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Abstract

Cardiogenesis is influenced by both environmental and genetic factors, with blood flow playing a critical role

in cardiac remodelling. Perturbation of any of these factors could lead to abnormal heart development and

hence the formation of congenital heart defects. Although abnormal blood flow has been associated with a

number of heart defects, the effects of abnormal pressure load on the developing heart gene expression

profile have to date not clearly been defined. To determine the heart transcriptional response to

haemodynamic alteration during development, outflow tract (OFT) banding was employed in the chick embryo

at Hamburger and Hamilton stage (HH) 21. Stereological and expression studies, including the use of global

expression analysis by RNA sequencing with an optimised procedure for effective globin depletion, were

subsequently performed on HH29 OFT-banded hearts and compared with sham control hearts, with further

targeted expression investigations at HH35. The OFT-banded hearts were found to have an abnormal

morphology with a rounded appearance and left-sided dilation in comparison with controls. Internal analysis

showed they typically had a ventricular septal defect and reductions in the myocardial wall and trabeculae,

with an increase in the lumen on the left side of the heart. There was also a significant reduction in apoptosis.

The differentially expressed genes were found to be predominately involved in contraction, metabolism,

apoptosis and neural development, suggesting a cardioprotective mechanism had been induced. Therefore,

altered haemodynamics during development leads to left-sided dilation and differential expression of genes

that may be associated with stress and maintaining cardiac output.
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Introduction

According to the British Heart Foundation, congenital heart

defects are found in at least one in every 180 births in the

UK (www.bhf.org.uk), with cardiomyopathies accounting

for 8–11% of those diagnosed with a defect (Pedra et al.

2002). Both environmental and genetic factors affect

embryonic heart formation, with blood flow playing a criti-

cal role in cardiac remodelling (Midgett & Rugonyi, 2014;

Midgett et al. 2017; Courchaine et al. 2019). Animal models

of haemodynamic alteration have been found to have phe-

notypes similar to those seen in human heart disorders,

with features of cardiomyopathy (Sedmera et al. 1999; Mid-

gett & Rugonyi, 2014; Midgett et al. 2017). The outflow

tract banding (OFT-banding) haemodynamic alteration

model has been found to give a wide spectrum of cardiac

malformations, such as pharyngeal arch anomalies, ventric-

ular septal defects (VSDs), valve defects and double outlet

right ventricle accompanied by increased stress–strain rela-

tions and myocardial stiffness (Sedmera et al. 1999; Toma-

nek et al. 1999; Miller et al. 2003; Buffinton et al. 2013;

Midgett et al. 2017; Pang et al. 2017). Further, OFT-banding

in the chick leads to heart dilation (Clark et al. 1989; Tobita

et al. 2002; Buffinton et al. 2013) and a reduction in com-

pact myocardium (Tomanek et al. 1999). Myofiber align-

ment was also affected (Tobita et al. 2005). With regard to

haemodynamic consequences of banding, chick embryos

with banded hearts show an immediate and sustained

increase of both peak systolic and end-diastolic ventricular
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pressure (Clark et al. 1989; Tobita et al. 2002), with an

increase in blood flow velocity and wall shear stress (Chivu-

kula et al. 2016). Despite a marked increase of ventricular

pressure seen in OFT-banded embryos (Shi et al. 2013),

heart rate and cardiac output/ejection fraction were not

affected (Clark et al. 1989), suggesting preservation of ven-

tricular function. Therefore, OFT-banding is a model for a

heart with a complex congenital heart defect phenotype

that is prone to abnormal haemodynamics and pressure

overload, and hence heart enlargement (Sanchez-Gomez

et al. 2017). Expression analysis in such hearts could

pinpoint molecular pathways that may have protective or

conversely debilitating long-term effects. Hence, the eluci-

dation of expression mechanisms could help direct potential

therapeutic studies or even aid the diagnosis of a heart

under stress. However, such gene pathways are currently

poorly defined.

In the study described here, the OFT-banded procedure

was carried out at Hamburger–Hamilton stage (HH) 21, as

the heart undergoes looping and chamber specification

(Sedmera et al. 1999; Shi et al. 2013). Analysis was per-

formed at key stages of development: at HH29 [Carnegie

stage (CS) 19 for humans and embryonic day (E) 13.5 for

mice], as chamber septation has just completed (Martinsen,

2005), and at HH35 (CS22 for humans and E15 for mice),

when a fully septated heart with a mature apex to base

conduction pattern is seen (Krishnan et al. 2014). Global

gene expression analysis by RNA sequencing, together with

stereological analysis, was performed on OFT-banded chick

hearts and controls at HH29. The RNA sequencing was per-

formed with an optimised procedure described herein for

globin depletion in the chick. Furthermore, targeted

expression analysis on genes identified by sequencing was

performed by qPCR at HH35. Findings from these studies

were then used to guide further functional studies regard-

ing apoptosis and glycogen deposition. Expression analysis

highlighted genes involved in energy regulation such as

PRKAG3 (a regulatory subunit of the key metabolic regula-

tory enzyme AMPK) and LDHFB (involved in glucose meta-

bolism) to be differentially regulated. Furthermore, genes

such as S100A11 and PVALB (associated with improved con-

tractility by increasing Ca2+ sequestering during repolarisa-

tion) were upregulated. Less active AMPK and increased

S100A11 expression can potentially lead to reduced apop-

tosis (Kanamori et al. 2004; Hwang et al. 2010; Law et al.

2017); a decrease in apoptosis was seen in the OFT-banded

hearts. Altered AMPK regulation has the potential to

increase glycogen storage; however, no increase in glyco-

gen storage by the periodic acid-Schiff with diastase (PAS-

D) assay was seen in OFT-banded hearts, suggesting a sec-

ondary mechanism. This study has identified left-sided dila-

tion in the OFT-banded heart and showed gene expression

that could provide a cardioprotective response to stress by

attempting to maintain energy metabolism needs and con-

tractility, together with a decrease in apoptosis.

Methods

Outflow tract banding, embryo isolation and

histological analysis

White fertile chicken eggs (Gallus gallus; Dekalb white strain; Henry

Stewart, UK) were incubated at 38 °C in a humidified atmosphere

under constant rotation for 4 days until HH21 (Hamburger & Hamil-

ton, 1992). After windowing, the inner shell membrane was

removed to expose the heart. OFT-banding was performed using

10-0 nylon suture to create a snug double knot around the OFT,

which was removed upon harvesting. The suture was passed

through and removed immediately on sham controls. Untreated

(UT) control embryos were opened and staged but no further pro-

cedures performed (Sedmera et al. 1999; Pang et al. 2017). All eggs

were sealed and incubated for an additional 3–5 days until HH29-

35. Animal work was performed in accordance with national (UK

Home Office) and institutional regulations and ethical guidelines.

OFT-banded and control (sham and UT) embryos were isolated and

externally analysed. Hearts were then fixed in 4% paraformalde-

hyde, processed and wax-embedded in a transverse orientation.

