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Abstract. To compute flows around a body with a rotating or movable part like
a tiltrotor aircraft, the multi axes sliding mesh approach has been proposed. This
approach is based on the unstructured moving grid finite volume method, which
has adopted the space-time unified domain for control volume. Thus, it can
accurately express such a moving mesh. However, due to the difficulty of mesh
control in viscous flows and the need to maintain the stability of computation, it is
restricted to only inviscid flows. In this paper, the multi axes sliding mesh
approach was extended to viscous flows to understand detailed flow phenomena
around a complicated moving body. The strategies to solve several issues not
present in inviscid flow computations are described. To show the validity of the
approach in viscous flows, it was applied to the flow field of a sphere in uniform
flow. Multiple domains that slide individually were placed around the sphere, and
it was confirmed that the sliding mesh did not affect the flow field. The usability
of the approach is expected to be applied to practical viscous flow computations.
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1 Introduction

Numerical simulations of flows around a body with movable parts like a rotorcraft or
sports athlete has a high utility value for various fields. However, handling a moving
mesh is challenging in a body-fitted coordinate system. When the movable scope of its
parts is small, the moving mesh method using a tension spring [1] can be used. On the
other hand, for large motions, the mesh method is restricted. It is almost impossible to
express a rotary motion such as the rotor part of a helicopter by using the moving mesh
method with spring. To resolve this issue, the sliding mesh approach [2] was proposed.
In this approach, the motion of a body is expressed by sliding the boundary of adjacent
divided computational domains. This is different from the overset grid method in which
one domain is put on another domain. An information exchange of physical values
between domains is then conducted by interpolation, which might not satisfy physical
conservation laws. On the other hand, by using the sliding mesh approach for the
information exchange, the physical value can be conserved. One of the simplest
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applications of the sliding mesh approach is the divided cylindrical computational
domain for axial direction. Its rotating cylinder has been applied to, for example, the
simulation of a flow around a multistage turbine cascade. Also, one domain can be also
embedded in another domain. In this case, the embedded sub domain should be
cylindrical or spherical. Furthermore, there should not be a gap between two domains
during the rotation of the embedded domain.

Although the sliding mesh approach is very useful, it is difficult to express com-
plicated motion. For example, the rotor part of a helicopter is expressed with com-
parative ease, but to express the rotor blade of a tiltrotor like the Osprey V-22 is
impossible. This is because the rotor blade rotates, and moreover, an engine nacelle
having a rotor blade also rotates on different axis to change the flight mode. In this case,
the flows around a tiltrotor during rotor-blade mode and fixed-wing mode are computed
[3] individually. In a simulation focused on changing flight modes, its computations [4]
were conducted for fixed degrees of the engine nacelle at 0, 30, 60, and 90° as
calculating a moving engine nacelle was quite difficult. For this issue, we proposed the
multi axes sliding mesh approach [5], in which the moving engine nacelle is expressed
in the middle size computational domain. The small size domain including the rotating
blade is then embedded in the middle size domain with both domains embedded in the
large size main domain. Furthermore, we succeeded in rotating the small and middle
domains individually. However, the approach is conducted under inviscid flows to
prioritize reproducibility of complicated motion. Therefore, the turbulent flow transi-
tion phenomenon in the wake of rotor could not be calculated.

The objective of this paper is to apply the multi axes sliding mesh approach to
viscous flows. The formulation of the approach and its validity when applying a flow
around a sphere will be shown.

