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Standing genetic variation is the predominant source acted on by selection.

Organisms with high genetic diversity generally show faster responses toward

environmental change. Nosema ceranae is a microsporidian parasite of honey

bees, infecting midgut epithelial cells. High genetic diversity has been found

in this parasite, but the mechanism for the parasite to maintain this diversity

remains unclear. This study involved continuous inoculation of N. ceranae to

honey bees. We found that the parasites slowly increased genetic diversity

over three continuous inoculations. The number of lost single nucleotide

variants (SNVs) was balanced with novel SNVs, which were mainly embedded

in coding regions. Classic allele frequency oscillation was found at the regional

level along the genome, and the associated genes were enriched in apoptosis

regulation and ATP binding. The ratio of synonymous and non-synonymous

substitution suggests a purifying selection, and our results provide novel

insights into the evolutionary dynamics in microsporidian parasites.
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Introduction

Microsporidia comprise a large group of obligate intracellular parasites, which
forms an early branch in the fungal kingdom (Capella-Gutiérrez et al., 2012; Choi
and Kim, 2017). Microsporidian genomes were generally compact, ranging between
2 and 5 Mbp (Ndikumana et al., 2017), arguably because they rely on host cells for
much of their metabolic processes. Interestingly, one exceptionally large genome of
51 Mbp has been reported, and this species maintains transportable elements, which
are exceedingly rare in microsporidia generally (Desjardins et al., 2015). Conventional
mitochondria are lost during evolution, leaving tiny mitochondrially derived organelles
called mitosomes (Burri et al., 2006). Microsporidian infections have been reported to
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inhibit host apoptosis, suppress host immune responses, and
enhance host metabolism (Scanlon et al., 1999; del Aguila
et al., 2006; Antunez et al., 2009; Cuomo et al., 2012; Higes
et al., 2013; Martín-Hernández et al., 2017). More recently, a
parasitic miRNA was found to be a virulence factor for one
microsporidian to establish infection in silkworms (Dong et al.,
2021).

Nosema ceranae is a microsporidian parasite that infects
epithelial cells of honey bee midgut tissue (Higes et al., 2007).
N. ceranae was first described in the Asian honey bee Apis
cerana, which has established infection in the European honey
bee Apis mellifera globally (Fries et al., 1996; Higes et al.,
2006; Huang et al., 2007). The genome size of N. ceranae
is 8.8 Mbps, with 2,280 protein-coding genes (Huang et al.,
2021). The infection starts with the ingestion of N. ceranae
spore-contaminated nectar. A parasite proliferation cycle lasts
approximately 4 days, defined by life stages from meronts
and sporonts to mature spores (Higes et al., 2007). Infected
cells eventually burst to release a large number of spores.
Parasites can then germinate to infect neighboring healthy
epithelial cells or can be expelled into the environment through
feces. Honey bees infected by N. ceranae showed reduced
life span, enhanced energetic burden, and impaired navigation
and memory (Antunez et al., 2009; Mayack and Naug, 2009;
Eiri et al., 2015; Gage et al., 2018). In extreme conditions,
the infection may lead to colony collapse (Higes et al., 2008;
Botías et al., 2013). Using a set of genetic markers, high
genetic diversity of N. ceranae has been found. Surprisingly,
this genetic diversity can be even higher within a colony
than among colonies (Gómez-Moracho et al., 2014, 2015).
Additionally, the genetic variation of N. ceranae was minor
among geographically distant locations (Pelin et al., 2015). The
host shapes the parasite diversity, and the parasite drives the
host diversification (Kamiya et al., 2014; Betts et al., 2018;
McNew et al., 2021). It remains unclear how N. ceranae could
maintain high levels of polymorphism. We hypothesized that
mutation and frequency-dependent selection together shape the
adaptation of the parasite. To validate the above hypothesis, the
single nucleotide variants (SNVs) of N. ceranae were quantified
over three successive generations to assess the frequency of novel
and lost SNVs, and allele oscillation from parental to offspring
spores.

Materials and methods

Parasite isolation, inoculation, and
sample collection

To harvest sufficient spores, 300 honey bee foragers were
randomly collected from five heavily infected honey bee
(A. mellifera) colonies in the experimental apiary of Jiangxi
Agricultural University following a regular survey. Midguts of

these honey bees were dissected and homogenized to isolate
N. ceranae spores via centrifugation (Fries et al., 2013). Then,
the spores were purified using Percoll gradient centrifugation
and confirmed as pure N. ceranae by species-specific fragment
size of a conventional PCR (Chen et al., 2013; Fries et al.,
2013). The purified spores were defined as F0_spores. A subset
of these F0_spores was used to extract genomic DNA using
cetyltrimethylammonium bromide (CTAB) (Chen et al., 2013).
The remaining F0_spores were used to inoculate newly emerged
honey bees. Sealed honey bee (A. mellifera) brood frames were
kept in an incubator (34 ± 1◦C, 60% relative humidity). In total,
200 newly emerged honey bee workers were individually fed
with 2 µl sucrose solution containing 105 N. ceranae F0 spores.

