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Abstract

In recent years, increasing associations between microRNAs (miRNAs) and human dis-

eases have been identified. Based on accumulating biological data, many computational

models for potential miRNA-disease associations inference have been developed, which

saves time and expenditure on experimental studies, making great contributions to

researching molecular mechanism of human diseases and developing new drugs for dis-

ease treatment. In this paper, we proposed a novel computational method named Ensemble

of Decision Tree based MiRNA-Disease Association prediction (EDTMDA), which innova-

tively built a computational framework integrating ensemble learning and dimensionality

reduction. For each miRNA-disease pair, the feature vector was extracted by calculating the

statistical measures, graph theoretical measures, and matrix factorization results for the

miRNA and disease, respectively. Then multiple base learnings were built to yield many

decision trees (DTs) based on random selection of negative samples and miRNA/disease

features. Particularly, Principal Components Analysis was applied to each base learning to

reduce feature dimensionality and hence remove the noise or redundancy. Average strategy

was adopted for these DTs to get final association scores between miRNAs and diseases.

In model performance evaluation, EDTMDA showed AUC of 0.9309 in global leave-one-out

cross validation (LOOCV) and AUC of 0.8524 in local LOOCV. Additionally, AUC of 0.9192

+/-0.0009 in 5-fold cross validation proved the model’s reliability and stability. Furthermore,

three types of case studies for four human diseases were implemented. As a result, 94%

(Esophageal Neoplasms), 86% (Kidney Neoplasms), 96% (Breast Neoplasms) and 88%

(Carcinoma Hepatocellular) of top 50 predicted miRNAs were confirmed by experimental

evidences in literature.

Author summary

MiRNAs are known as gene regulators and play critical roles in various biological pro-

cesses. Many associations between miRNAs and human diseases have been identified,

which promotes the understanding towards the molecular mechanisms of diseases and

contributes to prevention and treatment of diseases. Computational methods of predict-

ing potential miRNA-disease associations make the discovery more efficient and experi-

ments more productive. We developed EDTMDA by constructing a computational
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framework integrating ensemble learning and dimensionality reduction. We performed

global LOOCV, local LOOCV and 5-fold cross validation to evaluate performance of

EDTMDA, which outperformed many classic methods. In addition, we carried out three

types of case studies on important diseases, which were used to evaluate performance of

model based on known associations in HMDD V2.0, for new diseases without known

associations and based on known associations in HMDD V1.0. As a result, most predicted

miRNAs in top 50 predictions were confirmed by experimental evidences in literature.

So, we believe that EDTMDA can make reliable predictions and guide experiments to

uncover more miRNA-disease associations.

Introduction

MicroRNAs (miRNAs) are a kind of endogenous non-coding RNA with the length of about 22

nucleotides, regulating the expression of genes by base paring with target messenger RNA

(mRNA) [1]. Since the first two miRNAs, lin-14 and let-7, both showing positive regulation

for gene expression, were found [1], increasing new miRNAs have entered into researchers’

horizons. According to latest miRbase (Release 22), a miRNA database [2], 38589 entries rep-

resenting hairpin precursor miRNAs and 48885 mature miRNA products in 271 species are

collected. Accumulative evidences have revealed that miRNAs usually negatively regulate gene

expression and they play critical roles in various biological processes such as cell proliferation,

differentiation, aging and death [3–7]. In addition, mounting close relations between miRNAs

and human diseases were confirmed by abundant experimental reports. For example, the

existing study has validated that the expression of mir-140 was reduced in osteoarthritic carti-

lage [8]. Another example is that down-regulation of mir-145 was related to the increased

expression of ERG, over-expression of which was the distinct characteristic of prostate cancer

[9]. Besides, deregulation of a set of miRNAs including mir-150, mir-550, mir-124a, mir-518b

and mir-539 was shown to be associated with transformation of gastritis into extranodal mar-

ginal zone lymphoma [10]. It is believed that uncovering more miRNA-disease associations

gives an insight into molecular mechanisms of diseases and is favorable to diagnosis, prognosis

and treatment of human complex diseases [11,12]. However, the existing knowledge of

miRNA-disease associations is not enough and known associations were mostly obtained

from previous biological experiments that were time-consuming and costly. Therefore,

increasing studies were devoted to developing computational models to predict potential

miRNA-disease associations [13]. These computational models could infer miRNAs that were

more likely to be related to the given disease. Based on the prediction results, biological experi-

ments were preferentially conducted for those miRNAs to improve experimental efficiency

and save time as well as expenditure.

Base on the known miRNA-disease associations in some well-known biological databases

such as HMDD V2.0 [14], dbDEMC [15] and miR2Disease [16], many computational models

were proposed to predict associations between miRNAs and diseases, most of which were

under the assumption that functionally similar miRNAs are likely to be associated with pheno-

typically similar diseases [17–19]. These methods cover two main categories, network algo-

rithm and machine learning. For example, by integrating miRNA functional similarity

network, the disease phenotype similarity network and the known disease-miRNA associa-

tions network, Jiang et al. [20] proposed initial computational model to uncover potential

miRNA-disease associations. For an investigated disease d, each miRNA in the miRNA net-

work was scored by the scoring function based on cumulative hypergeometric distribution.

miRNA-disease association prediction
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However, the model only considered local neighbor similarity information of each miRNA so

that it did not show excellent prediction results. Xuan et al. [21] developed a model of Human

Disease-MiRNA association Prediction (HDMP) to predict disease-related miRNAs. In this

model, miRNA functional similarity was calculated and for miRNAs in the same family or

cluster, their similarity scores were given higher weight because they tend to be associated with

the same disease. For investigated disease d, relevance score of each miRNA candidate was cal-

culated based on its most weighted k similar neighbors and then ranked to attained potential

d-related miRNAs. Nevertheless, HDMP were unable to work for new disease without any

known associated miRNAs. In addition, HDMP was also a local network similarity-based

model that only considered miRNAs’ partial similarity information, such as neighbor informa-

tion. In order to make full use of global network similarity information, Chen et al. [22] first

adopted global network similarity measures and proposed a method of Random Walk with

Restart for MiRNA-Disease Association prediction (RWRMDA) in which random walk was

implemented on miRNA functional similarity network. Although the model achieved satisfac-

tory prediction performance, it could not deal with new disease without any known associated

miRNAs. Another model named MIDP was proposed by Xuan et al. [23] based on random

walk on miRNA functional similarity network. Furthermore, MIDPE that was extended from

MIDP could predict potential related miRNAs for new disease without any known related

miRNAs. Chen et al. [24] proposed the model of Within and Between Score for MiRNA-Di-

sease Association prediction (WBSMDA) to predict potential miRNA-disease associations,

which specially calculated Gaussian interaction profile kernel similarity for diseases and miR-

NAs in addition to using the miRNA functional similarity and the disease semantic similarity.

