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Summary

P2X receptors are cation selective ion channels gated by extracellular ATP and implicated in 

diverse physiological processes, from synaptic transmission to inflammation to the sensing of taste 

and pain. Because P2X receptors are not related to other ion channel proteins of known structure, 

there is presently no molecular foundation for mechanisms of ligand-gating, allosteric modulation 

and ion permeation. Here we present crystal structures of the zebrafish P2X4 receptor in its closed, 

resting state. The chalice-shaped, trimeric receptor is knit together by subunit-subunit contacts 

implicated in ion channel gating and receptor assembly. Extracellular domains, rich in β-strands, 

have large acidic patches that may attract cations, through fenestrations, to vestibules near the ion 

channel. Within the transmembrane pore, the ‘gate’ is defined by an ~8 Ǻ slab of protein. We 

define the location of three non-canonical, intersubunit ATP binding sites and suggest that ATP 

binding promotes subunit rearrangement and ion channel opening.

Adenosine 5'-triphosphate (ATP) is most commonly known as the vital carrier of free 

energy, playing multifaceted roles in energy metabolism, biosynthesis, and intracellular 

signal transduction. A non-canonical role for ATP in extracellular signal transduction 

emerged from studies showing that ATP is released from sensory nerves and promotes 

vasodilatation1. Subsequently, the concept of ATP-mediated signaling, termed purinergic 

signaling, was provided by Burnstock as a ubiquitous mechanism for extracellular 

communication2. Interest in this field redoubled upon molecular cloning and 

characterization of two different ATP receptors: ionotropic P2X receptors and G-protein 

coupled P2Y receptors3–6. While the physiological importance of purinergic signaling is 
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now generally accepted7, elucidation of the molecular mechanisms of ATP-binding and the 

subsequent signal transduction has been hindered due to the absence of high-resolution 

structures for any ATP receptors.

Ionotropic P2X receptors are widely distributed throughout the human body and participate 

in diverse physiological processes, from the nervous system to the immune system8. In the 

central nervous system, presynaptic neurons expressing P2X receptors enhance the release 

of neurotransmitters such as glutamate9, 10 and γ-aminobutyric acid (GABA)11, 12, while 

expression in postsynaptic neurons is required to evoke ATP-induced postsynaptic 

current13, 14. In the peripheral nervous system, afferent neurons carrying P2X receptors 

sense a variety of stimuli such as taste15, pain16, 17, and distention of the bladder18. 

Furthermore, P2X receptor-deficient mice demonstrate the involvement of these receptors in 

blood pressure regulation and vascular remodeling, autoregulation of blood flow in retina, 

and interleukin-1β production from macrophages19–22. Because P2X receptors are integral 

to many signal transduction pathways, it is perhaps not surprising the dysfunction of P2X 

receptor-mediated signaling is implicated in cancer23, inflammatory24, cardiovascular, and 

neuronal diseases. P2X receptors are therefore promising targets for new therapeutic agents.

P2X receptors are cation permeable, ATP-gated ion channels derived from seven different 

subtypes (P2X1–7) found in both lower and higher eukaryotes25. Intact receptors are 

composed of three subunits assembled as either homomeric or heteromeric complexes 

contingent upon the specific subunits and the cellular context26–29. Gating kinetics and 

pharmacology vary widely between different homomeric and heteromeric receptor 

assemblages. Whereas homomeric P2X1 receptors exhibit rapid, nearly complete 

desensitization and high sensitivity to suramin and PPADS, homomeric P2X4 receptors 

display slow, incomplete desensitization and insensitivity to common P2X receptor 

antagonists30. Secondary structure prediction and hydropathy plots suggest that each 

subunit has two transmembrane segments arranged such that the intracellular domain is 

formed by the amino- and the carboxyl-termini. Although the transmembrane (TM) 

topologies of P2X receptors are similar to acid sensing ion channels (ASICs), epithelial 

sodium channels (ENaCs), and degenerin channels (DEGs)31, there is little, if any, 

relationship between their primary amino acid sequences.