Serial 8-lm sections were taken (DSC1 microtome, Leica, Germany),

dewaxed and rehydrated. For histological studies, sections were

stained with Alcian blue (Sigma, UK) for 15 min at room tempera-

ture (RT) followed by Mayer’s haemalum (Raymond Lamb, UK).

Images were acquired with a slide scanner (Nanozoomer 2.0-HT,

Hamamatsu, Japan).

Stereology and morphometric measurement

Systematic random sampling (Mayhew, 1991) was used to assess tis-

sue proportions throughout HH29 hearts (n = 6 sham, n = 7 OFT-

banded). A 96-point grid was placed over every fifth section

throughout the heart, and the tissue region and type on each point

was identified (4479 points for sham, 7868 points for banded). Tis-

sue regions consisted of right (RA) and left atrium (LA), right (RV)

and left ventricle (LV). In addition, the tissue types counted included

myocardial wall, extracellular matrix and lumen in the regions of

RV and LV, and myocardial wall and lumen for RA and LA. Average

tissue proportions of each group were calculated and tested for sta-

tistical significance.

Apoptosis

ApopTag Peroxidase In Situ Apoptosis Detection Kit S7100 (Milli-

pore, USA) was used to indicate apoptotic cells in accordance with

manufacturer’s instructions on 5-lM serial sections. Imaging was

performed using Zeiss Axio Scan Z1. Systematic random sampling

(Mayhew, 1991) was utilised to count positive cells against total cell

count on the left and right ventricular region of the heart, includ-

ing the ventricular compact myocardium and trabeculae, and the

base and the myocardial crest of the IVS to calculate proportions of

apoptotic cells for statistical analysis. A total of 303 299 cells were

counted.

Periodic acid-Schiff stain with diastase (PAS-D)

Sections from HH35 hearts were prepared as described for histologi-

cal studies and then subjected to diastase (Sigma), periodic acid-

Schiff (Merck) and Haemalum (Haematoxylin; Sigma) as per
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manufacturers’ instructions. Quantitative analysis was performed in

IMAGEJ using colour deconvoluted images (Ruifork & Johnston 2001).

Images were taken using an AxioPlan (Zeiss). Statistics were per-

formed using a two-way analysis of variance (ANOVA).

RNA isolation and cDNA synthesis for RNA

sequencing and qPCR

RNA isolation on all hearts within direct comparison experiments

were performed simultaneously by the same handler. Total RNA

was extracted using TRIzol reagent (Sigma) and treated with RNase-

free DNase I (Qiagen). RNA purity was checked by NanoDrop 2000c

UV/IV spectrophotometer (Thermo Fisher Scientific) at 260 nm

absorbance for RNA. A260/280 ratios were 1.90–2.20 and A260/230

ratios were 2.0–2.20. R.I.N values of 9 were consistently seen follow-

ing RNA purification. The values of 6.9–7.4 used for sequencing was

due to sample degradation following multiple freeze thaws and

globin depletion treatment. A single-stranded template was used

for standard qPCR. cDNA synthesis for RNA sequencing was double-

stranded, purified and checked for concentration via Qubit assay

(Thermo Fisher Scientific). Reverse transcription reactions were per-

formed using SuperScript� II Reverse Transcriptase (Invitrogen, UK)

following the manufacturer’s instructions. All cDNA synthesis was

carried out with 1 µg purified RNA in a 20-µL reaction. cDNA from

hearts within the same experiment were always synthesised in the

same run, with no reverse transcriptase controls for assessment of

gDNA. Hexamer primers were used at 1.25 µM. Following the reac-

tion, samples were instantly placed on ice and then stored at

�20 °C.

Quantitative PCR

Quantitative PCR (qPCR) was run using the Applied Biosystems

7500 Fast Real-time PCR system using SYBR Select master mix (Bio-

Rad). Gene-specific primers were designed to give fragments of

90–210 bp and 62 °C Tm (� 1 °C) (Supporting Information

Table S2). Primers were designed to exon/exon boundaries or to

include introns > 1000 bp, except for ENS-1/ERNI, which contained

no introns. For these genes, no template controls showed minimal

gDNA expression (≥ 10 Cq later than cDNA samples with Cq values

> 38). Primers were optimised with cDNA diluted four times, lead-

ing to a dilution series using six points at a ratio of 1 : 5 or 1 : 3,

depending on the level of gene expression. Final template dilu-

tions for relative expression analysis were elucidated from a mid-

way point on the linear portion of the range for each gene. All

primer standard curve R2 values were > 0.98 with efficiencies of

96–108%, with reference genes GAPDH, EEF1A1 and TBP having

efficiencies of 101–105%. A single heat-denaturing step at 95 °C

for 25 s, followed by 40 cycles of denaturation (95 °C for 20 s),

annealing and extension (62 °C for 1 min) was used. Each 20-µL

qPCR reaction mixture consisted of 10 µL of iTaqTM universal

SYBR� Green Supermix (19), 0.5–0.75 µL (250–375 nM, respec-

tively) primer combinations and optimised template concentra-

tions. All samples were run in triplicate. Following the qPCR

reaction, a melt curve was performed. Reference genes were

shown to be unaffected by the OFT-banded experimental condi-

tions. Two reference genes were used for analysis: GAPDH and

EFF1A1 at HH29 and GAPDH and TBP at HH35. The threshold

cycle number for product detection (DT value) was used to calcu-

late the relative gene expression against reference genes using

the Pfafll adjusted efficiency 2�ΔΔCt method (Pfaffl, 2001).

Statistics were carried out on normalized change in Cq values

between OFT-banded and sham.

Globin depletion oligonucleotide design

Throughout all globin depletion/library preparation procedures, all

OFT-banded and sham preparations were performed simultane-

ously by the same handler. Globin depletion (GD) was performed

via enzymatic methods on hybridised RNA/DNA complexes. Before

the procedure could be carried out, specific oligonucleotides had to

be designed for each globin gene. qPCR confirmed high relative

expression of HBAA, HBAD, HBB, HBG1, HBG2 and HBZ genes and

oligonucleotides were designed using PRIMER 3 (v. 4.1.0) and BLAST

against these globin genes for depletion (Supporting Information

Table S1). Oligonucleotides were designed to the 30 end and had a

Tm 60–70 °C.

Globin depletion procedure

The chick-specific designed oligonucleotides were used for GD

using a modified Affymetrix protocol (Wu, 2007). A final concentra-

tion of 0.75 µM for each oligonucleotide was used for hybridisation

to globin transcripts with 3 µg of total RNA. The hybridisation pro-

cedure time and temperature were optimised and a hybridisation

protocol of 95 °C for 2 min, cooled down at 5 °C intervals in 50-s

steps to 50 °C, with longer 1.5-min steps at 65 °C and 60 °C (the

closest temperatures to oligonucleotide Tm) was devised that

allowed all oligos to anneal to their targets. Reaction buffer con-

sisted of 500 mM Tris-HCL, 1 M NaCl 59 stock with 19 used in the

final hybridisation solution made up to 15 µL with DNase-free

water as necessary. Following the 50 °C step, samples were placed

immediately on ice to help reduce secondary structure formation.