In this model, both of the Within-Score and Between-Score were defined from the view of

miRNAs and diseases and the final association score for miRNA-disease pair was calculated by

combining Within-Score and Between-Score. WBSMDA could also be effectively applied for

new diseases and new miRNAs without any known associations. Chen et al. [25] further devel-

oped the model of Heterogeneous Graph Inference for MiRNA-Disease Association prediction

(HGIMDA) in which the heterogeneous graph was constructed with the same inputs as

WBSMDA. An iteration process was adopted based on the graph to infer potential miRNA-

disease associations. For a further improvement of prediction accuracy, Chen et al. [26] pro-

posed another method named Matrix Decomposition and Heterogeneous Graph Inference for

miRNA-disease association prediction (MDHGI), which fully utilized matrix decomposition

technique for known miRNA-disease associations before constructing the heterogeneous

graph that was same as HGIMDA. In addition, method of Super-Disease and MiRNA for

potential MiRNA–Disease Association prediction (SDMMDA) was proposed by Chen et al
[27]. In order to improve the similarity measures of diseases and miRNAs, the model intro-

duced ‘super-miRNA’ and ‘super-disease’ that were obtained by clustering as many as possible

similar miRNAs or diseases. In addition, You et al. [18] proposed the prediction model of

Path-Based MiRNA-Disease Association prediction (PBMDA) that integrated various biologi-

cal datasets that was same as MDHGI into the heterogeneous graph. In the graph, the associa-

tion possibility was calculated by summing all path scores between a miRNA and a disease.

Specially, the model penalized long paths by a decay function because these paths were consid-

ered to make less contribution to the association score for the miRNA-disease pair. However,

the distance-decay function in this model was relatively simple and could be further optimized.

Yu et al. [28] proposed the prediction method, MaxFlow, which constructed a miRNAome-

phenome network graph where a source node and a sink node were introduced. For the given

disease, the maximum information flow from the source over all links to the sink were calcu-

lated and flow quantity leaving a miRNA node was used as the association score between the

miRNA and the given disease. Furthermore, Chen et al. [29] developed another prediction

miRNA-disease association prediction
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model of Bipartite Network Projection for MiRNA–Disease Association prediction

(BNPMDA). This model first constructed the bias ratings for miRNAs and diseases based on

three networks, including the known miRNA–disease association network, the disease similar-

ity network and the miRNA similarity network. Then bipartite network recommendation

algorithm was implemented to reveal potential miRNA-disease associations.

In fact, many previous computational models were established based on other types of

interaction networks, such as protein-protein interaction (PPI) network, miRNA-target

interaction network and so on. For example, Shi et al. [30] developed prediction model by

mapping disease genes and miRNA targets on PPI networks. For a given miRNA and disease,

random walk was performed on the network using the disease genes and the miRNA targets

as seeds simultaneously to obtain enrichment scores as association scores of the miRNA-

disease pairs. Additionally, Mork et al. [31] proposed a model of miRNA-Protein-Disease

(miRPD) association prediction with proteins as the mediators, which integrated miRNA–

protein associations and protein–disease associations to predict novel associations between

miRNAs and diseases. However, performance of miRPD was strongly limited by miRNA-

target interactions with the high false positive rate. In addition, Pasquier et al. [32] estab-

lished MiRAI model that represented distributional information of miRNAs and diseases in

a high-dimensional vector space and predicted novel miRNA-disease associations in terms

of vector similarities.

Nowadays, machine learning has been widely applied in biomedical research [33,34],

such as drug target prediction [35], transcription factor binding prediction [36], functional

variant annotation [37], synergistic drug combination prediction [38], small molecule-

miRNA interaction prediction [39], association prediction between long non-coding RNAs

and diseases [40], and disease related RNA methylation prediction [41]. Many machine

learning-based methods have been proposed to infer potential miRNA-disease associations

[13]. Unlike many previous models, the model of Matrix Completion for MiRNA-Disease

Association prediction (MCMDA) developed by Li et al. [17] was only depended on known

miRNA-disease associations where singular value thresholding (SVT) algorithm was used to

conduct matrix completion procedure and predict new miRNA-disease association. The

drawback of MCMDA was that it could not predict miRNAs for new diseases without any

associations. Chen et al. [42] proposed a model named Restricted Boltzmann Machine for

Multiple types of MiRNA-Disease Association prediction (RBMMMDA) to predicted not

only novel miRNA-disease associations but also types of association. In RBMMMDA, a two-

layer undirected graphical model of Restricted Boltzmann Machine (RBM) was constructed

and trained to implement prediction. RBMMMDA also could not predict miRNAs for new

diseases without any known association information. Xu et al. [43] proposed a method based

on a heterogeneous MiRNA-Target Dysregulated Network (MTDN). A classifier named

Support Vector Machine (SVM) was built to separate positive miRNA-disease associations

from negative ones based on features extracted from MTDN. Nevertheless, it was difficult to

select accurate negative samples because of unavailable validation for the negative ones.

Another model named Regularized Least Squares for MiRNA-Disease Association predic-

tion (RLSMDA) that did not need negative samples was developed by Chen et al. [44].

Under the framework of Regularized Least Squares (RLS), cost functions were defined and

minimized to yield optimal classifiers from miRNA and disease sides, respectively. Then

the weighted average strategy was adopted to combine two optimal classifiers to obtain final

prediction results. Furthermore, Chen et al. [27] introduced the model of Ranking-based

K-Nearest-Neighbors for MiRNA-Disease Association prediction (RKNNMDA) to infer

potential associations between miRNAs and diseases. Based on k-nearest-neighbors for miR-

NAs and diseases, the model calculated Hamming loss to rank these neighbors with SVM

miRNA-disease association prediction
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and utilized weighted voting to each predicted miRNA-disease association. In addition,

Chen et al. [45] proposed another model called Laplacian Regularized Sparse Subspace

Learning for MiRNA-Disease Association prediction (LRSSLMDA) which achieved predic-

tion scores from miRNA and disease side, respectively. The model’s inputs were miRNA/dis-

ease statistical features and graph theoretic features that were extracted from the miRNA/

disease similarity. Then objective functions were built in miRNA/disease side with L1-norm

constraint and Laplacian regularization terms. Final predictive results were attained by com-

bining optimization results for objective functions. Furthermore, Chen et al. [46] developed

the model of Predicting MiRNA–Disease Association based on Inductive Matrix Completion

(IMCMDA), which was a matrix completion-based model. MiRNA-disease association

matrix was a sparse matrix and missing association values of miRNA-disease pairs could be

completed by means of miRNA similarity and disease similarity feature vectors.

Considering different limitations of previous models and improvement room for predic-

tion accuracy, we developed the model of Ensemble of Decision Tree based MiRNA-Disease

Association prediction (EDTMDA) to infer novel miRNA-disease associations. The inputs

of the model were features which were extracted from integrated miRNA similarity, disease

similarity and known miRNA-disease associations. The model adopted ensemble learning

strategy that integrated multiple classifiers (base learners) to get final prediction results,

which reflected association probability for candidate miRNA-disease pairs. Three cross vali-

dation methods, including global leave-one-out cross validation (LOOCV), local LOOCV

and 5-fold cross validation (5-fold CV) were implemented to evaluate performance of

EDTMDA. As a result, AUC of 0.9309 for global LOOCV, 0.8524 for local LOOCV and

0.9192+/-0.0009 for 5-fold CV were obtained. To our knowledge, the AUCs of EDTMDA are

higher than almost all previous models. In addition, three types of case studies for important

human diseases were further carried out to evaluate the ability to predict miRNAs related

with the investigated disease. There were 47 (Esophageal Neoplasms), 43 (Kidney Neo-

plasms), 48 (Breast Neoplasms) and 44 (Carcinoma Hepatocellular) of top 50 predictions

confirmed by previously published literature. These aforementioned validation experiments

proved that EDTMDA is a reliable and excellent model to predict potential miRNA-disease

associations.