Ascertaining the structure of a P2X receptor not only will elaborate upon the architecture of 

this important class of ligand-gated ion channels and, thus, form the basis for molecular 

mechanisms of function, but it will also provide new insight into the molecular principles of 

agonist and antagonist binding, in turn spurring the design of novel therapeutic agents. Here, 

we show the crystal structure of a zebrafish P2X4 receptor at 3.1 Å resolution, verifying that 

these receptors are trimers with previously unseen subunit folds and non-canonical ATP 

binding sites. The closed transmembrane pore, consistent with crystallization of the receptor 

in the absence of ATP, defines the ion channel gate in a closed, resting state.

Crystallization and structure determination

P2X receptors tend to aggregate or dissociate in the presence of detergents commonly used 

for crystallization (Supplementary Fig. 1). We therefore employed fluorescence-detection 
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size exclusion chromatography (FSEC) to rapidly and efficiently evaluate the stability and 

monodispersity of thirty-five P2X orthologs expressed in transiently transfected HEK293 

cells32. The zebrafish P2X4.1 (zfP2X4) receptor emerged as a promising candidate for 

crystallization trials because it has a sharp and symmetrical elution profile (grey trace, Fig. 

1d). The full-length zfP2X4 is activated by ATP with a 50% effective concentration (EC50) 

of ~800 µM (Fig. 1a and Supplementary Fig. 2a)33. To improve crystallization behavior, 

however, we analyzed a series of amino and carboxyl termini deletion mutants, settling on a 

minimal yet functional construct (ΔzfP2X4-A, black trace, Fig. 1d). Further optimization to 

avoid non-native disulfide bond formation and to reduce heterogeneity resulting from 

glycosylation yielded a derivative of ΔzfP2X4-A harboring three point mutations (C51F/

N78K/N187R; ΔzfP2X4-B; blue trace, Fig. 1d). Electrophysiological experiments revealed 

that both ΔzfP2X4-A and -B are activated by 1 mM ATP (Fig. 1b, c), although the peak 

current amplitudes are smaller than those recorded from the full-length receptor (Fig. 1a), an 

observation consistent with the lower expression levels of the mutants (Fig. 1d and 

Supplementary Fig. 2b–d). The ΔzfP2X4-A structure was solved by single wavelength 

anomalous diffraction using a gadolinium derivative and the ΔzfP2X4-B structure was 

solved by molecular replacement.

Architecture

The homotrimeric zfP2X4 receptor has a chalice-like shape with the large extracellular 

domain protruding ~70 Å above the membrane plane and the comparatively smaller TM 

stem extending ~28 Å through the membrane (Fig. 2a). Within the ΔzfP2X4-A receptor 

complex each of the three subunits adopts a similar conformation, and in the ΔzfP2X4-B 

structure the subunits are related by the crystallographic three-fold axis of symmetry passing 

through the receptor center, perpendicular to the putative membrane plane.

The shape of the TM region is reminiscent of an hourglass and is formed by six TM helices, 

two from each of the three subunits. Within a subunit, the TM helices are oriented 

approximately antiparallel to one another and are angled nearly 45° from the membrane 

normal. The inner TM2 helices cross each other about halfway across their membrane-

spanning lengths, constricting the TM pore and defining the closed, resting state of the 

channel. At the cytoplasmic termini of TM1 and TM2 the electron density is weak and we 

were not able to fit all of the residues to electron density features.

In contrast to the left-handed twist of the TM helices, as seen from the cytoplasmic termini, 

the extracellular region of each subunit wraps around its neighbor with a right-handed twist, 

gripping adjacent subunits with extensive contact interfaces (Fig. 2a). The large extracellular 

domain, when viewed perpendicular to the crystallographic three-fold axis of symmetry, has 

a corrugated profile, replete with protruding N-linked glycosylation moieties. Seen parallel 

to the three-fold axis, the extracellular domain is shaped like an equilateral triangle (Fig. 2b). 

Although the TM topology of P2X receptors is similar to that of ASICs and other members 

of the ENaC/Deg superfamily, the fold of the extracellular domains and the corresponding 

trimeric quaternary architecture is entirely different from ASICs, tetrameric ionotropic 

glutamate receptors and pentameric Cys-loop receptors.
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Subunit fold and interfaces

The zfP2X4 subunit resembles the shape of a dolphin, with the transmembrane helices and 

the extracellular region akin to the flukes and the upper body, respectively (Fig. 3a). The 

central architecture of the extracellular body domain is characterized by a transthyretin-like 

