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Purpose: The present study was performed to evaluate the effect of erbium-doped: yttrium, aluminium and garnet (Er:YAG) 
laser irradiation on sand-blasted, large grit, acid-etched (SLA) implant surface microstructure according to varying energy lev-
els and application times of the laser. 
Methods: The implant surface was irradiated by the Er:YAG laser under combined conditions of 100, 140, or 180 mJ/pulse and 
an application time of 1 minute, 1.5 minutes, or 2 minutes. Scanning electron microscopy (SEM) was used to examine the sur-
face roughness of the specimens.
Results: All experimental conditions of Er:YAG laser irradiation, except the power setting of 100 mJ/pulse for 1 minute and 1.5 
minutes, led to an alteration in the implant surface. SEM evaluation showed a decrease in the surface roughness of the implants. 
However, the difference was not statistically significant. Alterations of implant surfaces included meltdown and flattening. 
More extensive alterations were present with increasing laser energy and application time.
Conclusions: To ensure no damage to their surfaces, it is recommended that SLA implants be irradiated with an Er:YAG laser 
below 100 mJ/pulse and 1.5 minutes for detoxifying the implant surfaces. 
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INTRODUCTION

Dental implants have significantly contributed to recovery 
of masticatory ability and improved aesthetics for patients 
with partial or complete tooth loss, effectively replacing con-
ventional dental prostheses over the past decades. Patient 
satisfaction and treatment prognosis have also substantially 
improved. However, as better results and a higher success 
rate have been reported annually, implant-related complica-
tions are increasing accordingly. 

Complications related to dental implants are attributed to 
improper implant designs, poor initial stability, and inappro-
priate osseous tissue conditions. Peri-implantitis is apt to oc-
cur in heavy smokers; patients with poor oral hygiene; and 
those with a history of radioactive therapy, periodontal diseas-
es, and other infections [1-3]. Among these factors, dental im-
plant failure is mainly associated with microorganisms on 
the surface of implants [4]. Microorganisms cause inflamma-
tion in the mucosa around implants, which, if not treated, 
could spread to the implants’ apex and induce bone resorp-
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tion, resulting in peri-implantitis [5]. Peri-implantitis related 
bacteria including Porphyromonas gingivalis, Prevotella inter-
media, and Fusobacterium spp., are also major causes of 
chronic periodontitis [6]. Mombelli [7] suggested that bacteri-
cidal treatment such as detoxifying the implant surface, re-
ducing or removing periodontal pockets, restoring bone tis-
sues and re-osseointegration, and reinforcing oral hygiene 
should be considered for treating bacteria-contaminated im-
plants. Merffert et al. [8] claimed that exposed implants due 
to peri-implantitis can be contaminated by bacteria and en-
dotoxin and that biological recovery is not possible without 
endotoxin eradication. Zablotsky et al. [9] stated that in order 
to achieve re-osseointegration, sterilization and detoxifica-
tion of endotoxin-contaminated implant surfaces should be 
conducted.

Methods to detoxify implant surfaces are divided into three 
categories: mechanical detoxification using a plastic curet, 
ultrasonic scaler or air-powder abrasives [9]; chemical detoxi-
fication using citric acid, chlorhexidine, tetracycline, hydro-
gen peroxide, or stannous fluoride [9,10]; and laser-based 
treatments [11]. Mechanical and chemical methods can cause 
implant surface changes, and cannot effectively detoxify the 
surfaces [12-16]. In contrast, laser-based methods are highly 
effective in sterilization and detoxification, while reducing 
bleeding, swelling, and pain. Due to these advantages, vari-
ous laser methods have been suggested for detoxification of 
implant surfaces.