Materials and methods

Human miRNA-disease associations

In our work, known human miRNA-disease associations verified by experimental evidences

in literature were obtained from HMDD V2.0 which included 5430 associations between 495

miRNAs and 383 diseases [14]. Here, Y 2 Rnm×nd was used to denote an adjacency matrix,

where nm and nd represented the number of miRNAs and diseases, respectively. If miRNA

m(i) and disease d(j) had association according to HMDD V2.0, the element Y(m(i), d(j))
equaled to 1, otherwise 0.

MiRNA functional similarity

MiRNA functional similarity scores could be computed based on the MISIM method proposed

by Wang et al. [47] and downloaded from the website: http://www.cuilab.cn/files/images/

cuilab/misim.zip. We denoted FS as the score matrix of miRNA functional similarity and the

element FS(m(i), m(j)) represented the functional similarity scores between miRNA m(i) and

m(j).

miRNA-disease association prediction
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Disease semantic similarity model 1

Disease semantic similarity was computed according to the literature [47]. we download

MeSH descriptors from the National Library of Medicine (http://www.nlm.nih.gov/), from

which the relationship of various diseases could be obtained based on disease Directed Acyclic

Graph (DAG). For example, a DAG(D) = (D,T(D), E(D)) was used to represent disease D,

where T(D) was the node set including all parent nodes of disease D and disease D itself, and

E(D) was defined as the set of edges pointing to child nodes from parent notes. In DAG(D), we

defined the semantic value of disease D to DV1(D) as follows:

DV1ðDÞ ¼
X

d2TðDÞ

D1DðdÞ ð1Þ

D1DðdÞ ¼ 1 if d ¼ D

D1DðdÞ ¼ maxfD � D1Dðd0Þjd0 2 children of dg if d 6¼ D

(

ð2Þ

where D1D(d) represented the contribution of disease d to the semantic value of disease D in

DAG(D). As shown in Eq 2, disease D was the most specific disease in DAG(D) and its contri-

bution to the semantic value of itself was set to 1. Those parent nodes locating farther from

node D are more general denominations, having fewer contribution to the semantic value of

disease D. To realize that, semantic contribution factor Δ was introduced (0< Δ<1) and we

set Δ = 0.5 in this study, referring to the literature [47]. Based on the assumption that two dis-

eases sharing larger parts in their DAGs tend to have higher semantic similarity, the semantic

similarity between disease d(i) and d(j) could be defined as follows:

SS1ðdðiÞ; dðjÞÞ ¼

X

t2TðdðiÞÞ\TðdðjÞÞ

ðD1dðiÞðtÞ þ D1dðjÞðtÞÞ

DV1ðdðiÞÞ þ DV1ðdðjÞÞ
ð3Þ

Disease semantic similarity model 2

In order to obtain more comprehensive and accurate disease semantic similarity assessment,

we needed to measure the similarity from different perspectives. Therefore, another model of

measuring disease semantic similarity was adopted according to the literature [21]. We consid-

ered that the number of disease DAGs that a disease term may appear in are not always the

same and for disease terms in the same layer of DAG(D), the disease term appearing in fewer

DAGs should be more informative. i.e., the disease term should have larger semantic contribu-

tion to disease D. In this model, semantic contribution of disease d to disease D in DAG(D)

was defined as follows:

D2DðdÞ ¼ � log
the number of DAGs including d

the number of diseases

� �

ð4Þ

Similar to disease semantic similarity model 1, the semantic value of disease D and semantic

similarity between disease d(i) and d(j) was respectively given as follows:

DV2ðDÞ ¼
X

d2TðDÞ

D2DðdÞ ð5Þ

miRNA-disease association prediction
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SS2ðdðiÞ; dðjÞÞ ¼

X

t2TðdðiÞÞ\TðdðjÞÞ
D2dðiÞðtÞ þ D2dðjÞðtÞ

DV2ðdðiÞÞ þ DV2ðdðjÞÞ
ð6Þ

Two disease semantic similarity models defined semantic contributions of the disease d to

disease D in DAG(D) in different ways. We defined it based on the theory that those parent

nodes locating farther from node D are more general denominations, having fewer contribu-

tion to the semantic value of disease D in model 1, while in model 2, we defined it by consider-

ing that the disease appearing in fewer DAGs should be more special and have larger semantic

contribution to disease D.

Gaussian interaction profile kernel similarity

According to the literature [48], we could calculate Gaussian interaction profile kernel similar-

ity for miRNAs (diseases), which constructed Gaussian kernel with the adjacency matrix Y.

Taking miRNA as an example, the Gaussian interaction profile kernel similarity between

miRNA m(i) and m(j) was calculated as follows:

GMðmðiÞ;mðjÞÞ ¼ expð� gdkYðmðiÞ; �Þ � YðmðjÞ; �Þk2
Þ ð7Þ

Here, Y(m(i), �) and Y(m(j), �) are the ith and jth row of adjacency matrix Y, respectively,

representing interaction information between corresponding miRNA and all diseases. Param-

eter γd controlled the bandwidth and was set as follows:

gd ¼ g
0
d=

1

nm

Xnm

i¼1

kYðmi; �Þk

2
 !

ð8Þ

Analogically, according to the literature [48], Gaussian interaction profile kernel similarity

for diseases could be calculated as follows:

GDðdðiÞ; dðjÞÞ ¼ expð� gdkYð�; dðiÞÞ � Yð�; dðjÞÞk2
Þ ð9Þ

gd ¼ g
0
d=

1

nd

Xnd

i¼1

kYð�; dðiÞÞk
2

 !

ð10Þ

where Y(�, d(i)) and Y(�, d(j)) are the ith and jth column of adjacency matrix Y, respectively,

meaning interaction information between corresponding disease and all miRNAs.

Integrated similarity for miRNAs and diseases

We computed disease semantic similarity based on DAGs of diseases, but we could not get

DAGs for all diseases. That is, for the specific disease without DAG, the semantic similarity

score between the disease and other diseases could not be computed in both disease semantic

similarity models. In order to obtain all disease similarity information, we integrated disease

semantic similarity with Gaussian interaction profile kernel similarity according to [24] as

miRNA-disease association prediction
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follows:

SDðdðiÞ; dðjÞÞ

¼

SS1ðdðiÞ; dðjÞÞ þ SS2ðdðiÞ; dðjÞÞ
2

dðiÞ and dðjÞ has semantic similarity

GDðdðiÞ; dðjÞÞ otherwise

8
><

>:

ð11Þ

where the average of two disease semantic similarity models was used as disease semantic simi-

larity. Similarly, integrated miRNA similarity was given according to [24] as follows.

SMðmðiÞ;mðjÞÞ ¼
FSðmðiÞ;mðjÞÞ mðiÞ and mðjÞ has functional similarity

GMðmðiÞ;mðjÞÞ otherwise
ð12Þ

(

EDTMDA

EDTMDA was implemented based on integrated miRNA similarity matrix SM, integrated dis-

ease similarity matrix SD and known miRNA-disease associations matrix Y. At first, according

to literature [49], three types of miRNA (disease) features were extracted based on the above

matrixes SM (SD) and Y and used to form the feature vectors, represented by FM (FD). Type 1

features covered the statistical measures summarized for each individual miRNA (disease) in

Y and SM (SD) (including sum, mean, histogram distributions of miRNA/disease similarity

scores); type 2 features included graph theoretical measures for network constructed by SM
(SD) (including some neighbors’ attributes, betweenness, closeness, eigenvector centrality

and Page-Rank scores of miRNA/disease similarity network); type 3 features focused on each

miRNA-disease pair in Y based on matrix factorization of Y and graph theory-related statistics

for network constructed by Y. Then, ensemble learning strategy was introduced based on ran-

dom selection of negative samples and features, which included many base learnings and each

base learning yield a base classifier, DT. Particularly, PCA was employed to reduce feature

dimensionality during each base learning. The final association scores were obtained by com-

puting the average of all prediction results from these DTs (motivated by the study of Ezzat

et al. [50]). The base learning contained following steps (see Fig 1).