β-sandwich motif34. This segment appears structurally rigid and perhaps even resistant to 

conformational changes because the two β-sheets in the β-sandwich are knit together by 

extensive contacts. Interestingly, the upper regions of the core β-sheets in the body domain 

contact neighbouring subunits whereas there are no contacts between adjacent subunits at 

the base of the extracellular domain, proximal to the TM domain. This conformation may 

allow the TM helices, which are connected directly to the lower region of the body domain, 

the latitude to move to an open conformation upon ligand-induced rearrangement of the 

upper regions. Attached to the body domain are the head domain and three structurally 

different elements: the dorsal fin, the right flipper, and the left flipper. The head domain 

adopts a fold similar to an oligo mannose binding protein35 and is defined by three 

antiparallel β-strands and one α-helix. Electron density is weak between K136 and D141 and 

we have introduced a corresponding break in the polypeptide chain. We find that all ten 

conserved cysteine residues in the extracellular region form pairings previously predicted by 

mutagenesis and electrophysiological studies36, 37 (Supplementary Fig. 9).

Subunit-subunit interactions are largely mediated by the extracellular domains and a single 

subunit buries ~3,750 Å2 of surface area upon trimer formation. The three major subunit-

subunit interfaces are: body to body, head to body, and left flipper to dorsal fin (Fig. 3b). On 

the one hand, the residues forming the core β-sheets in the body domain are highly 

conserved, suggesting that the body to body interactions represent contacts common to all 

P2X receptors. On the other hand, the residues in the head, the left flipper, and the dorsal fin 

are less conserved (Supplementary Fig. 3 and Supplementary Fig. 10). We speculate that the 

head to body and the left flipper to dorsal fin interactions may encode some of the chemical 

and structural information that guides assembly of homomeric or heteromeric receptors. 

Subunit-subunit contacts are also likely to play an important role in receptor function and, 

consistent with this hypothesis, experiments have shown that a single mutation in the left 

flipper of the P2X3 receptor, D266A (D283 in zfP2X4), considerably slows the rate of 

receptor desensitization38. A plausible explanation for the lack of function in homotrimeric 

P2X6 receptors is that due to ~9 missing residues in the left flipper, subunit-subunit contacts 

are compromised, decoupling agonist binding from ion channel gating.

Closed, resting state

The ion channel domain consists of three TM2 helices arranged around the crystallographic 

and molecular three-fold axes of symmetry, positioned to define most of the ion conducting 

pathway and surrounded by three peripheral TM1 helices (Fig. 4). A solvent accessible 

surface representation clearly shows that the extracellular vestibule extends only a fraction 

of the distance across the membrane bilayer, to residues L340 and N341. On the cytoplasmic 

side of this occlusion, probably 5–10 Å from bulk intracellular solution, there is a solvent-

accessible intracellular vestibule. Because the receptor was crystallized in an agonist-free, 
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apo state and because the putative ion permeation pathway is unambiguously occluded, the 

present structure provides an atomic model for the closed, resting state of P2X receptors.

Ion channel access

Inspection of the zfP2X4 structure suggests two pathways by which ions in extracellular 

solution might access the TM ion channel. The first pathway is through any of three 

fenestrations located directly above the TM domains, proximal to the extracellular leaflet of 

the membrane bilayer (Fig. 4a, orange arrow). With openings as large as ~8 Å in diameter, 

these fenestrations should readily allow Na+, K+ and Ca2+ ions to access the channel. A 

second possible pathway runs the length of the extracellular domain, along the three-fold 

axis of symmetry and through two conspicuous vestibules rich in acidic residues (Fig. 4a, 

4b). In this apo, closed-state structure the constrictions flanking the top vestibule are too 

narrow for ions to pass (~2.3 Å). However, agonist binding may induce conformational 

changes between subunits, expanding these constrictions and, thus, enabling ions to access 

the transmembrane ion channel. On the cytoplasmic side of the ion channel, we hypothesize 

that ions exit or enter the pore via the intracellular vestibule, an inverted cone-like structure 

that includes the conserved aspartic acid residue, D357, a residue important to receptor 

assembly39.