A laser uses a mechanism of light amplification, emitting 
electromagnetic radiation via the process of stimulated emis-
sion. Currently, carbon dioxide, diode, neodymium-doped: 
yttrium, aluminum, and garnet (Nd:YAG), and erbium-doped: 
YAG (Er:YAG) lasers are used in dentistry. Carbon dioxide la-
sers have sterilizing effects [17] but can cause damage to im-
plant surfaces by carbonization and melting due to tempera-
ture increases at intensities over 2 watts [17,18]. Some studies 
have shown that diode lasers do not cause any changes in 
implant surfaces [19] but have limited sterilizing effects [20] 
and cause temperatures to rise to over 47°C [21]. Nd:YAG la-
sers are known to have little sterilizing effect and cause 
changes in implant surfaces such as meltdown and micro-
fractures, even at very low laser intensities [19,22]. On the 
other hand, Er:YAG lasers have shown strong sterilizing ef-
fects when irradiating surfaces contaminated with Streptococ-
cus sanguine [23]. The lasers were also highly effective in re-
moving endotoxin and inducing osteoblast attachment 
when applied to implant surfaces contaminated with P. gin-
givalis [24]. It is reported that Er:YAG lasers can be effectively 
used without causing damage around treated areas [25,26]. In 
some clinical studies, non-surgical periodontal treatments 
using Er:YAG lasers significantly reduced probing depth and 

increased the clinical attachment level [27-29]. In addition, it 
was found that adhesion of osteoblast-like cells did not de-
crease even when the laser was applied to titanium discs with 
an intensity of 12.7 J/cm2, and the biocompatibility of the tita-
nium surfaces was not affected [30].

An Er:YAG laser can be effective in treating peri-implantitis. 
However, Kreisler et al. [11] suggested that proper energy lev-
els for various implant surfaces should be identified because 
laser irradiation can cause changes in implant surfaces at 
certain power levels depending on the type of implant sur-
face: titanium plasma spray (TPS) (8.9 J/cm2), sand-blasted, 
large grit, acid-etched (SLA) (11.2 J/cm2), hydroxyapatite (HA) 
(17.8 J/cm2), and machined surfaces (28 J/cm2). However, no 
substantial research has been performed or guidelines devel-
oped on the proper power and application time for effective 
sterilization without modifying implant surfaces. This study 
was conducted to evaluate the effects of Er:YAG laser irradia-
tion on the roughness and microstructure of SLA implant 
surfaces according to the power level and application time of 
the laser, and suggest a proper laser irradiation dose for de-
toxifying an SLA implant surface without causing significant 
damage. 

MATERIALS AND METHODS 

Materials 
In this study, a total of ten SLA implants (Xive, Friadent 

GmbH, Mannheim, Germany), 5.5 mm in diameter and 15 
mm in length, were used. Nine implants were used for the 
laser irradiation test groups and one for the control group. 

Test equipment 
The implant surfaces were irradiated by Er:YAG laser (KEY3, 

KaVo Dental GmbH, Biberach, German). Roughness of the 
surfaces was evaluated by a mechanical contact profilometer 
(Form Talysurf Laser 635, Taylor Hobson, Leicester, UK) and 
the microstructure of the surfaces was observed by a scan-
ning electron microscope (S-2300, Hitachi Co., Tokyo, Japan). 

Methods 
Measuring implant surface roughness 

To conduct laser detoxification and measure surface rough-
ness, implant containers were made with dental impression 
material and putty for stabilization. Areas on the implant sur-
faces subjected to the test were marked with an oil-based 
pen, and surface roughness values were measured at three 
points (2nd, 6th, and 10th valley) of the implant with a me-
chanical contact profilometer. Average roughness (Ra) was 
measured with the profilometer at three points on the im-
plants before and after the experiment with a diamond stylus 
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of radius 5 µm and a stylus angle of 90°. The lower the Ra val-
ue, the smoother the surface.

Control and test groups 
The implants belonging to the test groups were numbered 

from one through nine (No. 1 to 9), and the control implant 
was labeled No. 10. Each test group was then classified into 
one of three subgroups: group 1 included implant No. 1 to 3, 
group 2 included No. 4 to 6, and group 3 included No. 7 to 9. 