Hybridised RNA/DNA was degraded by 4 U RNase H (0.2 U µL�1 in

the total 20-µL hybridisation solution) at 37 °C in RNase H buffer

(NEB) containing SUPERase-In. A 2-U aliquot of DNase (0.07 U µL�1

in 30 µL) was then added to the mix after 10 min, and following a

further 10 min, samples were placed on ice and the reaction was

instantly stopped with ethylenediaminetetraacetic acid (EDTA) to a

final concentration of 30 mM. The additional DNase step helps to

degrade the DNA hybridised oligonucleotides and any genomic

DNA contamination. Samples were then purified using Purelink

RNA columns to allow GD total RNA to be quantified by Qubit Fluo-

rometric assay. Statistical analysis of pre- and post-GD treatment

was performed by paired Student’s t-test.

Library preparation and RNA sequencing

RNA concentration was quantified using the Qubit RNA HS Assay

Kit (Thermo Fisher Scientific). RNA integrity was assessed using Agi-

lent 2100 Bioanalyzer (Agilent, USA) with an RNA integrity number

(RIN) of 6.9–7.3 used across OFT-banded and sham hearts for

sequencing. Following GD, 1 µg RNA from each heart (OFT-banded

n = 3, sham n = 3) was used for RNA sequencing library preparation

according to manufacturer’s instructions of the NEBNext Ultra

Directional RNA Library Prep Kit for Illumina (New England Biolabs

Inc.; NEB UK #E7420S/L). Twelve cycles were used for PCR enrich-

ment. The barcoded strand-specific libraries created were

sequenced on the Illumina NextSeq 500 platform. Eight-tenths of a

full high output sequencing run was performed according to the

manufacturer’s instructions. Forty million total reads came from

two flow cell reads with each read having 75 bp paired-end reads.
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RNA sequencing bioinformatic analysis

Following sequencing, compressed FASTQ files were trimmed to fil-

ter reads for adapter and low-quality bases. SYTHE was used to

remove adaptor sequences (https://github.com/vsbuffalo/scythe),

with reads of low sequencing scores then trimmed using SICKLE.

Reads were then aligned to the galGal4 reference genome (ICGSC

Gallus_gallus-4.0/galGal4) in the UCSC database Nov.2011 (http://ge

nome.ucsc.edu) in the context of known gene exon coordinates by

TopHat (https://ccb.jhu.edu/software/tophat/index.shtml). Align-

ment counts were recorded in BAM format with only uniquely

mapped read alignment hits (47–90 9 106) having a quality score

of MAPQ ≥ 20 used. Htseq count was used for generation of count

tables. Read counts were then normalised using FPKM and TPM

with resultant figures from both used for PCA using R software. As

both normalisation techniques revealed nearly identical PCA plots,

FPKM values were used for differential gene regulation analysis by

DESeq with corrected P-values of < 0.05 set as the DESeq threshold

(Anders & Huber, 2010). Genes with average FPKM values < 1 were

filtered from the FPKM data before gene regulation was assessed

using DESeq adjusted P-values (FDRs).

Statistical analysis

All data are expressed as � SEM, but a confidence interval of 95%

was also checked. Statistical significance of the differences between

OFT-banded and sham hearts was analysed by independent t-test

assuming equal or unequal variances; *P < 0.05, **P < 0.01,

***P < 0.001, ****P < 0.0001. Assumption of normality was tested

using a Shapiro–Wilk normality test. For assumption of variance,

Levene’s test for homogeneity of variance was used. Tests were

carried out using R, SPSS and Microsoft EXCEL statistical analysis

software.

Results

Alteration of haemodynamics results in enlarged

hearts with ventricular septal defect

Upon harvesting at HH29 and HH35, 33/60 OFT-banded

hearts appeared to display dilation and a more rounded

ventricular apex at HH29 (Fig. 1Ac) and 8/9 at HH35

(Fig. 1Af) compared with controls (Fig. 1Aa,b,d,e). These

features are in line with previously reported characteristics

of pressure overloaded embryonic hearts (Sedmera et al.

1999; Tobita et al. 2002; Hall et al. 2004). Consistent with

the literature (Pang et al. 2017), phenotypic analysis

revealed a VSD at HH29 (n = 26/31) (Fig. 1Bb,b’; denoted by

an asterisk in Fig. 1Bb’) and HH35 (n = 7/7) (Fig. 1Bd,d’;

denoted by an asterisk in Fig. 1Bd’) compared with controls

(Fig. 1Ba,a’,c,c’; denoted by an arrow in Fig. 1Ba’ and c’).

Stereology reveals enlarged OFT-banded hearts with

changes in the chamber components representing

left-sided dilation

To define the morphological phenotype of the OFT-

banded model, stereological analysis was performed at

HH29, confirming a phenotype of left-sided dilation

(Fig. 2). Whole OFT-banded hearts were found to be 1.77

times larger than sham controls. A significant reduction of

the trabeculae was identified within both ventricular

chambers of the OFT-banded hearts. In the right ventricle

(RV) a 27.3% decrease was seen (10.66 � 0.36% sham,

7.75 � 0.55% OFT-banded; P < 0.001). Decreases were

more prominent in the left ventricle (LV) with a 35.9%

reduction seen (13.30 � 1.65% sham, 8.53 � 0.37% OFT-

banded; P < 0.001). Consistent with this, a simultaneous

increase of LV lumen was found in OFT-banded hearts

(9.94 � 1.06% and 14.27 � 1.40% in sham and OFT-

banded hearts respectively, an increase of 43.6%;

P < 0.05; Fig. 2). This coincided with a thinner myocardium

in the LV by 40.7% upon banding (9.41 � 1.05% sham,

5.58 � 0.43% OFT-banded; P < 0.01); however, no differ-

ence was seen in the RV (P > 0.05; Fig. 2). With regard to

the atrial myocardium, a reduction of 37.07% was identi-

fied in the myocardium of the left atrium (LA) in OFT-

banded hearts (4.99 � 0.67% sham, 3.14 � 0.24% OFT-

banded; P < 0.01). However, decreases in the right atrium

(RA) were found to be insignificant (5.16 � 0.94% sham,

3.24 � 0.34% OFT-banded; P > 0.05; Fig. 2). A significant

increase of the LA lumen by 47.4% was found in OFT-

banded hearts (4.9 � 0.45% sham, 7.22 � 0.62% OFT-

banded P < 0.01; Fig. 2). In contrast, no significant differ-

ences were seen in the lumen of the RA (6.04 � 0.76%

sham, 5.68 � 0.74% OFT-banded; P < 0.05).

Globin depletion in the chick embryo

Following the identification of morphological phenotypes

at HH29, the effect of OFT-banding on gene expression was

assessed by global RNA sequencing of whole HH29 hearts.