Ion channel gate

What are the solvent accessible boundaries of the ion channel gate and what residues or 

elements of protein structure define the gate? Viewed from the extracellular surface, 

residues L340 and N341 define the extracellular boundary of the ion channel gate, with the 

hydrophobic side chain of L340 occluding the pore (Fig. 4; Supplementary Fig. 11). On the 

opposite side of the membrane, the cytoplasmic gate is defined by A347 and the side chain 

of L346. The 'center' of the gate is A344 and it defines the closest association of the TM2 

helices. Therefore, the P2X receptor ion channel gate is flanked by primarily hydrophobic 

residues, includes about two turns of the TM2 α-helix, is composed of a slab of packed 

protein that is ~8 Å thick, and is consistent with recent cysteine accessibility studies40.

Ion selectivity

Based upon the analysis of the current zfP2X4 structure together with the recently solved 

cASIC1mfc structure41, we speculate upon the molecular basis of cation selectivity in P2X 

receptors and suggest two distinct yet complementary mechanisms. First, the presence of 

multiple acidic residues in the central vestibule, immediately above the ion channel, together 

with D59 and D61 near the extracellular fenestrations, may not only enable the direct 

binding of cations, but may also create a long range negative electrostatic potential that 

serves to concentrate cations near the extracellular entrance of the ion channel (Fig. 5g). 

Second, we suggest that permeant ions interact directly and specifically with the main chain 

and side chain oxygen atoms within the transmembrane ion channel. Although we have not 

yet determined the conducting, open channel structure, we speculate that the side chain 

oxygen atom of N341 may interact directly with permeant ions, perhaps similar to the 

interactions between D433 and Cs+ in the cASICmfc structure41. As ions progress toward 
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the cytoplasm, main chain carbonyl oxygen atoms from carbonyl groups slightly tipped off 

of the TM2 helix axis will participate in further protein - ion interactions.

Modulation by Gd3+

To solve the structure of the ΔzfP2X4-A construct, we employed a Gd3+ derivative and 

found four highly occupied sites. One site is located in the middle vestibule, on the non-

crystallographic axis of three-fold symmetry, and is coordinated by carboxylate groups of 

E98 residues from each of the three subunits (Fig. 5a, c, d, g). The other three Gd3+ sites are 

located at the periphery of the receptor (one site for each subunit) and are coordinated by the 

carboxylate group of D184 and the hydroxyl group of an N-acetyl-D-glucosamine (NAG) 

residue attached to N187 (Fig. 5a, b, d). Because P2X receptors are commonly modulated by 

divalent and trivalent cations and because the Gd3+ ions were bound to sites on the zfP2X4 

receptor that might play a role in ion channel function, we asked whether Gd3+ altered ATP-

dependent receptor gating.

Whole cell patch-clamp recordings of tsA201 cells transfected with the ΔzfP2X4-A 

construct demonstrated that in the presence of 100 µM Gd3+ and at a holding potential of 

−60 mV, coapplication of 30 µM ATP failed to elicit inward current, suggesting that Gd3+ is 

an antagonist (Fig. 5e, f). At positive holding potentials Gd3+ continued to antagonize ATP-

dependent receptor activation, thus demonstrating that Gd3+ was not acting solely as a pore 

blocker (Supplementary Fig. 12a). Although increasing ATP concentrations concomitantly 

extinguished Gd3+ antagonism (Supplementary Fig. 12c), raising the possibility that Gd3+ 

might simply sequester ATP, a direct action of Gd3+ on the receptor is supported by the fact 

that preapplication of Gd3+ greatly attenuated channel activation as opposed to when ATP 

was subsequently applied in a Gd3+-free solution (Supplementary Fig. 12a, b). Furthermore, 

Gd+3 speeds the rate of ion channel deactivation (Supplementary Fig. 12c). Finally, the 

direct action of Gd3+ on the receptor is further bolstered by the presence of four highly 

occupied Gd3+ binding sites, one of which is at the 'top' of the profoundly acidic central 

vestibule, a cavity that also serve to attract and concentrate cations (Fig. 5a, g).