Laser irradiation
The control, No. 10, was the only implant without laser irra-

diation. Each of the three test groups was irradiated with a 
different energy level. The implants in group 1 were irradiat-
ed with 100 mJ/pulse for 1, 1.5, and 2 minutes each, while the 
implants of group 2 and 3 were irradiated with 140 mJ/pulse 
and 180 mJ/pulse, respectively, with the same application times 
as group 1. The laser was applied to three points (the 2nd, 6th, 
and 10th valley) of the implants, and each irradiated surface 
area was 2×2 mm2. All the irradiation was conducted with a 
2061 handpiece (KaVo Dental GmbH) and truncated cone tip 
optic fiber with maximum irrigation. The frequency was fixed 
at 10 Hz and the laser was operated in the near-contact mode. 
In this mode, the tip of the handpiece was at a distance of 0.5 
mm from the implant surfaces and the optical fiber was per-
pendicular to the surface of the subject in order to maximize 
the effects. The laser was applied in an up-down and right-
left motion for the fixed periods of time. After irradiation, the 
specimens were dried with air syringes.

SEM observation
The dried surfaces of the specimens were sprayed with gold 

using an ion sputtering coater before they were examined 

and photographed by a scanning electron microscope under 
a magnifying power of 500× and 2,000×. Each of the pictures 
was evaluated and analyzed to determine any changes in the 
implant surface structure before and after the laser irradiation. 

Statistical analysis
A software package was used for the statistical analysis (SPSS 

ver. 17.0, SPSS Inc., Chicago, IL, USA). Mean values and stan-
dard deviations (SDs) of the implant surface roughness before 
and after the experiment were calculated and group compar-
ison was performed by a Wilcoxon signed rank sum test. Re-
sults were considered to be significant for P-values<0.05.

RESULTS

Measurement of surface roughness
The mean value±SD of surface roughness of the nine SLA 

implants before laser irradiation was 2.057±0.408 µm. No 
change was observed in the surface roughness with irradia-
tion at 100 mJ/pulse for 1 minute, while the roughness values 
decreased with increasing application time to 1.5 and 2 min-
utes. The roughness values decreased when the test implants 
were irradiated with 140 mJ/pulse and 180 mJ/pulse, regardless 
of the application time. However, these changes in the sur-
face roughness before and after the laser irradiation were not 
statistically significant in all groups (P-value>0.05 ) (Table 1).

SEM evaluation
Control group

The SLA implant surface was observed with a scanning elec-
tron microscope under 500× and 2,000× magnification. A 
honeycombed surface structure with very small pits due to 
corrosion by acid in macroporous valleys was observed (Fig. 1). 

Test groups
The implants in group 1 (irradiated at 100 mJ/pulse) showed 

no changes in the structure of their surfaces after 1 minute 
and 1.5 minutes of irradiation (Figs. 2, 3). However, as the ir-
radiation time increased to 2 minutes under the same energy 
intensity, a heat-induced meltdown was observed in the im-
plant surface under microscopic observation at 2,000× (Fig. 
4). In group 2 and 3, for which the laser irradiation power in-
creased to 140 mJ/pulse and 180 mJ/pulse, respectively, sur-
face changes were observed in all the implants regardless of 
the application time. Meltdown and subsequent flattening of 
the surfaces were observed (Figs. 5B-10B). These changes be-
came more evident with increasing intensity of pulse energy 
and application time (Figs. 5A-10A). 

Table 1. Surface roughness values measured 3 valleys (2th, 6th, 10th 
valley) before & after surface detoxification by laser treatment 
(mean±SD).

No
Pulse energy 
(application  
time, min)

Average roughness value
P-valueBefore laser tx. 

(n=3, µm)
After laser tx. 

