RIDNs (illustrated in Figure 6). Hence, abnormal clustering of tubular 

ER is deemed to cause tubular ER to become dysfunctional and this arises from impaired 

contacts between tubular ER and cellular organelles.

DNs are a distinguishing feature between diffuse and neuritic plaques in AD brains (15, 

39-41). In AD mouse models overexpressing mutant APP, DNs are not detectable prior to 

the appearance of amyloid plaques (data not shown), indicating that deposition of Aβ can 

induce the formation of DNs in surrounding amyloid plaques. In APP AD mouse models, 

antibodies specific to N- or C-termini of APP can detect abundant DNs in surrounding 

amyloid plaques, relating to the trap of APP in DNs. Interestingly, APP-positive DNs in 

human AD brains were significantly less abundant than RIDNs (data not shown), indicating 

the difference between mouse models and AD brains. Although the molecular mechanism 

underlying the formation of DNs in AD brains is not yet fully understood, we have observed 

that at least two types of DNs are present in AD and APP mouse brains (Figure 5). DNs 

filled with high density multi-vesicles or autophagosomes have been previously reported 

(28, 29, 42), and this type of DN is commonly seen in both AD and APP mouse brains. We 

demonstrate here that RTN3-immunoreactive DNs are enriched mainly in clustered tubular 

ER and that this type of DN is age-dependent. We can easily detect clustered tubular ER by 

electron microscopy in human biopsy samples, indicating that this type of DN is a regular 

occurrence. Consistent with this observation, an early report showed DN-like inclusion 
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bodies contained tubulovesicular profiles of smooth ER in all 6 brain biopsies of AD 

patients (43). Although this early study failed to describe tubular ER, a close comparison 

indicates that these ER profiles appear to be identical to the tubular ER clusters shown in 

Figure 3e and are also devoid of mitochondria or have only remnants of degenerated 

mitochondria. Since the density of RIDNs is correlated with impaired cognitive behaviors 

and the occurrence of RIDNs disrupts synaptic structures such as reducing spine density in 

mouse models (20), the finding of dysfunctional tubular ER within DNs in human brains 

implies a contribution of this pathology to cognitive impairments in AD patients.

In AD brains, another common pathological feature is increased mitochondrial fission (26). 

Our study suggests that abnormal tubular ER organization or clustering can be an upstream 

inducer that leads to increased fission and eventual mitochondrial dysfunction. Although we 

did not detect inclusion filled with clustered tubular ER in non-demented human brain 

biopsy, we cannot exclude the detection of such inclusion in other age-dependent cognition-

impaired brains. Aging-dependent RIDNs are found in aging mouse brains (19). With the 

increasing longevity in human, the presence of such DNs to impair age-dependent cognitive 

function will be increasing. Hence, preventing abnormal distribution of tubular ER could 

benefit cognitive functions in AD and elderly people. It may also impede multiple 

pathogenic processes such as mitochondrial dysfunction and other tubular ER-dependent 

functions.
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Figure 1. Interactions between proteins from the REEP and RTN families
(a) Protein lysates prepared from hippocampi of transgenic mice overexpressing RTN3-myc 

(Tg-RTN3) were used to immunoprecipitate with myc-antibody. L, protein lysates; FT, 

flowthrough; W1 and W2, fractions after being washed once and twice; P, precipitated 

fractions. Red arrowheads refer to the expected size of proteins and black arrowheads 

indicate IgG light chains. (b) HEK-293 cells were co-transfected with Xpress-tagged RTN3 

deletion mutant constructs and flagged-tagged REEP2 and transfected cells were used for 

co-immunoprecipitation. The names of each construct are depicted by the deleted numbers 

of residues from either the N-terminal (N) or C-terminal (C) end. Domains in RTN3 and 

relative positions in the deletion constructs are illustrated in the diagrams. Empty vector 

construct was co-expressed in control conditions. (c) Flag-tagged REEP2 was co-expressed 

with RTN1 to RTN4 in HEK-293 cells and protein lysates (L) were precipitated with flagged 

antibody. The relevant RTN member is specified by red arrowheads.
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Figure 2. Detection of RIDNs in Tg-RTN3 mouse brains by REEP2 and REEP5
(a) Fixed Tg-RTN3 mouse brain samples were stained with antibody specific to REEP2 or 

REEP5 (green) and myc monoclonal antibody (red). Merged panels show almost complete 

co-existence of RTN3-myc with REEP2 or REEP5. Postmortem brains from AD patients (b) 

or brains from an AD mouse model (Tg-APPsw/PS1ΔE9 mouse; c) were used to locate 

RIDNs using a RTN3 antibody (R459) or a REEP5 antibody. The size of RIDNs in Tg-

APPsw/PS1ΔE9 mouse brains was smaller when compared to that in human AD samples. 

The size of each scale bar is specified.
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Figure 3. Ultrastructural examinations of RIDNs
Three-month-old wild-type (a) or Tg-RTN3 (b) mouse hippocampi were examined by 

electron microscopy (EM). The tubular endoplasmic reticulum (ER) in axons, where 

synaptic vesicles are visible, is highlighted in yellow. The soma and initial segment of 

dendrites are highlighted in light blue. (c-d) Samples from 11-month-old Tg-RTN3 
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hippocampi were similarly examined by EM and clustered tubular ER was enriched in the 

axonal terminus (enlarged by approximately 3.5 times in d). (e-f) Biopsy samples from 

Alzheimer’s patients were fixed and examined by EM (enlarged approximately 7 times in f). 
The tubular ER network was clustered in the inclusion body. Scale bar is 1 μm in all panels.
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Figure 4. Increased mitochondrial fission in relation to abnormal clustering of tubular ER
The number (a) and area (b) of mitochondria were analyzed based on the same 

magnification of EM micrograms imaged from 3-month-old wild-type and Tg-RTN3 

hippocampal CA1 region. TER refers to tubular ER enriched area, mostly in neuritic 

regions. (c) Western blot analysis of brain lysates from 6-month-old wild-type and Tg-RTN3 

mice was conducted using the specified antibodies. (d) Bar graph represents the 

normalization of the indicated protein over calnexin. Statistical significance was seen in 

cortical MFN-1 and hippocampal MFN-2 (n=6 in total, * P<0.05, student t-test).
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Figure 5. RTN3 deficiency abolished dystrophic neurites originating from dysfunctional tubular 
ER
(a) Fixed brain samples (24 months old) from wild-type (WT) or RTN3-null mice were 

stained with antibodies against RTN3, REEP2, or REEP5. (b) Protein lysates from the 

indicated age were tested with antibodies to REEP1, REEP2, REEP5, and RTN3. Calnexin 

antibody served as a loading control. REEP5 levels were increased in the RTN3-null 
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condition. (c-f) Brain samples (six months old) from PA (c and enlarged view in d) or 

R3KOPA hippocampi (e and the boxed area is enlarged by 2 times in f) were examined by 

electron microscopy. Scale bar is 1 μm in panel c and ~0.4 μm in panel e.
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Figure 6. Schematic illustration of RIDNs containing clustered tubular ER
Tubular ER is part of smooth ER, normally distributed along the axon; tubular ER in 

dendrites and soma are not illustrated. Increased RTN3 expression appears to induce 

abnormal distribution of tubular ER, especially at the axon terminus, where synaptic vesicles 

are visible. Increased tubular ER clustering appears sequential and is correlated with visible 

increases in smaller-sized mitochondria in the affected region. In aged Tg-RTN3 CA1 

region, RIDNs are abundantly developed and tubular ER is often found within an inclusion 

body, where mitochondria are either absent or degenerated.
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