Additionally, 200 newly emerged honey bee workers were
fed with 2 µl sucrose solution as the F1 uninfected group.
During the experiment, cohorts were divided into 4 cups
containing 50 bees each and maintained on 50% sucrose
solution ad libitum in the incubator. To harvest sufficient spores
to infect a new batch of honey bees, the midgut was dissected
from individual honey bees at 14 days postinfection (dpi), and
F1 spores were collected. A subset of F1 spores was again used
to extract genomic DNA, and the remaining F1 spores were
used to inoculate 100 newly emerged honey bees due to a
limited number of spores. In total, 100 newly emerged honey bee
workers were fed with 2 µl sucrose solution as the F2 uninfected
group. At 14 dpi, the midgut was dissected from individual
honey bees and then pooled for spore purification, defined as
F2 spores. The experiment was duplicated. Overall, two libraries
for F0_spores, two libraries for F1 spores, and two libraries for
F2 spores were prepared and sequenced on Illumina Hiseq 2000
platform in Novogene Co.

Bioinformatic and statistics

The quality of DNA sequencing reads was processed with
Fastp and validated with FastQC (Chen et al., 2018). DNA
sequencing reads were aligned to the N. ceranae genome (Ncer
3.0, GCA_004919615.1) using BWA with default parameters (Li
and Durbin, 2009; Huang et al., 2021). The SNVs were identified
and annotated using the Picard-GATK-SNPEFF pipeline (Van
der Auwera et al., 2013). The SNVs with a quality score of
less than 50 and locus alignment coverage of less than 10
were removed. Enrichment GO terms were analyzed using
TopGO, R (Alexa and Rahnenfuhrer, 2021). The SNVs among
F0, F1, and F2 spores were analyzed using chi-squared tests
implemented using R (R Core Team, 2013). The lost and
novel SNVs among the two generations were analyzed using
paired t-test, implemented using R (R Core Team, 2013).
The ratio of πnon-synonymous/πsynonymous (πa/πs) was calculated
using SNPGenie (Nelson et al., 2015). The genome diversity
π, Watterson’s θ, and corrected Tajima’s D were calculated
using Popoolation (Kofler et al., 2011a). The fixation index FST
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was calculated using Popoolation2 (Kofler et al., 2011b). The
recombination rate was calculated based on the allele frequency
using ReLERNN (Adrion et al., 2020). DNA sequencing reads
have been deposited in NCBI under BioProject PRJNA784016.

Results

The number of novel and lost single
nucleotide variants were balanced
between parental and offspring spores

Nosema ceranae spores were not found in the uninfected
groups. For the spores purified from infected honey bees,
104 ± 7 million reads (mean ± SD) were aligned to the
N. ceranae genome (150 bp paired reads, over 1,000 genome
coverage), which accounted for 93.2% of all sequenced reads.
In F0 spores, 97,279 and 98,314 SNVs were identified in
two replicates with 96.8% overlap, reflecting approximately
11 SNVs per Kbp (Figure 1). Additionally, over 95%
SNVs were heterozygous. Within coding regions, 7,352 non-
synonymous and 8,695 synonymous SNVs were identified
in F0 spores. From F0 to F1 spores, 103 synonymous
and 200 non-synonymous SNVs were lost. Comparatively,
314 synonymous and 350 non-synonymous novel SNVs
were gained in F1 spores. From F1 to F2 spores, 302
synonymous and 314 non-synonymous SNVs were lost.

Meanwhile, 982 synonymous and 1,228 non-synonymous novel
SNVs were gained. The dynamic of non-synonymous SNVs
was significantly stronger than synonymous SNVs from F0 to
F2 spores (paired t-test, P < 0.01). Among the novel non-
synonymous SNVs in F1 spores, 198 SNVs were maintained
in F2 spores located within 54 genes. Using the genome as
the background, the 54 genes were significantly enriched in
the metabolism pathway (Fisher’s exact test, P < 0.001). After
normalizing the contig length, the contig SMUP01000049.1
(13.1 novel SNVs per 10 kbp), SMUP01000091.1 (8.6 novel
SNVs per 10 kbp), SMUP01000014.1 (8.0 novel SNVs per
10 kbp), SMUP01000071.1 (6.7 novel SNVs per 10 kbp), and
SMUP01000003.1 (6.2 novel SNVs per 10 kbp) showed a
significantly higher tendency to generate novel SNVs compared
with the genome (one sample t-test, adjusted P < 0.05)
(Figure 2A). There were 269 genes embedded in the above
contigs, which were enriched in the cell cycle (GO: 0010971,
adjusted P < 0.05) and ATP binding (GO: 0005524, adjusted
P < 0.001).