ATP binding site

Where is the ATP binding site? We suggest that deep grooves on the outside of the trimer, 

45 Å from the ion channel domain and spanning neighbouring subunits, are the binding sites 

for ATP (Fig. 6a, b). These inter-subunit grooves are populated by eight conserved residues 

implicated in ATP-dependent P2X receptor gating42–46 (Fig. 6c) and whose amino acid 

composition is compatible with an ATP binding motif. This putative ATP site, shaped like 

an open jaw, is one of three in the receptor, is surrounded by the head domain, the body 

domain, the right flipper, and the dorsal fin, and includes residues K70, K72, F188, and 

T189 from one subunit and residues N296, F297, R298, and K316 from the neighbouring 

subunit. Among those residues, K70, K72, T189, N296, R298, and K316 are oriented 

toward the groove of the pocket, indicating that they may bind directly to ATP. By contrast, 

both F188 and F297 are oriented away from the groove, suggesting that they may participate 

in transducing conformational changes from the binding pocket to the ion channel 

(Supplementary Fig. 13). We speculate that ATP binding induces movement of the head, 
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right flipper and dorsal fin domains, effectively closing these 'jaws' around the agonist, and 

thus resulting in conformational changes within and between subunits.

Antagonist binding site

A recent study has shown that the F95L mutation in human P2X7 (I94 in zfP2X4) 

drastically reduces the sensitivity to allosteric antagonists such as N2-(3,4-difluorophenyl)-

N1-(2-methyl-5-(1-piperazinylmethyl)phenyl)glycinamide dihydrochloride (GW791343) 

and 4-(4-fluorophenyl)-2-(4-methylsulphinylphenyl)-5-(4-pyridyl)1H–imidazole47 

(SB203580). Likewise, the R126G mutation (A126 in zfP2X4) reduces the potency of 

pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS). In a different study, 

North's group showed that K138 in human P2X1 (D141 in zfP2X4) is important for the 

inhibitory effect of suramin48. Importantly, all residues are located in the vicinity of the 

predicted ATP binding pocket. Though speculative, we suggest that these antagonists block 

conformational rearrangements by occupying part or all of the ATP site and precluding 

closure of the head, right flipper and dorsal fin domain 'jaws'.

Conclusion

We present the first crystal structure of an ATP-gated P2X ion channel in a closed, resting 

state at 3.1 Å resolution, providing atomic-resolution evidence that these receptors are 

trimeric in subunit stoichiometry, with each subunit composed of two continuous, 

transmembrane α-helices, intracellular termini and a large disulfide bond-rich extracellular 

domain. We propose that ATP binds to a non canonical site ~45 Å from the ion channel 

domain, in a deep cleft, inducing conformational changes within and between subunits. We 

speculate that these changes, in turn, are propagated to the ion channel by conserved 

residues located at the transmembrane domain - extracellular domain interface (Fig. 6d), 

opening the ion channel pore.

Methods Summary

Thirty-five P2X receptor genes fused to EGFP were separately and rapidly screened by 

transient transfection in human embryonic kidney (HEK-293) cells followed by fluorescence 

detection size-exclusion chromatography (FSEC). Based on a sharp, symmetric elution 

profile, the zebrafish P2X4.1 (zfP2X4.1) receptor was identified as a highly promising 

construct for x-ray crystallographic studies. The shortest well-behaved constructs of 

zfP2X4.1 (ΔzfP2X4-A or B) were expressed in Sf9 cells using a baculovirus infection 

system, the membranes were solubilized in n-dodecyl-β-D-maltoside (DDM), and the 

receptor was purified by metal affinity and size-exclusion chromatography. ΔzfP2X4-A 

crystals were grown in 10–12% PEG 4,000, 100 mM sodium acetate (pH 4.2–4.6), 100 mM 

ammonium sulfate, and 1 mM GdCl3 in D2O while ΔzfP2X4-B crystals were obtained with 

20% PEG 2000, 100mM Tris (pH 8.4), 300 mM MgNO3, and 1 mM GdCl3. The ΔzfP2X4-

A structure was solved by single-wavelength anomalous diffraction (SAD) using data 

measured at the gadolinium (Gd) LIII edge. SOLVE was employed to determine Gd ion 

positions and to calculate SAD phases. These initial phases were subsequently improved by 

density modification using programs in the CCP4 package. Iterative model building and 
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refinement was performed using the crystallography software COOT and PHENIX. The 

ΔzfP2X4-B structure was determined by molecular replacement. Whole cell patch clamp 

recordings were performed on tsA201 cells transfected with plasmid DNA encoding 

zfP2X4.1-EGFP, ΔzfP2X4-A-EGFP or ΔzfP2X4-B-EGFP constructs.