To enhance discovery of possible transcripts influenced by

OFT-banding, particularly those of low reads, a library

preparation procedure was adapted (Choi et al. 2014).

RNase H was used to remove the polyA tail of globin tran-

scripts prior to polyA selection. Expression of globin genes

HBAA, HBAD, HBB, HBG1, HBG2 and HBZ in the chick

embryo was confirmed by qPCR. Then, to enable their

removal, specific oligonucleotides were designed for each

globin gene at their 30 end (oligonucleotide sequences in

Table S1). The RIN was 7.1–7.9 before globin depletion (GD)

treatment for all samples, and 6.9–7.3 following GD.

Globin transcripts in GD-treated hearts showed a signifi-

cant reduction of �11.10 to �17.49 log2 fold change (FC) by

qPCR. This represents values of 0.045–0.0005% that of the

original amount in the same hearts before treatment

(t = 16.003, df = 5, P < 0.0001; Fig. 3A). Variation in gene

expression comes from the variation between the biological

replicates, as qPCR readouts show GD-treated quantitation

cycles (Cq) were consistent (see Supporting Information

Table S3). This demonstrates that GD treatment removed

globin genes consistently to a low point but did not remove
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all transcripts. It also shows that using the specific GD

oligonucleotide concentration of 0.75 µM, the initial expres-

sion level of the globin gene was not a limiting factor for

the number of transcripts remaining post-GD treatment.

Sequencing of chick globin-depleted RNA is highly

reproducible

Globin depletion has been shown to lead to reduced RNA

concentrations of 33–95% to that of pre-treatment values

(Choi et al. 2014). To assess whether gene expression results

were affected by the GD procedure, technical verification

was required post-RNA sequencing. This necessitated the

use of qPCR to confirm that gene regulation identified by

RNA sequencing in GD hearts was also seen in the same

hearts without GD. A profile of 17 genes with an expression

range of �1.35 to 0.81 log2 FC (OFT-banded n = 3, sham

n = 3) was used. No significant differences in expression

were seen between GD sequenced hearts and the same

hearts prior to treatment by qPCR, thus confirming sequenc-

ing expression (t = 0.145, df = 32, P = 0.78; Fig. 3B). Harvest-

ing, RNA extraction, and library preparation were

performed simultaneously across all OFT-banded and sham

samples to mitigate any batch effects. Housekeeping and

qPCR reference genes GAPDH, EEF1A1 and TBP showed con-

sistent expression across all sham and OFT-banded hearts by

RNA sequencing at HH29. This demonstrated that library

preparation was consistent across samples and confirmed

the Genorm, BestKeeper and normFinder data, demonstrat-

ing stable expression in HH29 biological repeats and HH35

OFT-banded hearts by qPCR (Fig. S3, Table S3; Supporting

Information Fig. S4 also shows efficiency calibration and

electrophoresis traces). The consistency of gene expression

following GD was further confirmed in studies where

A
a

a a′′ b b′

c c′ d d′

b c

d e f

B

Fig. 1 Phenotype of OFT-banded hearts. (A) At HH29 (n = 97) (a,b) and HH35 (n = 35) (d,e), all controls displayed a normal external phenotype:

the medial position of the outflow tract (denoted by arrowhead), a pointed apex (denoted by arrow) presented in both untreated (a,d) and sham

(b,e). The OFT-banded hearts (c,f) exhibited a right-shifted position of the outflow tract (arrowhead) with a rounded ventricular apex (white arrow)

and a less pronounced indentation (n = 33/60 at HH29, n = 8/9 at HH35). In addition, a thickened epicardium was seen in a subset of OFT-

banded hearts at both stages (double white arrow in c and f). The suture can be seen still attached around the OFT upon harvesting (c,f; black

arrows). Scale bars: 1000 lm. (B) In controls at HH29 (n = 37) (a,a’) and HH35 (n = 8) (c,c’), the interventricular septum which grows in a superior

direction has fused with the cushion in the control embryos (denoted by arrow). However, this fusion failed to occur in the OFT-banded hearts

which led to a formation of an opening (asterisk) and thus a communication between the ventricles (a ventricular septal defect) at both HH29

(n = 36/31; b,b’) and HH35 (n = 7/7; d,d’). Scale bars: 1000 lm (a,b,d), 500 lm (a’,b’-d’). LA, left atrium; LV, left ventricle; RA, right atrium; RV,

right ventricle.
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independent untreated hearts pre- and post-GD treatment

(HH29 hearts, n = 3 per group) were used. Gene FC values

remained unchanged when normalised to GAPDH and

EEF1A1 by qPCR (Supporting Information Figs S1 and S2).

The high consistency across gene regulation shows that

the GD library preparation procedure in the chick does not

lead to altered gene regulation, and also that the technical

repeatability of the RNA sequencing result. The RNA

sequencing and qPCR results are highly correlated (r = 0.97,

df = 16, P = < 0.01; Fig. 3C) with a high level of sensitivity

between small differences in fold change.

OFT-banded heart model shows biological

repeatability of gene regulation

Biological repeatability of the OFT-banding model was also

determined at HH29. Gene regulation in RNA used for

sequencing (n = 3 OFT-banded, n = 3 sham) was compared

with RNA of newly harvested hearts using qPCR (n = 3 OFT-

banded, n = 3 sham). Results showed similar gene regula-

tion log2 FC results that were significantly correlated

(r = 0.91, df = 5, P = < 0.01; Fig. 3D). Expression of selected

genes ranged from �1.35 to 0.81 log2 FC. These data

demonstrate the consistency of gene expression within the

OFT-banded hearts.

Differential gene expression in OFT-banded hearts

Gene regulation in OFT-banded hearts was assessed by RNA

sequencing using HH29 OFT-banded (n = 3) and sham

(n = 3) hearts. In all, 40 million paired-end reads were

performed on these samples to create a global expression

profile. Reads were matched to the galGal4 reference gen-

ome, identifying 6920 genes. Principal component analysis

(PCA) revealed within-group hearts were clustered

together, showing consistency of expression, but that

between groups the OFT-banded and sham hearts were dis-

tinct (Fig. 4A). PCA was performed with read values nor-

malised to total fragments (FPKM), and for comparison

with total transcripts (TPM) with genes with expression

levels < 1 FPKM/TPM discounted. However, no proportional

differences were found in the PCA between the two nor-

malisation methods. K-means clustering was also performed

on FPKM values on a subset of 45 genes linked to cardiac

development and stress. This revealed that, without bias, all

OFT-banded hearts mapped a distinct centre from that of

all sham hearts (Supporting Information Fig. S6).

Differential gene expression was analysed using DESeq

with 28 genes being identified as differentially expressed in

OFT-banded hearts (using a P-value cut-off of 0.05; Table 1).