Firstly, construction of training sample set was operated. Because there were minority posi-

tive samples, accounting for about 2.9% of all possible samples in HMDD V2.0 used by our

method, we chose all positive samples and some negative samples which were randomly sin-

gled out from the samples without known associations to construct the training set of our

model. Particularly, negative samples were guaranteed to have the same number with positive

samples. Here, P = {(m(i), d(j))|Y(m(i), d(j)) = 1} and U = {(m(i), d(j))|Y(m(i), d(j)) = 0} repre-

sented the set of positive samples and samples with unknown associations, respectively. The

set N (N2U) represented negative samples selected from U and |N| = |P| (|N| and |P| meant

the number of elements in N and P, respectively). The set of T = P
S

N was training set in

base learning. In addition, FM2Rnm×d and FD2Rnd×d (d represented the number of extracted

miRNA/disease features) represented feature matrix of miRNAs and diseases in training set T,

respectively. We constructed feature subsets of miRNAs and diseases by randomly selecting

miRNA/disease features and used parameter r (0 < r� 1) to control the size of feature subset.

That is, br×dc features were randomly sampled to construct feature subset. FMð1Þ 2 Rnm�d1 and

FDð1Þ 2 Rnd�d1 represented feature subset of miRNAs and diseases, respectively (where d1 =

br×dc).
Secondly, feature dimensionality reduction was applied to miRNA/disease feature subset.

In our model, ensemble learning strategy was adopted to yield a large number of base learners,

miRNA-disease association prediction
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which brought much noise or redundant information to degrade prediction performance.

To address this issue, PCA, an unsupervised dimensionality reduction algorithm [51], was

employed to reduce miRNA/disease feature dimensionality of feature subset. Here, we saved

top 10 miRNA (disease) features after dimensionality reduction, keeping almost all feature

information. Here, FM(2) and FD(2) represented feature matrix of miRNAs and diseases after

dimensionality reduction.

Fig 1. The flowchart of EDTMDA to predict miRNA-disease associations. MiRNA/disease features extracted from integrated miRNA/disease

similarity and known miRNA-disease associations were inputs of our training model. M DTs were obtained from M base learnings and the average of

prediction scores from all DTs were calculated as final prediction results.

https://doi.org/10.1371/journal.pcbi.1007209.g001
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Thirdly, the DT, a base classifier, was trained with training set. For the sample in training

set T, feature principle components of miRNA and disease, i.e., miRNA feature vector and dis-

ease feature vector in FM(2) and FD(2), were spliced as the feature vector of the sample, which

was used as input vector of the DT. Our training set could also be denoted with T0 = {(x1, y1),

(x2, y2), � � �,(xn, yn)}, where xi ¼ ðx
ð1Þ

i ; x
ð2Þ

i � � � ; x
ðd2Þ

i Þ was the d2-dimensional input vector (d2 =

20) and yi represented the observed value of the ith sample in adjacency matrix Y, and n was

the number of samples in training set. For the DT, we constructed the regression tree model

with the arithmetic of CART, which was on the basis of squared error minimum criterion

[52]. Yielding the regression tree could be described as a progress of building a binary decision

tree recursively. If we selected the feature value xðjÞi to partition feature space R, j and s (xðjÞi ¼ s)
were the splitting variable and splitting point, respectively, and two subspaces were defined as

follows:

R1ðj; sÞ ¼ fxjx
ðjÞ � sg and R2ðj; sÞ ¼ fxjx

ðjÞ > sg ð13Þ

Then regression tree could be described as:

f ðxÞ ¼ ck x 2 Rk; k ¼ 1; 2 ð14Þ

where ck denoted output value of subspace Rk and its optimal value was calculated by minimiz-

ing squared error
X

xi2Rk

ðyi � f ðxiÞÞ
2

. The solution was given as follows:

ĉk ¼
1

Nk

X

xi2Rkðj;sÞ

yi x 2 Rm;m ¼ 1; 2 ð15Þ

where Nk was the number of input vectors in subspace Rk. In order to choose the optimal split-

ting variable and splitting point, variable j and s were traversed to solve the following equation:

min
j;s

X

xi2R1ðj;sÞ

ðyi � c1Þ
2

þ
X

xi2R2ðj;sÞ

ðyi � c2Þ
2

" #

ð16Þ

The optimal splitting variable j0 and splitting point s0 was obtained. The pair (j0, s0) was used to

partition the feature space according to the formula (13) and the output was calculated based

on the formula (14) and (15). Then new optimal splitting variable and splitting point were

sought in subspace R1 and R2, respectively. Then new output ĉk (k = 1,2,3,4) was calculated in 4

subspaces, respectively. This procedure was repeated until the subspace could not be parti-

tioned. At last, the feature space was divided into K subspaces and the final regression tree was

described as follows:

f ðxÞ ¼ ck x 2 Rk; k ¼ 1; 2; � � � ;K ð17Þ

Based on random selection of negative samples and miRNA/disease features, M base learn-

ings including above three steps were implemented to yield M DTs. The simple average strat-

egy was adopted for these DTs to obtain final prediction scores. Fig 2 shows the pseudocode

of EDTMDA. The code and data of EDTMDA is freely available at https://github.com/chi-

young1/EDTMDA.

Results

Performance evaluation

Based on known miRNA-disease associations in HMDD V2.0, we implemented LOOCV and

5-fold CV to evaluate the performance of EDTMDA. Receiver operating characteristic (ROC)

miRNA-disease association prediction
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curves are widely used to evaluate model performance in previous literature of predicting

miRNA-disease associations and in order to more conveniently implement performance

comparison, we also employed it in our study. Moreover, ROC curves are insensitive to class

imbalance, which is suitable for assessing our model’s ability to recover hidden known associa-

tions from mass candidates (unknown associations).

LOOCV, including global LOOCV and local LOOCV, were implemented to evaluate the

performance of EDTMDA. Global LOOCV was used to evaluate model’s global prediction

ability for all disease simultaneously, which evaluated recover ability for a hidden miRNA-dis-

ease association from all unknown associations. Local LOOCV was used to evaluate model’s

local prediction ability for a specific disease, which assessed the recover ability for a hidden

miRNA-disease association from unknown associations of the investigated disease. Therefore,

there is big difference for these two types of LOOCV. In global LOOCV, each known miRNA-

disease association was singled out as test sample in turn and other known associations were

treated as training samples for model training. Note that we recalculated Gaussian interaction

profile kernel similarity of miRNAs and diseases when a known miRNA-disease association

was removed, changing miRNA-disease adjacency matrix. Prediction scores of the test sample

and all candidate samples (That is, those miRNA-disease pairs without association evidences)

could be obtained after implementing EDTMDA. Then the test sample was ranked with all

candidate samples based on their scores, and if the rank was higher than the specific threshold,

the test sample was successfully predicted. Different from global LOOCV considering all dis-

eases simultaneously, the test sample was only ranked with candidate samples containing the

Fig 2. The pseudocode of EDTMDA to predict miRNA-disease associations.

https://doi.org/10.1371/journal.pcbi.1007209.g002
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same disease as the test sample. In model performance evaluation, true positive rate (TPR, sen-

sitivity) and false positive rate (FPR, 1-specificity) are usually calculated based on given thresh-

old. Sensitivity indicates the percentage of the test samples ranked higher than the specific

threshold; specificity means the percentage of negative samples ranked below the threshold.