(n=3, µm)

1 100 mJ/pulse (1) 1.533±0.796 1.533±0.499 1
2  100 mJ/pulse (1.5) 2.014±0.362 1.665±0.432 0.285
3 100 mJ/pulse (2) 1.856±0.152 1.656±0.453 0.285
4 140 mJ/pulse (1) 2.062±0.158 1.835±0.279 0.285
5 140 mJ/pulse (1.5) 2.169±0.360 2.011±0.317 1
6 140 mJ/pulse (2) 2.187±1.195 1.936±0.908 1
7 180 mJ/pulse (1) 2.085±0.176 1.968±0.163 0.285
8 180 mJ/pulse (1.5) 2.346±0.268 2.008±0.247 0.109
9 180 mJ/pulse (2) 2.260±0.204 2.258±0.155 1

tx.: treatment.
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Figure 1. (A) Control specimen. Sand-blasted, large grit, acid-etched 
implant surface without any conditioning (×500). (B) Inset of Figure 
1A. Many macroporous valleys and microrough pits are observed 
(×2,000).

×500	 0023	 20	kV	 100	µm ×2.0k	 0022	 20	kV	 20	µm

a

BA

Figure 5. (A) Sand-blasted, large grit, acid-etched implant surface 
irradiated at 140 mJ/pulse for 1 minute (×500). (B) Inset of Figure 5A. 
Melted surface is observed (×2,000).

×500	 0012	 15	kV	 100	µm ×2.0k	 0011	 15	kV	 20	µm

a

BA

Figure 3. (A) Sand-blasted, large grit, acid-etched implant surface 
irradiated at 100 mJ/pulse for 1.5 minutes (×500). (B) Inset of Figure 
3A. Note no remarkable change (×2,000).

×500	 0014	 20	kV	 100	µm ×2.0k	 0015	 20	kV	 20	µm
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Figure 7. (A) Sand-blasted, large grit, acid-etched implant surface 
irradiated at 140 mJ/pulse for 2 minutes (×500). (B) Inset of Figure 
7A. Flattened surface is observed (×2,000).

×500	 0008	 15	kV	 100	µm ×2.0k	 0009	 15	kV	 20	µm
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Figure 2. (A) Sand-blasted, large grit, acid-etched implant surface 
irradiatedt 100 mJ/pulse for 1 minute (×500). (B) Inset of Figure 2A. 
Note no remarkable change (×2,000).
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Figure 6. (A) Sand-blasted, large grit, acid-etched implant surface 
irradiated at 140 mJ/pulse for 1.5 minutes (×500). (B) Inset of Figure 
6A. Flattened surface is observed (×2,000).
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Figure 4. (A) Sand-blasted, large grit, acid-etched implant surface 
irradiated at 100 mJ/pulse for 2 minutes (×500). (B) Inset of Figure 
4A. Melted surface is observed (×2,000).
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Figure 8. (A) Sand-blasted, large grit, acid-etched implant surface 
irradiated at 180 mJ/pulse for 1 minute (×500). (B) Inset of Figure 
8A. Melted surface is observed (×2,000).
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DISCUSSION

This study observed changes in the roughness and micro-
structure of SLA implant surfaces after Er:YAG laser irradia-
tion with varying pulse energy power and application time. 
The surface roughness values remained unchanged when 
the implant surface was irradiated at 100 mJ/pulse for 1 min-
ute. However, the Ra values decreased and surface meltdown 
was observed when the application time increased to 1.5 and 
2 minutes under the same pulse energy power. All of the 
roughness values decreased with a pulse energy power above 
140 mJ/pulse regardless of the application time and showed 
meltdown and flattening of the irradiated implant surfaces. 
Such surface changes were more notable as the pulse energy 
and the application time increased. However, the differences 
in Ra values were not statistically significant (P>0.05).

The most common implant-related complications are peri-
implant diseases associated with inflammatory conditions 
affecting tissues surrounding dental implants. The diseases 
can be classified into peri-implant muscositis and peri-im-
plantitis [5]. The former is a reversible inflammation affecting 
soft tissues surrounding functional implants, while the latter 
is an inflammation which may result in the loss of support-
ing bones and soft tissues. Fransson et al. [31] reported a 27.8% 
prevalence of peri-implantitis, while Roos-Jansåker et al. [32] 
suggested that at least 56% of the subjects exhibited sites with 
peri-implantitis.