To ensure differentially regulated genes of biological inter-

est were not missed, significant genes had no minimum

fold change cut-off; however, qPCR was used to confirm

differential regulation in all genes analysed further. Genes

of interest highlighted as significant had corrected fold

changes of 1.38–1.87 by RNA-seq and fold changes of 1.46–

2.56 by qPCR, confirming their differential regulation

(Fig. 3B,C, Supporting Information Table S5), with all genes

showing expression levels > 3.5 FPKM before any differen-

tial regulation.

DESeq uses corrected false discovery rates (FDR) P-values.

Genes identified by this method have been shown to be

Fig. 2 Stereological analysis of tissue types contributing to different heart regions upon OFT-banding. Reduction of trabeculae was found in both

right and left ventricle of the OFT-banded hearts, with an increase in left ventricular lumen. In addition, the myocardium was thinner in the left

ventricle but normal in the right ventricle. Also, banding led to an increase of the lumen and a decrease of myocardium in the left atrium. ECM,

extracellular matrix; Myo, myocardium. Sham, n = 6; banded, n = 7. Significant differences are indicated: *P < 0.05; **P < 0.01; ***P < 0.001.

Error bars indicate SEM.
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highly verified (Anders & Huber, 2010). However, DESeq is a

conservative estimator (Soneson & Delorenzi, 2013), particu-

larly with small experiment sizes. To test whether sequenc-

ing results could be used to drive further research in genes

of near significance, two genes, PRKAG3 and HDAC7, with

P-values of 0.06 and 0.07, respectively, were further anal-

ysed by qPCR. PRKAG3 returned a significant P ≤ 0.05 by

qPCR; however, HDAC7 remained insignificant. The qPCR

results show that the sequencing data (full gene regulation

results provided in Supporting Information Table S8, and

the sequencing data are accessible through GEO Series

accession number GSE120498) can be used to target genes

for further investigation and that genes just outside of sig-

nificance could still potentially be targets.

Targeted gene expression study at HH29 and HH35

highlights potential biological mechanisms

To elucidate the effect of OFT-banding beyond HH29,

observation of differential expression in genes of interest at

HH29 led to their further study at HH35 by qPCR. Genes

were selected based on their possible cardiac biological

Fig. 3 Gene expression of globin-depleted and sequenced hearts. (A) Relative expression of each globin-depleted gene HBAA, HBAD, HBB, HBG1,

HBG2 and HBZ in pooled globin-depleted and non-globin-depleted hearts. Globin depleted samples significantly different to non-globin-depleted.

Values are �1 SEM (n = 6; ****P < 0.0001). (B) Gene expression of globin-depleted and sequenced hearts, compared with the same hearts non-

globin-depleted by qPCR. The lack of statistical differences shows that globin depletion/sequencing preparation does not effect gene fold change

(FC) values: t(32) = 0.145, P = 0.78 (n = 17). RNA sequencing non-corrected log2 FC was used for direct comparison with qPCR log2 FC. (C) Rela-

tionship of corrected (DESeq) RNA sequencing to qPCR. Results are highly correlated and show that qPCR generally gives a small increase in log2
FC when compared with RNA sequencing: r(16) = 0.97, P ≤ 0.0001) (n = 17). RNA sequencing DESeq corrected log2 FC compared with qPCR log2
FC. A closer parallel can be seen between non-corrected RNA sequencing and qPCR log2 FC as seen in Supporting Information Fig. S5. (D) Rela-

tionship of gene expression of RNA-sequenced hearts (n = 3 OFT-banded, n = 3 sham) and new biological replicates (n = 3 OFT-banded, n = 3

sham) at HH29 by qPCR. Statistically significant correlation of biologically independent samples is shown: r(5) = 0.91 (P ≤ 0.01).
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significance together with RNA sequencing pathway data

(Table S6). Genes had potential roles in metabolism, con-

traction, apoptosis and neural development. PRKAG3, a

gamma regulatory unit of key metabolic regulator AMPK

showed a downregulation at HH29 in OFT-banded hearts

(�0.68 log2 FC); this differential regulation increased by

104% at HH35 (�1.18 log2 FC; Fig. 4B, Table S5). Sequencing

also revealed that there is no compensatory response from

PRKAG3 isoforms at HH29, with PRKAG2 expressed at very

low levels of 0.1–0.4 FPKM across all samples (Supporting

Information Table S7). LDHB promotes oxygen metabolism

in the heart and at HH29 shows significant upregulation

(0.62 log2 FC); however, differential regulation is eliminated

at HH35 (Fig. 4B). Genes which play roles in calcium seques-

tering and hence are potentially important in contraction,

namely S100A11, PVALB, MYL1 and TNNC2, all showed

mRNA upregulation at HH29 (Fig. 4B). At HH35, intercellular

membrane protein S100A11, cytoplasmic protein PVALB

and structural protein MYL1 showed further increases in

gene regulation of 43%, 60% and 114%, respectively; how-

ever, the structural protein TNNC2 showed a slight reduc-

tion in expression (Fig. 4). Neural developmental genes

ERNI and ENS-1 show a significant downregulation of

�1.08 and �1.35 log2 FC, respectively, at HH29. ERNI differ-

ential expression was maintained at HH35; however, the

downregulation of ENS-1 was reduced to insignificant levels

(Fig. 4B).

Reduced apoptosis in HH29 OFT-banded hearts

Apoptosis has been shown to play a significant role in the

ischaemic heart (Teringova & Tousek, 2017), and our

sequencing and further qPCR analysis revealed genes that

have been shown to affect apoptosis to be differentially

regulated. Two such genes are the downregulated S100A11

and upregulated PDCD4. Suppression of S100A11 (Kana-

mori et al. 2004) and expression of PDCD4 (Cheng et al.

2010; Liu et al. 2012) are associated with apoptosis, and the

respective up- and downregulation of these genes could be

indicative of reduced apoptosis. Therefore, apoptosis was

analysed in OFT-banded and sham control hearts. Cells posi-

tive for apoptosis were found scattered throughout the

hearts in both OFT-banded (n = 5) and sham (n = 5) groups.

Significant decreases were seen in the RA, LA, RV, LV and

interventricular septum (IVS) crest. In the RA, a decrease in

apoptosis of 66.7% was seen (3.04 � 0.35% sham,

1.06 � 0.07% OFT-banded; P < 0.01; Fig. 5Aa’,b’,B), and a

62.3% decrease in the LA (2.26 � 0.39% sham,

0.85 � 0.09% OFT-banded; P < 0.05; Fig. 5Aa’’,b’’,B). Apop-

tosis in the RV was decreased by 56.4% (1.95 � 0.24%

sham, 0.85 � 0.11% OFT-banded hearts; P < 0.01; Fig. 5Ca’,

b’,D), and in the LV by 43.8% (0.89 � 0.12% sham,

0.5% � 0.04% OFT-banded hearts; P < 0.05; Fig. 5Ca’’,b’’,

D). The crest of the IVS was decreased 42.7% (1.41 � 0.07%

sham, 0.81 � 0.12% OFT-banded; P < 0.05; Fig. 5Ca’’’’,b’’’’,

D). However, no differences in apoptosis were seen at the

base of the IVS (Fig. 5Ca’’’,b’’’,D).