When different thresholds were given, we can obtain corresponding TPR and FPR to plot the

ROC curve with the TPR as the vertical axis and FPR as the horizontal axis. ROC curve could

be used to vividly show predictive performance of the model, and a ROC curve closer to the

upper left corner of the figure represents more accurate performance. Furthermore, area

under the ROC curve (AUC) was calculated to quantitatively evaluate model performance.

AUC = 1 represents that the model has perfect prediction performance and AUC = 0.5 refers

to random performance.

We compared the performance of EDTMDA with other classical models in terms of AUC

under cross validation. The details of compared models were provided as follows: HGIMDA

[25]: The model constructed a heterogeneous graph by integrating multiple biological data,

where all paths with the length equal to three were summarized to infer potential miRNA-dis-

ease associations (The parameter used for comparison was α = 0.4). MDHGI [26]: The model

employed matrix decomposition for miRNA-disease association matrix before implementing

the heterogeneous graph inference that was same as HGIMDA (The parameters used for com-

parison were α = 0.1, μ = 10−4, maxμ = 1010, ρ = 1.1, ε = 10−6 and α = 0.4). RLSMDA [44]: The

method combined two classifiers trained from the miRNA space and disease space respectively

based on the framework of regularized least squares algorithm (The parameters used for com-

parison were ηM = 1, ηD = 1 and ω = 0.9). HDMP [21]: The relevance scores of unlabeled miR-

NAs were computed based on functional similarity of miRNAs’ k nearest neighbors. Besides,

the members in the same miRNA family or cluster are assigned higher weight (The parameters

used for comparison were α = 4, β = 4 and k = 20). WBSMDA [24]: The model defined the

Within-Score and Between-Score from the miRNA side and disease side, then combined

these score to infer potential miRNA-disease associations. RWRMDA [22]: Random walk was

implemented on the miRNA-miRNA functional similarity network (The parameters used for

comparison were r = 0.2 and threshold = 10−6). MCMDA [17]: The model utilized the matrix

completion algorithm to update the adjacency matrix of known miRNA-disease associations

(The parameters used for comparison were ε = 10-4 and max_iter = 500). MiRAI [32]: The

model represented distributional information on miRNAs and diseases in a high-dimensional

vector space and defined associations between miRNAs and diseases in terms of their vector

similarity (The parameter used for comparison was r = 400). MaxFlow [28]: A combinatorial

prioritization algorithm was designed for miRNA-disease association prediction by modifying

the existing maximizing information flow method (The parameters used for comparison were

α = 0.1, β = 0.6, γ = 100, η = 6 and σ = 10). PBMDA [18]: The model constructed a heteroge-

neous graph consisting of three interlinked sub-graphs and computed the accumulative contri-

butions from all paths between a miRNA-disease pair as the association score, which specially

set decay factor to cut down the contributions of longer paths to miRNA-disease association

scores (The parameters used for comparison were T = 0.5, L = 3 and α = 2.26). LRSSLMDA

[45]: A common subspace for the miRNA/disease profiles, a L1-norm constraint and Laplacian

regularization terms were joint to construct the prediction model (The parameters used for

comparison were γ = 2, μ = 1 and λ = 1). MIDP [23]: A novel random walk with different tran-

sition weight for labeled nodes and unlabeled nodes was implemented on miRNA functional

similarity network to predict miRNAs related to the disease with some known related miRNAs

and for the new disease without any known related miRNAs, the model extend the walking

on a miRNA-disease bilayer network (The parameters used for comparison were rQ = 0.4 and

rU = 0.1.).

miRNA-disease association prediction
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Fig 3 showed the performance comparisons between EDTMDA and other several models

in the framework of global and local LOOCV. EDTMDA, LRSSLMDA, PBMDA, MDHGI,

HGIMDA, MCMDA, MaxFlow, RLSMDA, HDMP and WBSMDA obtained AUC of 0.9309,

0.9178, 0.9169, 0.8945, 0.8781, 0.8749, 0.8624, 0.8426, 0.8366 and 0.8030 in global LOOCV,

respectively; they obtained 0.8524, 0.8418, 0.8341, 0.8240, 0.8077, 0.7718, 0,7774 0.6953, 0.7702

and 0.8031 in global LOOCV, respectively. RWRMDA and MIDP did not have an AUC value

in global LOOCV because they could not simultaneously make predictions for all diseases.

Additionally, global LOOCV also could not be implemented for MiRAI because the associa-

tion scores yielded from the model were highly related with the number of known associated

miRNAs of a disease. For a disease with more related miRNAs, the association scores for its

candidate miRNAs were more likely to be higher. Therefore, it was not objective to simulta-

neously consider association scores of all diseases in global LOOCV. AUCs of 0.7891 for

RWRMDA, 0.8196 for MIDP and 0.6299 for MiRAI were obtained in local LOOCV. Higher

AUC values of EDTMDA in LOOCV indicated that our model had more accurate prediction

than most previous models.

We implemented 5-fold CV to further evaluate the prediction performance of EDTMDA.

In 5-fold CV, all positive samples (That is, those miRNA-disease pairs with known associa-

tions) were randomly divided into five equal-sized groups, four of which, along with same size

of selected randomly negative samples, used to training the classifier. The omitted group (hid-

den positive samples) was added to all unknown associations to construct all candidates. Spe-

cially, we recalculated the Gaussian interaction profile kernel similarity of miRNAs and

diseases when each group of miRNA-disease associations were removed. Then similar to

global LOOCV, the association scores of candidates were calculated and then ranked by their

scores. The higher the hidden positive samples were ranked, the better the performance was.

That is, we removed some known associations and assessed ability to recover these hide associ-

ations to evaluate performance of model. This procedure was repeated 100 times because sam-

ple division was random in 5-fold CV. As a result, EDTMDA obtained average AUC with

Fig 3. Performance comparisons between EDTMDA and other 12 prediction models (HGIMDA, RLSMDA, HDMP, WBSMDA, RWRMDA,

MCMDA, MIDP, PBMDA, MaxFlow, LRSSLMDA, MiRAI and MDHGI) in terms of ROC curve and AUC based on local and global LOOCV,

respectively. As a result, EDTMDA obtained AUCs of 0.9309 and 0.8524 in the global and local LOOCV, which exceed all of the above previous

classical models.

https://doi.org/10.1371/journal.pcbi.1007209.g003
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standard deviation of 0.9192+/-0.0009, surpassing all other methods compared (See Table 1),

which further shows the superior performance of EDTMDA.