The ultimate goal of peri-implantitis treatment is to estab-
lish re-osseointegration of exposed implant surfaces. Rough-
ened implant surfaces may contribute to favorable osseoin-
tegration, but they present a more difficult environment for 
microbial plaque removal once they are infected with peri-
implantitis [33].

Kreisler et al. [11] found that implant surface changes at dif-
ferent laser irradiation energies varied with the type of sur-
face, suggesting that the intensity of an Er:YAG laser should 
be adjusted according to the type of implant surface. There-
fore, this study aims to propose an adequate energy intensity 

and application time for effectively detoxifying infected SLA 
implant surfaces without causing changes in the implant 
surfaces.

Er:YAG laser irradiation at 100 mJ/pulse and 10 Hz did not 
raise the temperature over 47°C, which could damage sur-
rounding tissues [34,35]. Kreisler et al. [23] reported that the 
number of bacteria decreased by more than 98 percent on 
various implant surfaces contaminated with S. sanguinis when 
irradiated with an Er:YAG laser at 10 Hz with an intensity of 
60 or 120 mJ/pulse for one minute. In addition, Schwarz et al. 
[36] suggested that laser irradiation at 100 mJ/pulse and 10 
Hz on SLA implant surfaces removed plaque on the surfaces 
more effectively than plastic curettes. Schwarz et al. [30] 
found that cultured osteoblast-like cells from sarcoma on 
various implant surfaces, irradiated with a laser intensity of 
100 mJ/pulse and 10 Hz for 60 seconds, showed cell adhesion 
in a larger area than on implant surfaces detoxified with an 
ultrasonic scaler without any morphologic change. Kreisler 
et al. [11] detected alterations in SLA surfaces irradiated by 
Er:YAG at 130 mJ/pulse for 5 seconds in a single spot. Based 
on previous studies and this experiment, laser irradiation at 
100 mJ/pulse and 10 Hz for 1 minute is suggested as a stan-
dard for detoxification of implant surfaces.

Kreisler et al. [11] applied a laser for 5 seconds to each im-
plant with a surface area of 0.229 mm2 in their study to deter-
mine the effect of Nd:YAG, holmium:YAG, Er:YAG, CO2, and 
GaAIAs on the surface of endosseous dental implants. In this 
study, the total irradiated surface area was 2×2 mm2 and the 
radius of the laser tip used was 540 µm. To ensure 5 seconds 
of laser irradiation for every spot, the irradiation time was 
converted to 87 seconds, that is, about 1.5 minutes. With 1.5 
minutes as the reference time, the laser application time was 
set to 1 minute, 1.5 minutes and 2 minutes.

In this study, the pulse energy and application time were 
the only variables controlled during the irradiation. In actual 
clinical situations, an irradiation angle of 90° from the im-
plant surface is only possible after flap elevation. Thus, altera-
tion in the irradiation angle is inevitable to perform laser 

Figure 9. (A) Sand-blasted, large grit, acid-etched implant surface 
irradiated at 180 mJ/pulse for 1.5 minutes (×500). (B) Inset of Figure 
9A. Flattened surface is observed (×2,000).
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Figure 10. (A) Sand-blasted, large grit, acid-etched implant surface 
irradiated at 180 mJ/pulse for 2 minutes (×500). (B) Inset of Figure 
10A. Flattened surface is observed (×2,000).
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therapy on patients, and the intensity of the laser energy will 
change accordingly with the angle change. Further investi-
gation should be conducted to determine the effects of dif-
ferent irradiation angles on the energy intensity transmitted 
to the implant surfaces and provide guidelines for clinical 
situations.