Genome recombination and allele
frequency oscillation from parental to
offspring spores

A total of 87,129 SNVs were inherited from F0 to F2 spores
in both replicates. Over 95% of loci were heterozygous with

FIGURE 1

Number of single nucleotide variants (SNVs) and the gene function of Nosema ceranae. Venn diagram of parasite SNVs isolated from the three
generations in two replicates (A,C). The number of lost SNVs was balanced with the number of novel SNVs, which could be the mechanism for
the parasite to maintain high polymorphism. The pattern of SNVs was highly congruent between the two replicates (Pearson’s chi-squared test,
P > 0.05). The function of protein-coding genes in the parasite genome (B,D) and the function of 54 genes with novel non-synonymous SNVs.
The genes were enriched in metabolism compared with the genome (Fisher’s exact test, P < 0.001).
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FIGURE 2

Analysis of allele frequency. (A) PCA analysis of the novel single nucleotide variants (SNVs) along the genome. The contigs showed a significant
difference in generating novel alleles. The contigs highlighted with blue showed a higher tendency to generate novel SNVs across two
replicates (one sample t-test, adjusted P < 0.05). (B) Inferred recombination rate along the genome. Overall, the inferred recombination rate
was small along the genome with 5.14e-9 crossover per bp. The X-axis indicates the recombination rate after the log10 transformation. The
Y-axis indicates density.

an average alternative allele frequency of 0.38. Contigs with
lower recombination rates were rarely found. Most contigs were
homogeneous with 5.14e-9 cross-over per bp (Figure 2B). To
quantify the allele oscillation, the allele frequency variation was
calculated between parents and offspring, denoted as coefficient
S. When offspring inherits the same allele frequency from their
parents, the coefficient S equals 0. In our data, the coefficient
S significantly deviated from F0 to F1, as well as from F1 to
F2 in both replicates (one sample t-test, adjusted P < 0.001)
(Figure 3). By comparing with the genome, the genes associated
with the selected loci were significantly enriched in negative
regulation of apoptosis (GO: 0043066, adjusted P < 0.05) and
ATP binding (GO: 0005524, adjusted P < 0.001).

Genetic differentiation accumulated
over generations

Genome diversity (π) slowly increased from F0
(0.0084 ± 0.0001) and F1 (0.0087 ± 0.0001) to F2
(0.0088 ± 0.0001). Tajima’s D was positive, and the ratio
of πa/πs was less than 1 for the parasites in all three generations.
The fixation index FST was 0.0015 ± 0.0001 between F0 and F1
spores, which increased by twofold (0.0042 ± 0.0001) between
F1 and F2 spores. After two parasite generations, the index FST
increased by fourfold from F0 to F2 spores (Table 1).

Discussion

Host-parasite coevolution is a process of reciprocal allelic
oscillation between antagonist species and is often characterized

by the Red Queen Hypothesis, which is a central theorem
in coevolutionary biology (Liow et al., 2011; Brockhurst
et al., 2014; Rabajante et al., 2016; Martínez-López et al.,
2021). High-standing genetic variation allows fast responses
to environmental change (Lai et al., 2019). N. ceranae is a
native parasite of Eastern honey bees (A. cerana), which has
successfully established widespread infections in Western honey
bees (A. mellifera). The parasite showed high virulence in the
novel host, and infected honey bees showed a shortened life
span (Eiri et al., 2015), suppressed apoptosis (Antunez et al.,
2009; Kurze et al., 2015; Martín-Hernández et al., 2017), and
arguably are prone to colony collapses (Higes et al., 2008;
Botías et al., 2013). Using a set of genetic markers, the diversity
of this parasite was found higher within a honey bee colony
than among colonies (Gómez-Moracho et al., 2014, 2015).
In our data, the number of identified SNVs was congruent
with a previous study (Ke et al., 2021). The numbers of
inherited, lost, and novel SNVs were highly congruent between
the two replicates, suggesting that selection is not random
at the colony level. Additionally, we found minor variance
between the replicates, suggesting that genetic diversity is higher
within a colony than among colonies, as indicated previously
(Gómez-Moracho et al., 2014; Pelin et al., 2015). Previously,
the recombination event was reported in N. ceranae (Pelin
et al., 2015). In our study, the calculated recombination rate
was orders of magnitude smaller than those of other fungal
pathogens (Heinzelmann et al., 2020; Wyka et al., 2022).
Inhibiting apoptosis and ATP acquisition were essential to the
success of N. ceranae infection. When apoptosis was facilitated,
infected honey bees were tolerant of the infection (Kurze et al.,
2015). Suppressing the expression of ATP transporters also
reduced N. ceranae proliferation (Paldi et al., 2010). In our
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FIGURE 3

Allele frequency oscillation over three generations in two replicates. For each generation, the coefficient S significantly deviated from random,
suggesting the existence of oscillation. To reduce the false positive calling, only the loci that fell within 99.9% confidence were considered
under oscillation. The X-axis indicates allele frequency variation (coefficient S) from F1 to F2 spores. The Y-axis indicates allele frequency
variation (coefficient S) from F0 to F1 spores.