Dimensionality reduction effect analysis

In our method, multiple base learnings were constructed to generate many base classifiers

(DTs) base on random selection of negative samples and miRNA/disease features, which also

brought some noise or redundancy to influence final prediction results. To address this issue,

we used PCA to implement dimensionality reduction for miRNA/disease feature subset. To

evaluate the effect of dimensionality reduction to our model, we assessed performance of

the method after removing dimensionality reduction step in each base learning. That is, we

spliced miRNA and disease features of feature subset as the input of base classifiers. The AUC

comparison results between EDTMDA with dimensionality reduction and EDTMDA without

dimensionality reduction were shown in Table 2, which indicated that dimensionality reduc-

tion in base learning contributed to improve prediction performance of the model.

Comparison between EDTMDA and Random Forest (RF)

We conducted comparison of prediction performance between EDTMDA and RF which is

also an ensemble learning method with DT as base classifier. Extracted miRNA features and

disease features were spliced as the input vector of RF and RF was implemented using Ran-
domForestRegressor that is an algorithm package of RF in Python, where default parameter val-

ues were used other than n_estimators (It was set as 50, meaning that the number of trees in

RF is same as in EDTMDA). As shown in Table 3, EDTMDA is notably outperformed RF

Table 2. AUC results of EDTMDA between with dimensionality reduction and without dimensionality reduction

under three cross validations.

Methods Global LOOCV Local LOOCV 5-fold CV

EDTMDA with PCA 0.9309 0.8524 0.9192+/-0.0009

EDTMDA without PCA 0.9216 0.8423 0.9076+/-0.0012

https://doi.org/10.1371/journal.pcbi.1007209.t002

Table 3. AUC results between EDTMDA and RF under three cross validations.

Methods Global LOOCV Local LOOCV 5-fold CV

EDTMDA 0.9309 0.8524 0.9192+/-0.0009

RF 0.8464 0.7745 0.8341+/-0.0035

https://doi.org/10.1371/journal.pcbi.1007209.t003

Table 1. AUC results between EDTMDA and other methods under 5-fold CV.

Methods AUC

EDTMDA 0.9192+/-0.0009

LRSSLMDA 0.9181+/-0.0004

PBMDA 0.9172+/-0.0007

MDHGI 0.8794+/-0.0021

MCMDA 0.8767+/-0.0011

MaxFlow 0.8579+/-0.001

RLSMDA 0.8569+/-0.0020

HDMP 0.8342+/-0.0010

WBSMDA 0.8185+/-0.0009

https://doi.org/10.1371/journal.pcbi.1007209.t001
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under three cross validations. There are two main differences between EDTMDA and RF.

First, EDTMDA randomly selected a different negative sample set for each base classifier while

RF performed bagging on the same negative set. That is, EDTMDA used more negative sam-

ples for model training than RF. Second, EDTMDA included all positive samples in training

set for each base classifier, but RF performed bagging on the positive samples so that each DT

in RF used only a subset of all positive samples. We concluded that prediction performance

of the model was sensitive to positive samples and the best strategy was to include all positive

samples for each base classifier in ensemble learning. Moreover, EDTMDA incorporated more

data for model training, obtaining better prediction performance than RF.

Case studies

To further access the prediction ability of EDTMDA, three types of case studies were carried out.

For the sake of brevity, we selected several important human diseases to analyze in detail. The

first type of case study was concerned with Esophageal Neoplasms and Kidney Neoplasms, and

known miRNA-disease associations in HMDD V2.0 were used as training samples. All candidate

miRNAs that were unassociated with the investigated disease in HMDD V2.0 were ranked

according to their predicted association scores. Top 50 of candidate miRNAs were validated in

two other miRNA-disease association databases, dbDEMC [15] and miR2Disease [16].

Esophageal Neoplasms is a serious malignancy with high mortality rate, ranking sixth among

all cancer in mortality [53]. Squamous cell carcinoma (SCC) is the most common type of Esoph-

ageal Neoplasms and the black with SCC was three times higher than the white [54]. There will

be 17190 new cases in Esophageal Neoplasms and 15850 people dying of the Esophageal Neo-

plasms in 2018 according to the study [55]. Many previous studies have confirmed the associa-

tions between the Esophageal Neoplasms and various miRNAs. For example, the higher

expression of miRNA-506 was found in squamous cell carcinoma (ESCC) patients than in heathy

people [56]. Moreover, according to the study [57], the expression of miRNA-382-5p notably

increased and miRNA-133a-3p notably decreased in esophageal adenocarcinoma (EAC). In case

study of Esophageal Neoplasms, 10 out of top 10 and 47 out of top 50 predicted miRNAs related

to Esophageal Neoplasms were confirmed by dbDEMC or miR2Disease (See Table 4).

Kidney Neoplasms, also known as Renal cell carcinoma (RCC), accounts for 2–3% of all the

adult cancers [58]. It has been estimated that 65340 Americans will be diagnosed with Kidney

Neoplasms and 14970 will die of the disease in 2018 [55]. Some studies have confirmed that

dysregulation of miRNAs is closely related to Kidney Neoplasms. For example, Arai et al. [59]

found that low expression of mir-10a-5p had association with overall survival in Kidney Neo-

plasms patients because downregulation of mir-10a-5p inhibited cancer cell migration and

invasion. Another study showed that mir-21 played an important role in Kidney Neoplasms

progression and could resist chemotherapeutic drugs used for treatment of Kidney Neoplasms

[60]. As a result of case study for Kidney Neoplasms, 9 out of the top 10 and 43 out of the top

50 miRNAs were validated to have associations with Kidney Neoplasms by dbDEMC and

miR2Disease (See Table 5).

We exhibited complete prediction results inferring potential disease-associated miRNAs

that were ranked based on their predicted association scores, which we expect to be beneficial

for experimental studies in the future (See S1 Table).

The second type of case study for Breast Neoplasms was implemented to prove the applica-

bility of EDTMDA to new diseases without known related miRNAs. We removed all known

Breast Neoplasms-miRNA associations in HMDD V2.0 so Breast Neoplasms could be

regarded as new disease. After implementing EDTMDA to predict and rank potential Breast

Neoplasms-related miRNAs based on other known disease-miRNA associations, we confirmed

miRNA-disease association prediction
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that 10 out of top 10 and 48 out of top 50 predicted Breast Neoplasms-related miRNAs were

validated by HMDD V2.0, dbDEMC and miR2Disease (See Table 6). Hsa-mir-210, ranking

first in our prediction result list, had the greatest possibility associating with Breast Neoplasms.

The study of Zehentmayr et al. [61] has revealed the association that hsa-mir-210 was overex-

pressed in contralateral unaffected breasts (CUB) of patients with breast cancer. This case

study showed that our model was also reliable when applied to predict miRNAs related with

new diseases.

Finally, to test robustness of our model, we carried out the third case study for Carcinoma

Hepatocellular based on known associations in HMDD V1.0 including 1395 associations

between 271 miRNAs and 137 diseases. In this case study, we ranked candidate miRNAs for

Carcinoma Hepatocellular and validated top 50 predictions with experimental evidences. As

has been defined, a candidate miRNA was a miRNA unassociated with the Carcinoma Hepato-

cellular according to HMDD v1.0, which guaranteed that validation of the predictions was

completely independent of training database HMDD V1.0. As a result, 10 out of top 10 and 44

out of top 50 potential miRNAs associated with Carcinoma Hepatocellular were validated by

HMDD V2.0, dbDEMC and miR2Disease (See Table 7). For example, hsa-mir-146b (1st in the

prediction list) was down-regulated in Carcinoma Hepatocellular and could inhibit tumor

growth and metastasis of Carcinoma Hepatocellular [62]. Aforementioned results indicate that

EDTMDA has good robustness, showing satisfactory performance in different dataset.