OFT-banded hearts show no changes in glycogen

deposition

Expression data showing downregulation of AMPK regula-

tor PRKAG3 could be indicative of altered glycogen storage,

with glycogen storage disease and PRKAG2 (isoform of

PRKAG3) mutation seen in some cases of cardiomyopathy

(Porto et al. 2016; Banankhah et al. 2018). To see whether

Fig. 4 OFT-banded hearts show overall consistency of gene expression with targeted gene analysis showing differential expression at HH29 and

HH35. (A) PCA of RNA sequencing FPKM shows consistency of expression within OFT-banded (OFT) and sham groups, with a distinction seen

between groups. (B) Expression analysis of targeted genes at HH29 and HH35 by qPCR shows a general increase in differential expression in OFT-

banded hearts, with the exception of LDHB and ENS-1, where decreases are seen (*P < 0.05; significantly differentially regulated in OFT-banded

hearts by qPCR). HH29 data are from hearts used for RNA sequencing compared with data from isolated HH35 hearts (n = 3 OFT-banded, n = 3

sham).
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any phenotype of glycogen storage was present, glycogen

deposition was analysed by periodic acid-Schiff stain with

diastase (PAS-D) at HH35 in OFT-banded and sham hearts

(n = 3 per group). HH35 was chosen because this stage rep-

resented the highest level of differential regulation of

PRAKG3. Glycogen storage disease was not present; no dif-

ferences were seen in glycogen deposition between OFT-

banded and control hearts (Fig. 6).

Discussion

Environmental and genetic factors affect embryonic heart

formation, with blood flow playing a critical role in cardiac

remodelling (Midgett & Rugonyi, 2014; Courchaine et al.

2019). Though many haemodynamically altered heart mod-

els exist in the literature (Sedmera et al. 1999; Tomanek

et al. 1999; Miller et al. 2003; Buffinton et al. 2013; Chivu-

kula et al. 2016; Midgett et al. 2017), a global molecular

characterisation of whole hearts during cardiogenesis has

not been performed. Additionally, RNA sequencing was car-

ried out on library preparations with globin transcripts

removed. The globin depletion technique has been shown

to increase the detection of non-globin transcripts in

expression studies, allowing greater detection of genes with

low read counts (Wu, 2007; Choi et al. 2014). However, it

has not been performed previously in the chick embryo.

Not all species have high levels of globin mRNA, with a

recent study showing that equine and bovine blood have

low levels (Correia et al. 2018). However, the data presented

here show six globin genes with very high expression rela-

tive to reference genes such as GAPDH, suggesting the need

for globin depletion in the chick.

The OFT-banded heart is a typical pressure overloaded

embryonic heart model that gives rise to a range of struc-

tural malformations such as pharyngeal arch anomalies,

persistent truncus arteriosus, ventricular septal defects and

valve defects (Clark & Rosenquist, 1978; Sedmera et al.

1999; Tobita et al. 2002; Hall et al. 2004; Midgett et al.

2017; Pang et al. 2017), while also showing a left-sided dila-

tion. In addition, previous data from our group show

changes in the ECM of the epicardium at a molecular and

morphological level with a progressive aberrant phenotype

Table 1 Significant differential gene expression by RNA sequencing following OFT-banding.

Gene symbol/name Biological function/involvement

Corrected

log2 FC SEM

Corrected

P-value

ENS-1/Embryonic normal stem cell 1 Developmental regulation �0.91 0.16 2.98E-05

TIMM10/Translocase of inner mitochondrial

membrane 10

Protein transport 0.72 0.13 2.98E-05

ERNI/Early response to neural induction ERNI Developmental regulation �0.76 0.15 4.79E-04

GBX2/Gastrulation brain homeobox 2 Transcription factor 0.83 0.17 8.27E-04

LDHB/Lactate dehydrogenase B Metabolic catalytic activity 0.64 0.13 1.23E-03

TNNC2/Troponin C2, fast skeletal type Regulation of muscle contraction 0.75 0.16 1.34E-03

PNO1/Partner of NOB1 homolog RNA binding 0.59 0.13 3.62E-03

PVALB/Parvalbumin Calcium ion binding/ contractility 0.7 0.17 1.91E-02

ADORA2B/Adenosine A2b receptor G protein-coupled adenosine receptor �0.74 0.18 2.08E-02

ITPK1/Inositol-tetrakisphosphate 1-kinase ATP binding kinase �0.68 0.17 2.34E-02

GLRX/Glutaredoxin Enzyme, antioxidant defence system �0.71 0.18 3.33E-02

PDCD4/Programmed cell death 4 RNA binding inhibitor �0.41 0.11 3.52E-02

PIAS2/Protein inhibitor of activated STAT 2 Transcriptional coregulator �0.36 0.1 4.37E-02

MYL10/Myosin, light chain 10, regulatory Calcium ion binding 0.67 0.18 4.37E-02

TGM2/Transglutaminase 2 Crosslinks proteins �0.38 0.1 4.37E-02

DNAJC6/DnaJ heat shock protein family (Hsp40)

member C6

Regulate molecular chaperone �0.48 0.13 4.40E-02

RAP1GAP2 - RAP1 GTPase-activating protein 2 GTPase activator �0.57 0.15 4.46E-02

MYL1/Myosin, light chain 1 Calcium ion binding, structural muscle 0.54 0.15 4.46E-02

H1F0/H1 histone family, member 0 Compacts histones �0.64 0.18 4.46E-02

IFNGR1/Interferon gamma receptor 1 Cytokine binding 0.55 0.15 4.46E-02

ARFGAP1/ADP ribosylation factor GTPase-activating

protein 1

GTPase-activating �0.47 0.13 4.46E-02

S100A11/S100 calcium binding protein A11 Calcium ion binding/ contractility 0.52 0.14 4.46E-02

LBH/Limb bud and heart development Modulator of transcription factors 0.6 0.17 4.86E-02

CDH8/Cadherin 8 Cell adhesion �0.6 0.16 4.86E-02

GSTA4/Glutathione S-transferase alpha 4-like Cellular defence against toxicity �0.65 0.18 4.88E-02

LGALS1/Galectin 1 Modulates cell-cell/cell-matrix interactions 0.64 0.18 4.88E-02

LLPH/LLP homolog, long-term synaptic facilitation Transcription machinery binding 0.58 0.16 4.97E-02
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from HH29 to HH35 (Perdios et al. 2019). However, overall

embryonic growth was not affected upon banding, as the

cardiac output and overall embryo size are the similar in

control and banded embryos (Clark et al. 1989; Keller et al.

1997; Pang et al. 2017). In this study, evidence is provided

of molecular mechanisms involved in OFT-banded hearts,

highlighting potential cardioprotective responses, with fur-

ther analyses characterising the levels of apoptosis and

glycogen accumulation.