TABLE 1 Population genetic statistics for the three generations of Nosema ceranae spores (mean ± SE).

Parasites π a/π s π Waterson’s θ Tajima’s D F0 (FST) F1 (FST)

F0 0.2027 ± 0.0122 0.0084 ± 0.0001 0.0080 ± 0.0001 0.7980 ± 0.0159

F1 0.2009 ± 0.0107 0.0087 ± 0.0001 0.0088 ± 0.0001 0.3367 ± 0.0152 0.0015 ± 0.0001

F2 0.2034 ± 0.0117 0.0088 ± 0.0001 0.0085 ± 0.0001 0.7194 ± 0.0157 0.0071 ± 0.0001 0.0042 ± 0.0001

πa indicates the diversity at non-synonymous sites, and πs indicates the diversity at synonymous sites.
The fixation index FST of the parasites in three generations was pairwise analyzed, which increased substantially with each generation.

data, the alleles associated with apoptosis and ATP binding
were under constant oscillation, which supports the antagonistic
allele oscillation under the Red Queen hypothesis (Papkou
et al., 2019). Anthropocene could also shape the genome
selection of the parasite (Ptaszyńska et al., 2021), as well as
the foraging behavior of honey bees. For example, parasites
can quickly disperse through commonly visited flowers, which
may decrease colony level variance (Graystock et al., 2015).
The transporting pollination activities may further enhance the
parasite dispersal at a larger scale (Proesmans et al., 2021).
Furthermore, plant diversity can strongly impact the honey bee
diet quality, which may shape the susceptibility to pathogens
(Ptaszyńska et al., 2021). Genetic drift and selection decrease
genetic variation, while mutation, gene flow, and horizontal
gene transfer increase genetic variation (Schulte et al., 2013;
Ellegren and Galtier, 2016). In our data, a strong fraction
of SNVs was lost during the bottleneck caused by a single
inoculation. Meanwhile, mutations led to ample novel SNVs.
As the parasite inoculation was employed in lab conditions,
the impacts of gene flow were minimal. This suggests that a
balance between lost and novel SNVs maintains the high genetic
diversity in N. ceranae. In our data, the accumulating π suggests
a slow accumulation of genetic diversity over generations.

Genome diversity π was slightly higher than Watterson’s θ,
leading to a small positive Tajima’s D, which suggests a small
number of low-frequency alleles (Fu and Li, 1993; Stajich and
Hahn, 2005). The ratio of πa/πs was less than 1 in all three
parasite generations, which suggests that the parasite genome is
going through purifying selection as found in historical samples
(Huang et al., 2016). The fixation index increased fourfold from
F0 to F2 spores, suggesting a genome diversification (Jackson
et al., 2015). The parasite can transmit among bee species,
which might have posed additional selective pressure on the
parasite to adapt to multiple hosts. In yeast, static environments
favor small numbers of fit genotypes, dramatically decreasing
genetic diversity. In contrast, fluctuating environments enrich
genotypes and partially contribute to the maintenance of genetic
diversity through balancing selection (Abdul-Rahman et al.,
2021). Additionally, parasites show elevated diversity after
infecting diverse host populations compared with monocultures
(Ekroth et al., 2021), suggesting that host genotype shapes
parasite diversity. To adapt to a highly polyandrous honey
bees, Nosema parasites may be under the pressure to maintain
high polymorphism. In Denmark, honey bees tolerant toward
N. ceranae infection showed positive selection (Huang et al.,
2014).
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N. ceranae is a notorious parasite that weakens honey bee
health. In this study, we partially explained the mechanism
underlying this parasite’s observed high genetic diversity. We
need to point out that multiple proliferation cycles may have
occurred for each sampling generation because the infection
period was three times more than a typical parasite life cycle. We
found that a balance between the novel and lost SNVs drives the
maintenance of genetic diversity in this species. Additionally,
the allele frequencies of genes essential for parasite infection
showed oscillation, supporting the Red Queen hypothesis. Our
study enhances the understanding of the genetic structure,
facilitated by the global spread of this parasite while providing
a blueprint for parasite control.
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