Table 4. EDTMDA was implemented to predict potential miRNAs related to Esophageal Neoplasms based on known associations in HMDD V2.0. The top 50 pre-

dicted miRNAs were verified in dbDEMC and miR2Disease. The first column records top 1–25 related miRNAs and the third column records the top 26–50 related

miRNAs.

miRNA evidence miRNA evidence

hsa-mir-106b dbDEMC hsa-mir-142 dbDEMC

hsa-mir-200b dbDEMC hsa-mir-195 dbDEMC

hsa-mir-16 dbDEMC hsa-mir-218 unconfirmed

hsa-mir-18a dbDEMC hsa-mir-204 unconfirmed

hsa-mir-125b dbDEMC hsa-let-7d dbDEMC

hsa-mir-221 dbDEMC hsa-mir-29a dbDEMC

hsa-mir-106a dbDEMC hsa-mir-146b dbDEMC

hsa-mir-9 dbDEMC hsa-mir-181b dbDEMC

hsa-mir-222 dbDEMC hsa-mir-199b dbDEMC

hsa-mir-107 dbDEMC and miR2Disease hsa-mir-138 unconfirmed

hsa-let-7e dbDEMC hsa-let-7i dbDEMC

hsa-mir-125a dbDEMC hsa-mir-335 dbDEMC

hsa-mir-7 dbDEMC hsa-mir-302c dbDEMC

hsa-mir-182 dbDEMC hsa-mir-181a dbDEMC

hsa-mir-429 dbDEMC hsa-mir-139 dbDEMC

hsa-mir-29b dbDEMC hsa-mir-20b dbDEMC

hsa-mir-302b dbDEMC hsa-let-7g dbDEMC

hsa-mir-30a dbDEMC hsa-mir-30c dbDEMC

hsa-mir-1 dbDEMC hsa-mir-17 dbDEMC

hsa-mir-127 dbDEMC hsa-mir-135a dbDEMC

hsa-mir-10b dbDEMC hsa-mir-19b dbDEMC

hsa-mir-93 dbDEMC hsa-mir-219 unconfirmed

hsa-mir-24 dbDEMC hsa-mir-372 dbDEMC

hsa-mir-194 dbDEMC and miR2Disease hsa-mir-224 dbDEMC

hsa-mir-32 dbDEMC hsa-mir-30d dbDEMC

https://doi.org/10.1371/journal.pcbi.1007209.t004
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Label randomization test

We randomly shuffled ‘1’ and ‘0’ elements and kept their respective numbers unchanged in

adjacency matrix, which was used to test whether our model suffered from overfitting. The

AUC of three cross validations including global LOOCV, local LOOCV and 5-fold CV were

0.4939, 0.4413 and 0.5005+/-0.0029 respectively, which indicated that EDTMDA effectively

avoided overfitting. Furthermore, label randomization test was implemented in three case

studies by randomly shuffling ‘1’ and ‘0’ elements and keeping their respective numbers

unchanged in adjacency matrix. The results were shown in Table 8, compared with the results

under true labels. From the comparison results, we could draw the conclusion that EDTMDA

is an effective tool to unveil more potential miRNAs related to diseases.

Different ways to select negative samples

In our model, we randomly selected some miRNA-disease pairs without known associations

as negative samples. Moreover, considering that different diseases with different numbers of

associated miRNAs, we designed a new way to select negative samples, which reflected the

contribution of each disease to the positive sample set. For the new way, negative samples were

sampled randomly for each disease to have the same size as the positive samples of the disease.

That is, more negative samples were sampled for the disease with more known associated miR-

NAs. This new way to select negative samples was named local random and the previous way

Table 5. EDTMDA was implemented to predict potential miRNAs related to Kidney Neoplasms based on known associations in HMDD V2.0. The top 50 predicted

miRNAs were verified in dbDEMC and miR2Disease. The first column records top 1–25 related miRNAs and the third column records the top 26–50 related miRNAs.

miRNA evidence miRNA evidence

hsa-mir-16 dbDEMC hsa-mir-1 dbDEMC

hsa-let-7a dbDEMC hsa-mir-92a unconfirmed

hsa-mir-150 dbDEMC and miR2Disease hsa-let-7i dbDEMC

hsa-mir-200a dbDEMC hsa-mir-18a dbDEMC

hsa-mir-155 dbDEMC hsa-mir-210 dbDEMC and miR2Disease

hsa-mir-182 dbDEMC and miR2Disease hsa-mir-296 unconfirmed

hsa-mir-125b unconfirmed hsa-mir-196a dbDEMC

hsa-mir-34a dbDEMC hsa-let-7g dbDEMC

hsa-mir-17 miR2Disease hsa-mir-19a dbDEMC

hsa-mir-146a dbDEMC hsa-mir-199a dbDEMC and miR2Disease

hsa-mir-145 dbDEMC hsa-mir-133a unconfirmed

hsa-let-7c dbDEMC hsa-mir-29b dbDEMC and miR2Disease

hsa-mir-9 dbDEMC hsa-mir-19b dbDEMC and miR2Disease

hsa-mir-367 unconfirmed hsa-mir-25 dbDEMC

hsa-let-7b unconfirmed hsa-mir-223 dbDEMC

hsa-mir-29a dbDEMC and miR2Disease hsa-mir-106b dbDEMC and miR2Disease

hsa-mir-181a dbDEMC hsa-mir-146b dbDEMC

hsa-mir-222 dbDEMC hsa-mir-193b dbDEMC

hsa-mir-221 unconfirmed hsa-mir-302c unconfirmed

hsa-mir-203 dbDEMC hsa-mir-99a dbDEMC

hsa-mir-126 dbDEMC and miR2Disease hsa-mir-195 dbDEMC

hsa-let-7d dbDEMC hsa-mir-205 unconfirmed

hsa-mir-199b dbDEMC hsa-mir-148a dbDEMC

hsa-mir-200b dbDEMC and miR2Disease hsa-mir-130a dbDEMC

hsa-let-7f dbDEMC and miR2Disease hsa-mir-181b dbDEMC

https://doi.org/10.1371/journal.pcbi.1007209.t005

miRNA-disease association prediction

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007209 July 22, 2019 17 / 24

https://doi.org/10.1371/journal.pcbi.1007209.t005
https://doi.org/10.1371/journal.pcbi.1007209


to select negative samples from all the negative was named global random. For the model

using local random to select negative samples, we implemented model evaluation under three

cross validations (global LOOCV, local LOOCV and 5-fold CV), and the AUCs were 0.8224,

0.7871 and 0.8180+/-0.0019 respectively, which was significantly inferior to AUCs of 0.9309,

0.8524 and 0.9192+/-0.0009 in our model using global random to select negative samples. For

the local random to select negative samples, the poor performance of model could be that

more false negative samples (miRNA-disease pairs with potential associations) were selected.

It is apparently observed that miRNAs prefer to relate to some specific diseases in our dataset

and we think that there should be more potential miRNA-disease associations for these specific

diseases. But in local random to select negative samples, more selected negative samples were

derived from the negative of those specific diseases with more related miRNAs, i.e., more false

negative samples were selected. In global random to select negative samples, we avoided select-

ing more false negative samples for model training and obtained better model performance.