2 Numerical Approach

2.1 Governing Equation

For the governing equation, the following three-dimensional (3D) Navier–Stokes
equation for compressible flows written in conservation law form is adopted.
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The unknown variables q, u, v, w, and e show the gas density, velocity components
in the x, y, and z directions, and total energy per unit volume, respectively. The
working fluid is assumed to be a perfect gas, and the pressure p is defined by

p ¼ c� 1ð Þ e� 1
2
q u2 þ v2 þw2� �� �

ð3Þ

fE5, fF5, and fG5 are shown in Eq. (4). Here, l and lt are the coefficients of molecular
viscosity and eddy viscosity, respectively. Pr, Prt, and Re are the Prandtl number,
turbulent Prandtl number, and Reynolds number, respectively. The ratio of specific
heats c is typically taken as being 1.4. In this study, Pr = 0.72 and Prt= 0.9 are
obtained.
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2.2 Numerical Schemes

The sliding mesh approach is a type of moving mesh approach. In this study, the
unstructured moving grid finite volume method [6] is adopted. The method assures a
geometric conservation law [7] as well as a physical conservation law. A control
volume in the space-time unified domain (x, y, z, t), which is four-dimensional (4D) for
3D flows, is then used. This approach has been mainly applied to Euler equations for
inviscid compressible flows. In this paper, the approach is discretized for compressible
viscous Fv flows. For the discretization, Eq. (1), which is written in divergence form, is
integrated as Z

X

ereFvdX ¼ 0; ð5Þ
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Since the approach is based on a cell-centered finite volume method, the flow
variables are defined at the center of the cell in the (x, y, z) space. Thus, the control
volume becomes a 4D polyhedron in the (x, y, z, t)-domain. For the control volume,
Eq. (4) is rewritten using the Gauss theorem as:
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Here, Ns indicates the number of boundary surfaces of the element. l is the volume of
trajectory generated by the moving boundary surface of the element from t = n to t =
n + 1. Then, Eq. (7) is rewritten as Eq. (9), and by solving Eq. (9), new q is obtained.
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The inviscid flux vectors are evaluated using the Roe flux difference splitting
scheme [8] with the MUSCL scheme as well as the Venkatakrishnan limiter [9]. The
vectors are discretized by central difference. To solve the implicit algorithm, the
LU-SGS implicit scheme is adopted.

2.3 Evaluation on a Boundary

On a boundary, the first derivative of a physical value cannot be evaluated using central
difference. For example, discretization of the first derivative for primitive variable u is
described. Figure 1 shows a discretization outline of the first derivative.

The first derivative for primitive variable u is obtained by solving the follow
equations.
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Here, v indicates vertex, c indicates the center of an element, and w indicates the center
of a boundary surface for an element. Also, uw is evaluated as following equation,
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2
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: ð12Þ

The vertex of the primitive variable uvi is calculated using the following weighted
average method, where uwj is the physical value at the cell center of the triangle
constructed by vertex wviw and rij is the distance between the vertex and center point of
each cell around it.
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3 Sliding Mesh Approach

3.1 Multi Axes Sliding Mesh Approach

In the sliding mesh approach, a sliding boundary surface exists. Here, the embedded sub
computational domain is rotated in the main domain. In a 3D system, the embedded sub
domain should have an almost spherical or cylindrical configuration. Although the

Fig. 1. Discretization outline of the first derivative
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computational cost using the approach is not expensive, the movable range of vertices is
limited. In other words, the motions of an object are restricted. Thus, to improve flex-
ibility, the axes of the rotating sub domain are added in the approach. However, to avoid
an interaction between sub domains that have individual axes, one sub domain is
embedded in the other sub domain, as shown in Fig. 2. In this figure, computational
domain 3 is embedded in computational domain 2, which is embedded in computational
domain 1. The whole domain can be moved using the moving computational domain
(MCD) method [10]. The advantage of this method is that it does not require a spring
method to move the object, so it is less likely to create extremely skewed elements.
Basically, the multi axes sliding mesh approach has the potential to express any object
motion combined with the MCD method without destroying computational mesh.

The physical values on the sliding plane interpolate with each other through the
plane. Interpolation values are determined depending on the area where domain ele-
ments overlap. Specifically, the value is calculated in accordance with the area of the
overlapping part Sij between the elements of the sliding plane, as shown in Fig. 3. The
value of the part is defined with Eq. (15).

qbi ¼

P
j2i

qjSijP
j2i

Sij
ð15Þ

Where
P

j2i shows the sum of cell j adjacent to cell i. Then, qj is the physical value of
cell j.