The SLA surface used in this study, Friadent plus, was creat-
ed by grit-blasting with corundum of 354 to 500 µm and 
thermal etching with HCI, H2SO4, HF, and oxalic acid. In the 
process of grit-blasting, pores of 3 to 5 µm in diameter and 2 
to 3 µm in depth with micropores of 0.5 to 1 µm in diameter 
within the pores are created on the surfaces. They form a 
unique honeycomb-shaped surface. The study by Sammons 
et al. [37] reported the Ra value of the surface roughness to be 
2.75 µm (±0.46 µm) using the same implants, while the aver-
age surface roughness in this study was 2.057 µm (±0.408 µm). 
It is presumed that the difference in numbers can be ascribed 
to the different areas measured and different measuring 
methods. Wennerberg and Albrektsson [38] reported that in 
general, the surface roughness values on the tops are larger 
than those for the valleys or flanks. In this study, the surface 
roughness of valleys was measured, resulting in a smaller 
value compared to those commonly reported. 

Based on measurements by optical interferometers and 
Gaussian filters, Albrektsson and Wennerberg [39] classified 
the surface roughness values into four groups: ‘smooth sur-
face’ for roughness values under 0.5 µm, ‘minimally rough 
surface’ for roughness values between 0.5 and 1 µm, ‘moder-
ately rough surface’ for values between 1 and 2 µm, and ‘rough 
surface’ for values over 2 µm [40]. Wennerberg and Albrekts-
son [38] suggested an ideal roughness range for implants to 
be between 1 and 1.5 µm. The SLA implant surface roughness 
used in this study belongs to the ‘rough surface’ category, 
with surface roughness just over 2 µm, and the roughness 
value decreased after irradiation to 1.871 µm (±0.384 µm), and 
this falls into the 1 to 2 µm range, an optimum condition for 
osseointegration.

In this study, changes on the SLA implant surfaces were de-
tected when the surfaces were irradiated with an Er:YAG la-
ser with the intensity of 100 mJ/pulse for 2 minutes. The 
findings showed that laser irradiation with 100 mJ/pulse for 
less than 1.5 minutes is recommended for optimum results 
without causing changes to the SLA surface.

Although this study was conducted with the energy inten-
sity of the laser and application time as the only variables, 
available variables include frequency, distance, angles of irra-
diation, and the sizes and shapes of the stylus tips of the la-
ser. Therefore, further studies based on additional variables 
should be conducted to verify the effects of Er:YAG lasers, 
and the effects of altered surfaces on cell adhesion and re-

osseointegration should also be investigated. 

CONFLICT OF INTEREST

No potential conflict of interest relevant to this article was 
reported. 

REFERENCES

1. el Askary AS, Meffert RM, Griffin T. Why do dental implants 
fail? Part I. Implant Dent 1999;8:173-85.

2. Lindhe J, Meyle J; Group D of European Workshop on 
Periodontology. Peri-implant diseases: Consensus Report 
of the Sixth European Workshop on Periodontology. J Clin 
Periodontol 2008;35(8 Suppl):282-5.

3. Heitz-Mayfield LJ. Peri-implant diseases: diagnosis and 
risk indicators. J Clin Periodontol 2008;35(8 Suppl):292-304.

4. Mombelli A, Buser D, Lang NP. Colonization of osseoin-
tegrated titanium implants in edentulous patients. Early 
results. Oral Microbiol Immunol 1988;3:113-20.

5. Albrektsson T, Isidor F. Consensus report of session IV. In: 
Lang NP, Karring T, editors. Proceeding of the 1st Europe-
an Workshop on Periodontology. London: Quintessence 
Books; 1994. p.365-9. 

6. Esposito M, Thomsen P, Ericson LE, Lekholm U. Histo-
pathologic observations on early oral implant failures. Int 
J Oral Maxillofac Implants 1999;14:798-810.

7. Mombelli A. Microbiology and antimicrobial therapy of 
peri-implantitis. Periodontol 2000 2002;28:177-89.

8. Meffert RM, Langer B, Fritz ME. Dental implants: a review. 
J Periodontol 1992;63:859-70.

9. Zablotsky MH, Diedrich DL, Meffert RM. Detoxification 
of endotoxin-contaminated titanium and hydroxyapatite-
coated surfaces utilizing various chemotherapeutic and 
mechanical modalities. Implant Dent 1992;1:154-8.