Though some dilation of the ventricles has been reported

previously (Buffinton et al. 2013), this study found dilation

of both the left ventricle and atria, with an increased lumen

and a decrease in myocardium and trabeculae. Though

OFT-banded models have been shown generally to give rise

to a thicker myocardium (Clark et al. 1989; Sedmera et al.

1999; Tobita et al. 2002), analysis at later stages (HH36) has

shown a reversal of this, with a significant reduction seen

(Tomanek et al. 1999). Left atrial dilation has been postu-

lated as a consequence of more extensive left ventricular

damage, and dilated cardiomyopathy patients with dilation

of the ventricle accompanied by atrial dilation are associ-

ated with a higher risk of morbidity (Modena et al. 1997).

Therefore, the left-sided dilation and reduced myocardium

seen herein could be indicative of a more advanced OFT-

banded phenotype (Sedmera et al. 1999; Tobita et al. 2002).

Heart dilation has been seen in humans subsequent to a

previous diagnosis of a hypertrophic heart, suggesting the

heart is failing (Hamada et al. 2010). Conversely, the devel-

oping or postnatal heart with a complex congenital defect

(having two or more heart defects) is prone to abnormal

haemodynamics, with a dilated heart seen as a secondary

effect in some cases (Sanchez-Gomez et al. 2017; Cour-

chaine et al. 2018). In addition, a recent study has indicated

that as heart development progresses (HH22 to HH36), the

proximal part of the OFT (conus) becomes part of the right

myocardial wall (Lazzarini et al. 2018); this process could

rescue the right ventricular wall from a dilating phenotype.

Therefore, to assess the molecular mechanisms involved

A

B

C

D

a′′ a′ a′′′′ a′′′′′′ a′′′′′′′′a

b′ b′′′′ b′′′′′′ b′′′′′′′′b

a′′′′a

b′ b′′′′b

Fig. 5 Apoptosis was decreased in both ventricles and in the myocardial crest of the interventricular septum in HH29-banded hearts. (A,B) Apop-

tosis was decreased in both right and left atria upon OFT-banding. Apoptotic cells were seen in the myocardium of both right and left atria of

sham controls (a,a’,a’’) and OFT-banded hearts (b,b’,b’’); arrows denote apoptotic cells. A decrease of apoptotic cells was revealed in both atria,

with P < 0.01 in the right and P < 0.05 in left atrium. Boxed areas in (a) and (b) are shown in higher magnification in (a’,a’’) and (b,b’’), respec-

tively. LA, left atrium; RA, right atrium. Scale bars: 300 lm (a,b), 150 lm (a’,a’’,b’,b’’). n = 3 for each group. (C,D) Apoptotic cells (denoted by

arrows) were seen in the compact myocardium and ventricular trabeculae of both right and left ventricles in controls (a’,a’’) and OFT-banded

hearts (b’,b’’). Apoptotic cells were also seen in the base of interventricular septum and in the myocardial crest of the ventricular septum of both

controls (a’’’,a’’’’) and banded (b’’’,b’’’’) hearts. A decrease of apoptotic cells was revealed in both the right (P < 0.01) and left ventricle

(P < 0.05). The level of apoptosis was not found significantly different in the base of the septum but a significant reduction was revealed in the

crest (P < 0.05). Boxed areas in (a) and (b) are shown in higher magnification in (a’-a’’’’) and (b-b’’’’), respectively. IVS, interventricular septum; LA,

left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle. n = 3 for each group.
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with this phenotype during cardiogenesis, we performed

global RNA sequencing on OFT-banded and control hearts.

Sequencing found differential regulation of genes pre-

dicted to be involved in heart metabolism, apoptosis, neural

development and contractility (see pathway analysis

Table S6). qPCR confirmed that the most differentially

expressed genes identified can be used as a guide for fur-

ther functional studies. This differential gene expression as

a consequence of the OFT-banding procedure could be

expected as a response to stress in order to maintain cardiac

output.

One of the more unexpected sequencing results was that

two of the three top differentially regulated genes were

the neural developmental genes ENS-1 and ERNI. These

genes are expressed during proliferation and are downreg-

ulated upon differentiation (Jean et al. 2013). They are

known to be expressed in pluripotent cells of the epiblast

and later in the prospective neural plate (Mey et al. 2012).

Another gene, Gbx2, known to be involved in cardiac neu-

ral crest activation (Calmont et al. 2009; Simoes-Costa &

Bronner, 2015) showed an upregulation in OFT-banded

hearts. Multipotent cells derived from the neural crest have

been detected in the conduction system of the heart into

late development (Keyte & Hutson, 2012), and ablation of

neural crest cells has led to a retardation of the apex to

base conduction pattern (Gurjarpadhye et al. 2007). This

would suggest that these cells have a role in cell differentia-

tion in the heart. The downregulation of ENS-1/ERNI, along

with the upregulation of Gbx2, suggests that OFT-banded

hearts could suffer from abnormalities caused by aberrant

neural crest differentiation. Further investigations to anal-

yse neural crest differentiation would be of interest in

future studies.

Expression of PRKAG3, a gamma regulatory unit of key

metabolic regulator AMPK, was confirmed in the embry-

onic chick heart at HH29 and HH35. PRKAG3 and

PRKAG1 are the dominant isoforms, with PRKAG2 show-

ing near-zero levels of expression at HH29. In the normal

human adult heart, PRKAG2 is highly expressed, whereas

PRKAG3 shows very low expression (Pinter et al. 2012).

Gamma subunits are co-ordinately regulated in response

to metabolic requirements (Pinter et al. 2013), and it is

likely that in the embryonic chick heart, PRKAG3 is

expressed to compensate for the low levels of PRKAG2.

Further, PRKAG2 has been associated with heart disorders

such as cardiac hypertrophy, left ventricular dilation,

supraventricular tachyarrhythmias, ventricular pre-excita-

tion and glycogen storage cardiomyopathies (Porto et al.

2016). The gamma subunit in response to AMP/ADP alters

AMPK conformation, promoting phosphorylation and

subsequently stopping dephosphorylation and AMPK

inactivation (Zaha & Young, 2012). Thus, the reduction in

PRKAG3 upon OFT-banding would be expected to lead

to reduced sensitivity of AMPK to AMP/ADP/ATP levels.

AMPK is a cell master metabolic regulator with many

functions involved in protein kinase and transcriptional

regulatory activity (Zaha & Young, 2012; Bairwa et al.