Fig. 2. Multi axes sliding mesh approach
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3.2 Multi Axes Sliding Mesh for Viscous Flow Computation

3.2.1 Evaluation of the First Derivative on a Sliding Surface
As the sliding surface is also a boundary, a specific evaluation of the first derivative of
the primitive variable on the sliding surface is required along with the evaluation of the
boundary. However, unlike boundaries, there is an element on the opposite side of a
surface. Thus, the physical value of that element should be used to calculate the first
derivative of the primitive variable. First, a ghost cell j adjacent to element i through the
boundary surface of element i is generated. Then, qbj calculated as Eq. (16) is inter-
polated in element j. Here, element k is adjacent to element i across the sliding surface.
Figure 4 shows a schematic diagram around the sliding surface.

qbj ¼

P
k2j

qkSjkP
k2j

Sjk
: ð16Þ

For example, the first derivative of primitive variable u is calculated using the
following central difference Eq. (17) and the partially deformed Gauss-Green’s
theorem (18).

Fig. 3. Overlapping part in slide element

Fig. 4. Evaluation of the first derivative on a sliding surface

52 M. Yamakawa et al.



@ u
@ x

� �
i j
¼ 1

2
@ u
@ x

� �
i
þ @ u

@ x

� �
j

( )
; ð17Þ

@ u
@ x

� �
i
¼ 1

VX i

XNs

j2 i

hfiui þ hfjujkðjÞþ hbjubj 1� kðjÞð Þ
hf i þ hf jkðjÞþ hbj 1� kðjÞð Þ

� �
nij: ð18Þ

Where hbj is calculated using hk, which is the distance between the center point of
element k and the center of the adjacent surface of elements i and j, as shown in
Eq. (19),

hbj ¼

P
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In Eq. (18), if adjacent element j is a ghost cell, k(j) = 0, else, k(j) = 1.

3.2.2 Evaluation of the First Derivative on an Element Having
both a Sliding Surface and Boundary

In this subsection, an evaluation of the first derivative on an element that has both a
sliding surface and boundary is described. First, the primitive variable for a vertex
located on both the sliding surface and boundary is calculated. The first derivative of
the primitive variable is then calculated using Eqs. (10) to (14). For example, the
calculation procedure of the primitive variable uvi is shown in Eqs. (20) to (22). Its
schematic figure of this case is shown in Fig. 5.
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Where ubj is the primitive variable in the center of the ghost cell of element j that has
vertex i. The variable is then calculated from Eq. (15). (xck, yck, zck) is the coordinates in
the center of element k located adjacent to element j across the sliding surface. Finally,
element j has vertex i. If element j is a ghost cell, kv(j) = 0, else, kv(j) = 1.
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3.2.3 Prism Element on Sliding Surface
When viscous flows are computed using an unstructured mesh, it is necessary to use
quite thin prism elements in the boundary layer. However, if the shape of the body
boundary is curved, part of an element might overlap the sliding element and static
element as shown in Fig. 6. If there is no overlap between the elements, the physical
value cannot be interpolated. Such a problem occurs when the difference between both
volumes is not small. Thus, the volume difference should be as small as possible.

Fig. 5. Evaluation of the first derivative on a sliding surface and boundary

Fig. 6. Sliding mesh near a body surface
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4 Verification of the Multi Axes Sliding Mesh Approach

4.1 Application to a Flow Around a Sphere

The multi axes sliding mesh approach is applied to a viscous flow around a sphere.
Figure 7 shows a schematic figure of the flow. The sphere is placed in a uniform flow
with two sliding cylinders, which have rotation axes in different directions. Each
sliding cylindrical mesh rotates around the static sphere, so the sliding mesh must not
affect the flow. To confirm the validity of the approach, it is compared with the flow
around a sphere in a single mesh. In Fig. 8, case 1 shows a schema of multi axes sliding
cylinders around a sphere and case 2 shows its comparison.