10. Krozer A, Hall J, Ericsson I. Chemical treatment of ma-
chined titanium surfaces. An in vitro study. Clin Oral Im-
plants Res 1999;10:204-11.

11. Kreisler M, Götz H, Duschner H. Effect of Nd:YAG, 
Ho:YAG, Er:YAG, CO2, and GaAIAs laser irradiation on 
surface properties of endosseous dental implants. Int J 
Oral Maxillofac Implants 2002;17:202-11.

12. Augthun M, Tinschert J, Huber A. In vitro studies on the 
effect of cleaning methods on different implant surfaces. 
J Periodontol 1998;69:857-64. 

13. Van de Velde E, Thielens P, Schautteet H, Vanclooster R. 
Subcutaneous emphysema of the oral floor during clean-
ing of a bridge fixed on an IMZ implant. Case report. Rev 
Belge Med Dent (1984) 1991;46:64-71.

14. Thomson-Neal DM, Evans GH, Meffert RM. Effects of 



Journal of Periodontal
& Implant ScienceJPIS Ji-Hun Lee et al. 141

various prophylactic treatments on titanium, sapphire, 
and hydroxyapatite-coated implants: An SEM study. Int J 
Periodontics Restorative Dent 1989;9:300-11.

15. Fox SC, Moriarty JD, Kusy RP. The effects of scaling a tita-
nium implant surface with metal and plastic instruments: 
an in vitro study. J Periodontol 1990;61:485-90.

16. Mouhyi J, Sennerby L, Pireaux JJ, Dourov N, Nammour S, 
Van Reck J. An XPS and SEM evaluation of six chemical 
and physical techniques for cleaning of contaminated ti-
tanium implants. Clin Oral Implants Res 1998;9:185-94.

17. Kato T, Kusakari H, Hoshino E. Bactericidal efficacy of 
carbon dioxide laser against bacteria-contaminated tita-
nium implant and subsequent cellular adhesion to irradi-
ated area. Lasers Surg Med 1998;23:299-309.

18. Kreisler M, Al Haj H, Götz H, Duschner H, d’Hoedt B. Ef-
fect of simulated CO2 and GaAlAs laser surface decon-
tamination on temperature changes in Ti-plasma sprayed 
dental implants. Lasers Surg Med 2002;30:233-9.

19. Romanos GE, Everts H, Nentwig GH. Effects of diode and 
Nd:YAG laser irradiation on titanium discs: a scanning 
electron microscope examination. J Periodontol 2000;71: 
810-5.

20. Dörtbudak O, Haas R, Bernhart T, Mailath-Pokorny G. Le-
thal photosensitization for decontamination of implant 
surfaces in the treatment of peri-implantitis. Clin Oral 
Implants Res 2001;12:104-8.

21. Kreisler M, Al Haj H, D’Hoedt B. Temperature changes 
induced by 809-nm GaAlAs laser at the implant-bone in-
terface during simulated surface decontamination. Clin 
Oral Implants Res 2003;14:91-6. 

22. Block CM, Mayo JA, Evans GH. Effects of the Nd:YAG 
dental laser on plasma-sprayed and hydroxyapatite-coat-
ed titanium dental implants: surface alteration and at-
tempted sterilization. Int J Oral Maxillofac Implants 1992; 
7:441-9.

23. Kreisler M, Kohnen W, Marinello C, Götz H, Duschner H, 
Jansen B, et al. Bactericidal effect of the Er:YAG laser on 
dental implant surfaces: an in vitro study. J Periodontol 
2002;73:1292-8.

24. Friedmann A, Antic L, Bernimoulin JP, Purucker P. In vitro 
attachment of osteoblasts on contaminated rough titani-
um surfaces treated by Er:YAG laser. J Biomed Mater Res 
A 2006;79:53-60.