Methods

Expression and purification

The shortest well-behaved construct of zfP2X4.1 (ΔzfP2X4-A) was determined by 

examining twelve different combinations of N- and C-termini deletions in Sf9 cells by rapid 

FSEC analysis. Likewise, the FSEC screening strategy was exploited to identify a well-

behaved derivative of ΔzfP2X4-A that carries mutations at two of four glycosylation sites 

(N78K/N187R) and a point mutation (C51F) in TM1 (ΔzfP2X4-B). The ΔzfP2X4-A protein 

was expressed as an N-terminal EGFP fusion with an octa-histidine affinity tag (EGFP-His8) 

in baculovirus infected Sf9 cells. Infected Sf9 cells were cultured in serum-free medium 

(Invitrogen) at 27 ºC for 24 hr post infection after which time the temperature was reduced 

to 20 ºC. Cells were harvested 72 hr post infection by centrifugation at 6,200 × g and broken 

by sonication in TBS (50 mM Tris pH 8.0, 150 mM NaCl) supplemented with 1 mM 

phenylmethanesulphonylfluoride, 5.2 ug/ml aprotinin, 2 ug/ml leupeptin, and 1.4 ug/ml 

pepstatin A (all from Sigma Aldrige). Cell debris was cleared by a low-speed spin (10,000 × 

g). Membranes were collected by a high-speed spin at 19,000 × g and solubilized in TBS 

containing 40 mM DDM (Anatrace). The detergent-soluble fraction was incubated with 

cobalt-charged metal ion affinity resin (Clontech), and ΔzfP2X4 was eluted with 250 mM 

imidazole (Fluka) and 1 mM DDM in TBS. After thrombin digestion to remove the EGFP- 

His8 tag, ΔzfP2X4 was isolated by size exclusion chromatography (SEC) in 20 mM HEPES 

pH 7.0, 80 mM NaCl, 20 mM KCl, and 0.5 mM DDM. Peak fractions were pooled, 

concentrated to 2 mg/ml, and used for crystallization. All steps following Sf9 cell culture 

were carried out on ice or at 4 ºC. For the purification of ΔzfP2X4-B, all steps were identical 

with the exception that 15% glycerol was included in the solubilization, IMAC and SEC 

elution buffers. For production of selenomethionine (SeMet) labeled receptor, baculovirus 

infected Sf9 cells were cultured for one day at 27 ºC, harvested by centrifugation at 1,000 × 

g for 5 min, re-cultured in serum-free medium without methionine for 4 hours at 27 ºC, and 

then supplemented with 50 mg/L SeMet (Anatrace). After ten hours of incubation at 27 ºC, 

the temperature was shifted to 20 ºC, and the cells were cultured for another two days before 

harvesting. SeMet proteins were purified as described above.

Crystallization

For ΔzfP2X4-A, crystals were obtained at 4 ºC in 3–4 weeks by vapor diffusion by mixing 

1:1 or 2:1 (v/v) ratios of protein and a reservoir solution containing 10–12 % PEG 4,000, 

100 mM sodium acetate (pH 4.2–4.6), 100 mM ammonium sulfate, and 1 mM GdCl3 in 

D2O. Crystals were dehydrated and cryo-protected by adding glycerol in 2.5 % steps (final 

12.5 %) followed by increasing the PEG 4,000 concentration by 2.5 % steps (final 25 %). 

For native and SeMet crystals, GdCl3 was excluded from the final cryo-protection solution. 

For ΔzfP2X4-B, crystals were obtained at 4 ºC in nine months by vapor diffusion by mixing 

1:1 or 2:1 ratios of protein and a reservoir solution containing 20% PEG 2,000, 300mM 
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Mg(NO3)2, and 100mM Tris pH 8.4, and 1mM GdCl3. Crystals were cryo-protected by 

adding glycerol in 2.0% steps (final 18%). Crystals were flash frozen in liquid nitrogen and 

used for X-ray diffraction data collection.

Structure determination

X-ray data sets were collected at the Advanced Light Source (beam lines 5.0.2, 8.2.1 and 

8.2.2) and at the Advanced Photon Source (beamline 24-ID-E). The diffraction frames were 

indexed, integrated and scaled using HKL2000. The structure of ΔzfP2X4-A was solved 

using data from a single-wavelength anomalous diffraction experiment (ALS beamline 

5.0.2). The program SOLVE was used to find heavy atom positions and to calculate phases. 

The phases were improved by density modification that included three-fold non-

crystallographic symmetry averaging as carried out by the computer program DM. Initially, 

several poly-alanine chains were built into the electron density map using COOT. 