2016). Therefore, affecting AMPK activity could have

many knock-on effects in OFT-banded hearts and is an

area for further study.

a′′ a′′′′a

c′ c′′′′c

b′ b′′′′b

d′ d′′′′d

Fig. 6 Glycogen storage is not affected in HH35-banded hearts. Sham and OFT-banded heart sections were treated with periodic acid-Schiff

(PAS). PAS without the addition of diastase (�) (a,b) or with a diastase reaction taking place (+) (c,d). There was no apparent difference in the

treatment groups or between the right (a’,b’) and left side (a’’,b’’) of the hearts in non-diastase-treated and diastase-treated right (c’,d’) and left

sides (c’’,d’’). LA, left atrium; LV, left ventricle; RA, right atrium; RV, right ventricle. Scale bars: 1000 lm (a-d), 100 lm (a’,a’’,b’,b’’,c’,c’’,d’,d’’).

n = 3 for each group.
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Differential expression was also found for another meta-

bolic gene that plays a key role in glucose metabolism, lac-

tate dehydrogenase B (LDHB). LDHB is the predominant

isoform in the adult heart (Valvona et al. 2016), and our

sequencing confirms this is also the case in the chick

embryo. It favours the reaction of lactate to pyruvate, thus

promoting the TCA cycle and oxidative metabolism (Schisler

et al. 2015). Under conditions of pressure overload and

anaerobic stress, the heart can alter metabolism depen-

dence in order to maintain output in response to substrate

and/or oxygen availability and load (Das et al. 1987; An &

Rodrigues, 2006; Lai et al. 2014). The data described here

show significant upregulation at HH29; however, differen-

tial regulation is eliminated at HH35. This would suggest

that at HH29 the OFT-banded heart is trying to promote

oxidative metabolism in an effort to maintain cardiac out-

put. However, by HH35, metabolism may be becoming

increasingly anaerobic, perhaps as oxygen levels are not

high enough to maintain output, and the heart switches

again to try to preserve cardiac output. This study analysed

hearts during a period of active remodelling during cardio-

genesis; metabolism is known to be involved in heart

remodelling (Doenst et al. 2013). Therefore, these results

would suggest a disruption to energy metabolism in OFT-

banded hearts that could have a bearing on heart morphol-

ogy.

The PAS-D assay was performed to examine any differ-

ences in glycogen storage between the OFT-banded and

control hearts. Glycogen stains a purple-magenta colour

using PAS and the amount of glycogen can be measured

semi-quantitatively by the intensity of the stain (McManus,

1948). The addition of diastase acts as a control for the dias-

tase negative sections, as glycogen is not the only PAS-posi-

tive element. PAS-D can also identify other PAS-positive

elements that can be a sign of a disorder (e.g. increase in

mucins) because the glycogen is digested and washed out

(McManus, 1948). Although the data described here found

differential regulation in genes associated with glycogen

storage, the PAS-D assay showed that the glycogen storage

of the experimental model was not significantly affected in

comparison with shams, suggesting glycogen storage dis-

ease was not present.

This study has also shown significant upregulation in mul-

tiple Ca2+ sequestering genes, which play roles in the heart’s

ability to contract. Such increases could be expected as part

of the heart’s response to stress in an attempt to increase

contractility. A recent study has shown that treatment with

a drug expected to increase contractility (phosphatase-in-

hibitor-1) in a pressure overload model actually led to heart

deformities, but non-pressure overload hearts showed the

expected improvement with treatment (Schwab et al.

2018). The differential expression of PVALB and S100A11

are of particular interest. PVALB expression was increased

upon OFT-banding in HH29 hearts, with differential expres-

sion seen to increase at later stages. PVALB, expressed in

fast-conducting skeletal muscle, has been used in preclinical

rat trials where its expression accelerated relaxation by the

action of sequestering calcium from TNNC2 to the sarcoplas-

mic reticulum (Szatkowski et al. 2001; Wolfram & Donahue,

2013). Its action is independent of ATP (Wolfram & Don-

ahue, 2013), and with our results showing disruption to

genes involved in energy metabolism, a protein that is not

energy dependent could be an ideal therapeutic target.

S100A11 has been found to be co-expressed with S100A1

on internal cell membranes and at Z-discs in skeletal muscle

(Arcuri et al. 2002). S100A11 has not been linked directly

with pressure overload (Thuny et al. 2012) but has been

found to be upregulated following b-adrenergic stimula-

tion in the rat heart (Inamoto et al. 2000). S100A1-deficient

mice have been shown to have impaired cardiac contractil-

ity in response to pressure overload (Inamoto et al. 2000).

Our sequencing at HH29 reveals S100A11 to be dominantly

expressed over S100A1, and hence a potential cardioprotec-

tive effect seen to be increasing from HH29 to HH35. Over-

expression of S100A11 is associated with reduced apoptosis,

whereas suppression has been seen to lead to apoptosis

(Kanamori et al. 2004). The decrease in apoptosis seen in

OFT-banded hearts suggests the increase in S100A11 expres-

sion may be involved.

Upregulation of PDCD4 is associated with apoptosis and

is a target of microRNA-21 and microRNA-499-5p, both of

which have been linked to cardioprotection (Cheng et al.

2010; Liu et al. 2012; Jia et al. 2016; Li et al. 2016). There-

fore, downregulation of PDCD4 expression with a concomi-

tant decrease of apoptosis in this study suggests the

embryonic hearts were undergoing an intrinsic cardiopro-

tective mechanism in response to pressure overloading. Fur-

ther, AMPK has been found to be a key regulator of cell

death in response to stress, with AMPK activation coincid-

ing with cell cycle arrest and induction of apoptosis (Hwang

et al. 2010; Law et al. 2017). Apoptosis is not a characteristic

of the normal human adult heart; however, increased apop-

tosis has been linked to a heart that is failing (Narula et al.

2000; Zhao et al. 2016). A decrease in apoptosis has been

shown to provide a protective/defensive mechanism in the

fetal heart (Schaffer et al. 2000; Tao et al. 2015). Therefore,

these studies support the notion that the heart is undergo-

ing a protective response, and are further evidence that the

heart is not yet failing.

With a key period of chamber development being

haemodynamically altered, from banding at HH21 to RNA

sequencing and structural analysis at HH29, it could be that

the differential gene regulation seen in metabolic genes,

though attempting to respond to changes in load, had a

direct bearing on the anatomical phenotype seen in OFT-

banded hearts. The pressure overloaded developing chick

heart was found to have left-sided dilation and a decrease

in apoptosis. Upon analysis of the global gene expression

profile using RNA sequencing on globin -depleted RNA,

changes in gene expression related to metabolism,
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apoptosis, neural development and contractility, with fur-

ther targeted expression studies at a later stage of develop-

ment performed. These data suggest the heart is

responding in a cardioprotective manner. Together, this

study provides insights into the effect that altered haemo-

dynamics has on heart structure and function, which will

help increase the understanding of heart development

while subjected to pressure overload. This may focus future

functional and therapeutic studies to elucidate the mecha-

nisms involved.
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Fig. S6. OFT-banded hearts show unbiased mapping to distinct

clusters based on a profile of 45 genes linked to cardiac devel-

opment and stress (all genes are shown in Tables 1 and S7)

Table S1. Oligonucleotide design for globin gene hybridisation.

Table S2. qPCR primer sequences

Table S3. qPCR on globin-depleted and non-globin-depleted
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