25. Eberhard J, Ehlers H, Falk W, Açil Y, Albers HK, Jepsen S. 
Efficacy of subgingival calculus removal with Er:YAG laser 
compared to mechanical debridement: an in situ study. J 
Clin Periodontol 2003;30:511-8.

26. Schwarz F, Sculean A, Berakdar M, Szathmari L, Georg T, 
Becker J. In vivo and in vitro effects of an Er:YAG laser, a 
GaAlAs diode laser, and scaling and root planing on peri-

odontally diseased root surfaces: a comparative histologic 
study. Lasers Surg Med 2003;32:359-66.

27. Schwarz F, Sculean A, Berakdar M, Georg T, Reich E, Beck-
er J. Clinical evaluation of an Er:YAG laser combined with 
scaling and root planing for non-surgical periodontal 
treatment. A controlled, prospective clinical study. J Clin 
Periodontol 2003;30:26-34.

28. Schwarz F, Sculean A, Berakdar M, Georg T, Reich E, Beck-
er J. Periodontal treatment with an Er:YAG laser or scaling 
and root planing. A 2-year follow-up split-mouth study. J 
Periodontol 2003;74:590-6.

29. Schwarz F, Sculean A, Georg T, Reich E. Periodontal treat-
ment with an Er: YAG laser compared to scaling and root 
planing. A controlled clinical study. J Periodontol 2001;72: 
361-7.

30. Schwarz F, Rothamel D, Sculean A, Georg T, Scherbaum W, 
Becker J. Effects of an Er:YAG laser and the Vector ultra-
sonic system on the biocompatibility of titanium implants 
in cultures of human osteoblast-like cells. Clin Oral Im-
plants Res 2003;14:784-92.

31. Fransson C, Lekholm U, Jemt T, Berglundh T. Prevalence 
of subjects with progressive bone loss at implants. Clin 
Oral Implants Res 2005;16:440-6.

32. Roos-Jansåker AM, Renvert H, Lindahl C, Renvert S. Nine- 
to fourteen-year follow-up of implant treatment. Part III: 
factors associated with peri-implant lesions. J Clin Peri-
odontol 2006;33:296-301.

33. Rimondini L, Farè S, Brambilla E, Felloni A, Consonni C, 
Brossa F, et al. The effect of surface roughness on early in 
vivo plaque colonization on titanium. J Periodontol 1997; 
68:556-62.

34. Eriksson AR, Albrektsson T. Temperature threshold levels 
for heat-induced bone tissue injury: a vital-microscopic 
study in the rabbit. J Prosthet Dent 1983;50:101-7.

35. Kreisler M, Al Haj H, d’Hoedt B. Temperature changes at 
the implant-bone interface during simulated surface de-
contamination with an Er:YAG laser. Int J Prosthodont 
2002;15:582-7.

36. Schwarz F, Sculean A, Romanos G, Herten M, Horn N, 
Scherbaum W, et al. Influence of different treatment ap-
proaches on the removal of early plaque biofilms and the 
viability of SAOS2 osteoblasts grown on titanium implants. 
Clin Oral Investig 2005;9:111-7.

37. Sammons RL, Lumbikanonda N, Gross M, Cantzler P. 
Comparison of osteoblast spreading on microstructured 
dental implant surfaces and cell behaviour in an explant 
model of osseointegration. A scanning electron micro-
scopic study. Clin Oral Implants Res 2005;16:657-66.

38. Wennerberg A, Albrektsson T. Suggested guidelines for 
the topographic evaluation of implant surfaces. Int J Oral 



Journal of Periodontal
& Implant ScienceJPISEffect of Er:YAG laser irradiation on SLA implants142

Maxillofac Implants 2000;15:331-44.
39. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 

1: review focusing on topographic and chemical proper-
ties of different surfaces and in vivo responses to them. 

Int J Prosthodont 2004;17:536-43.
40. Wennerberg A, Albrektsson T. Effects of titanium surface 

topography on bone integration: a systematic review. Clin 
Oral Implants Res 2009;20 Suppl 4:172-84.