4.2 Initial Mesh and Computational Conditions

Figure 9 shows the initial mesh for case 1. The total number of meshes is 4,219,268.
Figure 10 shows a single mesh for comparison (case 2). The number of meshes is
4,578,854. Their elements were created by using MEGG3D [11]. The diameter of the
computational domain (domain 3 in case 1, whole domain in case 2) is 40 times that of
the sphere.

Fig. 7. Multi axes sliding mesh around a sphere

Fig. 8. Schema of comparative computation
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Fig. 9. Case 1: Multi axes sliding mesh (Left: atmosphere, Right: sliding cylinders)

Fig. 10. Case 2: Single mesh (Left: atmosphere, Right: whole mesh)

Table 1 Conditions to verify the interpolation on the sliding mesh surface in consideration of
viscosity

Name Symbol Value

Initial conditions
Density q 1.0
Velocity (x-direction) u 0.1
Velocity (y-direction) v 0.0
Velocity (z-direction) w 0.0
Pressure p 1.0/c
Other conditions
Time step size Dt 0.001
Reynolds number Re 10,000
Rotational speed of domains x1, x2 0.05, 0.03
Radius (domain 1, domain 2) r1, r2 0.7, 0.75
Height (domain 1, domain 2) h1, h2 0.25, 1.5

56 M. Yamakawa et al.



Computational conditions are shown in Table 1. The rotations of domains 1 and 2
in case 1 are dominated by Eqs. (23) and (24), respectively. Therefore, while both
domain 1 and its axis rotates, only domain 2 rotates and its axis remains fixed.
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4.3 Computational Result

Figure 11 shows the conditions of the sliding mesh as the result. The sliding motion
was confirmed to have no skewed and crushed elements. Under the sliding mesh
environment, a flow around a sphere was computed. Figure 12 shows the velocity
contours. Around the sphere, the flow in case 1 corresponded reasonably well with that
in case 2. Thus, highly accurate interpolation was seen on the sliding surface, con-
firming that the sliding mesh did not affect the flow.

The pressure drag coefficient of the sphere surface in case 1 was compared with that
of case 2, other calculation results [12], and experimental results [13] as shown in
Table 2. The discrepancy between case 1 and other calculation results is around 1.0%.
Furthermore, the deviation from the experimental results is less than 3.0%, which also
shows the validity of the sliding approach. The discrepancy between case 2 and the
other calculation and experimental results is larger than case 1 despite no moving and
sliding mesh around the sphere. This is possibly due to the cylindrical sliding domain
potentially generating a regular mesh.

Figure 13 shows the averaged pressure drag coefficient of case 1 and case 2 on a
sphere surface. As the flow is unsteady, the time-averaged drag coefficient is used. Both
match in front of the sphere, but there is a slight difference in wake. In general, a
complicated flow containing vortices occurs behind a sphere. Thus, the mesh behind
the sphere should be generated delicately. However, interpolation between the first
layer of the static mesh and sliding mesh might affect such a sensitive flow.

Fig. 11. Conditions of the sliding mesh
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Case 1

Case 2

Fig. 12. Velocity contours around sphere

Table 2. Drag coefficient of sphere

Case 1 Case 2 Calculated value Experimental value

Drag coefficient 0.389 0.379 0.393 0.40

Fig. 13. Averaged pressure drag coefficient on sphere surface
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5 Conclusion

In this paper, the multi axes sliding mesh approach for compressible viscous flows was
formulated. In particular, the interpolation process between prism elements on sliding
surfaces was described. As a result of the computation of the flow around a sphere, the
sliding motion of multiple cylinders without skewed and crushed elements were con-
firmed. The results also showed that there the sliding mesh had no affect on flow.
A comparison of other experimental and computational results showed the validity of
the multi axes sliding mesh approach. This approach could potentially be applied to
complicated motions like a bicycle rider is computing.
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