Subsequently, specific protein sequences, together with correct side chain atoms, were fitted 

to the electron density map based on Met and Cys locations derived from anomalous Fourier 

difference maps calculated from SeMet data and from native data collected at a low energy 

(λ=1.6 Å), respectively. Finally, iterative model building using COOT and CCP4 led to a 

continuous protein model that nevertheless contained a number of Ala residues at positions 

where the native, longer amino acid side chains were disordered. The resulting structure was 

manually rebuilt and refined using programs in the CCP4, COOT, and PHENIX packages 

with the following NCS restraints: B-factor weight=10, coordinate sigma=0.1 for residues 

36–64, 119–169, and 326–352, coordinate sigma=0.04 for residues 65–118 and 170–235. 

The structure of ΔzfP2X4-B was obtained by molecular replacement with the refined model 

of ΔzfP2X4-A using the program Phaser. The resulting model was manually rebuilt and 

refined using programs in the CCP4, COOT, and PHENIX packages. The structures were 

validated by PROCHEK and MOLPROBITY.

Electrophysiology

Whole-cell patch-clamp experiments were performed on a mammalian cell line (tsA201) 

transiently expressing EGFP, zfP2X4.1-EGFP, or ΔzfP2X4-A-EGFP, or ΔzfP2X4-B-EGFP 

constructs using methods previously described. The holding potential was −70 mV unless 

noted. The pipette solution contained (mM): 115 K-methanesulfonate, 20 NaCl, 1.5 MgCl2, 

10 HEPES, 10 BAPTA; pH was adjusted to 7.4 with KOH. Standard extracellular solution 

contained (mM): 140 NaCl, 5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES, 10 MES; pH was 

adjusted to 7.4 using N-methyl-D-glucamine (NMG). ATP test solutions were made from 

serial dilutions of standard extracellular solution supplemented with 10 mM Na2ATP pH 7.4 

with NMG. Dilutions were made in standard extracellular solution supplemented with 20 

mM NaCl to maintain an equivalent sodium concentration amongst all test solutions. 

External solutions were exchanged on cells within 20 msec using computer actuated 

solenoid valves controlling flow through an array of 10 µl pipettes positioned within several 

hundred micrometers of the cell. All recordings were at room temperature (~23°C). Data 

were collected using pClamp (Molecular Devices), analyzed with Clampfit (Molecular 

Devices) and Origin Lab software, and organized using Excel (Microsoft). To account for 

run-down of current responses, peak current amplitude for each ATP test was measured and 

scaled relative to the current evoked by a preceding test of 100µM ATP (a concentration 
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which did not cause run-down). Data were plotted relative to the current evoked by 100 µM 

ATP and fit to the Hill equation (Origin) to determine the ATP concentration required to 

evoke a half-maximal current (EC50). For presentation, data were normalized to the 

maximum evoked current (Imax) of the best fit to the Hill equation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A functional P2X4 receptor for structural studies
a, b, c, Whole cell recordings of ATP-evoked current (1mM, 3sec, grey bars) from the full-

length zfP2X4.1-EGFP construct (a), the ΔzfP2X4-EGFP-A construct (b), and the ΔzfP2X4-

EGFP-B construct (c). d, FSEC profiles for zfP2X4.1-EGFP (grey), ΔzfP2X4-EGFP-A 

(black), and ΔzfP2X4-EGFP-B (blue) expressed in tsA201 cells. The arrows indicate the 

estimated elution position of the void volume, the zfP2X4-EGFP receptor (trimer) and free 

EGFP. e, 2Fo-Fc electron density map contoured at 1.2 σ. The blue line represents the Cα 

trace and the grey bars suggest the boundaries of the outer (out) and inner (in) leaflets of the 

membrane bilayer. The featured slice depicts TM2 helices but not TM1.
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Figure 2. The architecture of P2X receptors
a, Stereoview of the homotrimeric ΔzfP2X4 structure viewed parallel to the membrane. 

Each subunit is depicted in a different colour. N-acetylglucosamine (NAG) and glycosylated 

asparagine residues are shown in stick representation. The grey bars suggest the boundaries 

of the outer (out) and inner (in) leaflets of the membrane bilayer. b, Stereoview of the 

homotrimeric ΔzfP2X4 structure parallel to the molecular three-fold axis from the 

extracellular side of the membrane.
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Figure 3. Subunit fold and intersubunit contacts
a, The ΔzfP2X4 subunit has a dolphin-like shape. Alpha helices (TM1-2 and α2–5), beta 

strands (β1–14), disulfide bonds (SS1–5), and attached glycans (g2 and 4) are indicated. b, 

Interface of two adjacent subunits. Subunit A and B are shown in a solvent-accessible 

surface model and a cartoon representation, respectively. The three major subunit-subunit 

interfaces are emphasized in different panels where the red ellipsoid highlights the interface 

between the two subunits. Models are coloured according to domains as in panel (a).
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Figure 4. Closed, resting conformation
a, A sagittal section reveals a closed conformation of the pore and shows that the gate is 

located about halfway across the membrane bilayer. Three vestibules (upper, central and 

extracellular vestibules) are located on the molecular 3-fold axis, with the extracellular 

vestibule connected to the bulk solution through a fenestration (orange arrow). b, Pore lining 

surface calculated by the Hole49 program. Each colour represents a different radius range 

measured from the receptor centre (red: <1.15 Å, green: 1.15–2.3 Å, and purple: >2.3 Å). c, 

Cartoon representations of the transmembrane domain viewed parallel to the membrane 
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plane. P337 and N341 are shown in grey and potential gate residues (L340, G343, A344, 

and A347) are shown in green. d, Transmembrane domain viewed perpendicular to the 

membrane plane.
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Figure 5. Gadolinium (Gd3+) binding sites
a, Anomalous difference Fourier map contoured at 8.0 σ (purple) and the modeled Gd3+ ions 

(yellow). b, A peripheral Gd3+ binding site in chain B. Distances between Gd3+ and the 

coordinating carboxyl or hydroxyl groups are shown in angstrom. NAG, N-

acetylglucosamine c, The central Gd3+ binding site is coordinated by three E98 residues. d, 

View of the Gd3+ binding sites in the homotrimeric ΔzfP2X4 structure parallel to the 

molecular three-fold axis from the extracellular side of the membrane. e, f, Gd3+ antagonizes 

ΔzfP2X4-EGFP whole cell currents measured by patch-clamp electrophysiology. ATP 
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(30µM, 1 sec, black bar) evokes an inward current in tsA201 cells expressing ΔzfP2X4-

EGFP (e). Pre-application of Gd3+ (100µM, 5 sec, grey bar) inhibits the current evoked by 

ATP (30µM, 1 sec, black bar) (f). g, Acidic surface on the middle vestibule of ΔzfP2X4. 

Electrostatic potential surface and cartoon representations of ΔzfP2X4 sliced as in Figure 4 c 
show an acidic patch located in the middle of the three subunits. The surface is coloured 

based on the electrostatic potential contoured from −30 kT (red) to +30 kT (blue). White 

denotes 0 kT. Surface potential was calculated using APBS tools50 for a ΔzfP2X4 model in 

which side chain atoms were added to residues without side chain atoms in the crystal 

structure. The following regions were excluded from the calculation: Y53, N78, and N187.
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Figure 6. ATP binding site
a, A plausible ATP binding pocket located between two neighbouring subunits is 

highlighted in the black rectangle on an electrostatic potential surface representation of the 

trimeric ΔzfP2X4-B receptor. The surface is coloured based on the electrostatic potential 

contoured from −30 kT (red) to +30 kT (blue). White denotes 0 kT. An ATP molecule, 

scaled appropriately, is also shown. b, A surface representation viewed ~45º from panel (a). 

The head, dorsal fin and left flipper domains forming the "jaw" shaped ATP-binding pocket 

are coloured as in Fig. 3. The putative ATP-binding residues are in blue for subunit A 
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(N296, R298, K316) and in red for subunit B (K70, K72, T189). c, Close-up view of the 

highlighted region in a illustrating subunit A (blue) and B (red). Conserved residues 

implicated in ATP binding42–45 are labeled, and side chains are in stick representation. 

Contours from a 2Fo-Fc electron density map drawn around the side chains are in green. 

The electron density for the side chain of K70 is weak and it has been built as an alanine. d, 

Conserved residues, shown in space filling representation, are located between the ATP 

binding site and the transmembrane domain - extracellular domain interface. Only residues 

for a single subunit are shown.
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