Discussion

Increasing researchers are devoted to developing computational methods to infer potential

miRNA-disease associations as these methods can be valuable complements to experiments.

In this study, we proposed a computational method called EDTMDA under the framework of

ensemble learning and dimensionality reduction. The Gaussian interaction profile kernel

Table 6. EDTMDA was implemented to predict potential miRNAs associated with Breast Neoplasms as a new disease by removing all known associations contain-

ing Breast Neoplasms in HMDD V2.0 database. The top 50 predicted miRNAs were verified in dbDEMC, miR2Disease and HMDD V2.0. The first column records top

1–25 related miRNAs and the third column records the top 26–50 related miRNAs.

miRNA evidence miRNA evidence

hsa-mir-210 dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-155 dbDEMC;miR2Disease; HMDD V2.0

hsa-mir-31 dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-15a dbDEMC;HMDD V2.0

hsa-mir-134 dbDEMC hsa-mir-132 dbDEMC;HMDD V2.0

hsa-mir-122 dbDEMC;HMDD V2.0 hsa-mir-218 dbDEMC;HMDD V2.0

hsa-mir-221 dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-222 dbDEMC;miR2Disease; HMDD V2.0

hsa-mir-133a dbDEMC;HMDD V2.0 hsa-mir-137 dbDEMC;HMDD V2.0

hsa-mir-196a dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-29b dbDEMC;miR2Disease; HMDD V2.0

hsa-mir-7 dbDEMC;miR2Disease; HMDD V2.0 V2.0 hsa-mir-15b dbDEMC

hsa-mir-34a dbDEMC;HMDD V2.0 hsa-mir-20a miR2Disease;HMDD V2.0

hsa-mir-125b miR2Disease;HMDD V2.0 hsa-mir-96 dbDEMC;miR2Disease; HMDD V2.0

hsa-mir-16 dbDEMC;HMDD V2.0 hsa-mir-205 dbDEMC;miR2Disease; HMDD V2.0

hsa-mir-1 dbDEMC;HMDD V2.0 hsa-mir-200c dbDEMC;miR2Disease; HMDD V2.0

hsa-mir-26a dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-326 dbDEMC;HMDD V2.0

hsa-mir-146a dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-34b dbDEMC;HMDD V2.0

hsa-mir-29c dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-200a dbDEMC;miR2Disease; HMDD V2.0

hsa-mir-223 dbDEMC;HMDD V2.0 hsa-mir-148a dbDEMC;miR2Disease; HMDD V2.0

hsa-mir-206 dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-29a dbDEMC;HMDD V2.0

hsa-mir-142 unconfirmed hsa-mir-302b dbDEMC;HMDD V2.0

hsa-mir-9 dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-34c dbDEMC;HMDD V2.0

hsa-mir-21 dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-30b dbDEMC;HMDD V2.0

hsa-mir-200b dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-182 dbDEMC;miR2Disease; HMDD V2.0

hsa-mir-199a dbDEMC;HMDD V2.0 hsa-mir-1207 unconfirmed

hsa-mir-224 dbDEMC;HMDD V2.0 hsa-mir-302a dbDEMC;HMDD V2.0

hsa-mir-145 dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-10b dbDEMC;miR2Disease; HMDD V2.0

hsa-mir-124 dbDEMC;HMDD V2.0 hsa-mir-150 dbDEMC

https://doi.org/10.1371/journal.pcbi.1007209.t006
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similarity scores for miRNAs and diseases were first calculated from known miRNA-disease

associations. Then integrated miRNA (disease) similarity could be obtained via integrating

miRNA functional similarity (disease semantic similarity) and Gaussian interaction profile

kernel similarity of miRNAs (diseases). In addition, the feature vectors for the miRNA-disease

pair was constructed by conducting feature extraction on integrated similarity and known

miRNA-disease associations. Multiple base learnings were built based on random selection of

negative samples and miRNA/disease features so that many decision trees (DTs, base classifi-

ers) were attained. Particularly, in order to remove the noise or redundancy, PCA was utilized

to reduce feature dimensionality during each base learning. Final prediction results were given

by adopting simple average strategy for these DTs.

Table 7. EDTMDA was implemented to predict potential miRNAs related to Carcinoma Hepatocellular based on known associations in HMDD V1.0 database.

The top 50 predicted miRNAs were verified in dbDEMC, miR2Disease and HMDD V2.0. The first column records top 1–25 related miRNAs and the third column records

the top 26–50 related miRNAs.

miRNA evidence miRNA evidence

hsa-mir-146b HMDD V2.0 hsa-mir-29a dbDEMC;HMDD V2.0

hsa-mir-155 dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-194 dbDEMC;miR2Disease

hsa-mir-128b miR2Disease hsa-let-7i dbDEMC;HMDD V2.0

hsa-mir-106b dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-93 dbDEMC;miR2Disease; HMDD V2.0

hsa-mir-126 dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-34b unconfirmed

hsa-mir-143 dbDEMC;miR2Disease hsa-mir-30c miR2Disease;HMDD V2.0

hsa-mir-210 dbDEMC;HMDD V2.0 hsa-mir-429 unconfirmed

hsa-mir-141 miR2Disease;HMDD V2.0 hsa-mir-135b unconfirmed

hsa-let-7a dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-15a dbDEMC;miR2Disease; HMDD V2.0

hsa-mir-132 miR2Disease hsa-mir-30d dbDEMC;HMDD V2.0

hsa-mir-25 dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-205 miR2Disease;HMDD V2.0

hsa-let-7g miR2Disease;HMDD V2.0 hsa-mir-153 unconfirmed

hsa-mir-29b dbDEMC;HMDD V2.0 hsa-mir-383 unconfirmed

hsa-mir-214 dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-196b unconfirmed

hsa-let-7d miR2Disease;HMDD V2.0 hsa-mir-200c HMDD V2.0

hsa-mir-181b dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-451 dbDEMC

hsa-mir-24 miR2Disease;HMDD V2.0 hsa-mir-219 miR2Disease;HMDD V2.0

hsa-let-7b miR2Disease;HMDD V2.0 hsa-mir-7 HMDD V2.0

hsa-let-7f miR2Disease;HMDD V2.0 hsa-mir-151 miR2Disease

hsa-let-7c dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-30e miR2Disease

hsa-mir-9 miR2Disease hsa-mir-192 miR2Disease;HMDD V2.0

hsa-mir-191 dbDEMC;HMDD V2.0 hsa-mir-103 miR2Disease

hsa-mir-16 dbDEMC;miR2Disease; HMDD V2.0 hsa-mir-26b dbDEMC;miR2Disease

hsa-mir-29c dbDEMC;HMDD V2.0 hsa-mir-218 HMDD V2.0

hsa-mir-34c HMDD V2.0 hsa-mir-339 unconfirmed

https://doi.org/10.1371/journal.pcbi.1007209.t007

Table 8. The number of validated miRNAs among top 10 and top 50 predicted miRNAs in case studies between under true labels and under label randomization.

Case study Top 10 & true labels Top 10 & label randomization Top 50 & true labels Top 50 & label randomization

The 1st type of case study for Esophageal Neoplasms 10 4 47 26

The 1st type of case study for Kidney Neoplasms 9 5 43 22

The 2nd type of case study for Breast Neoplasms 10 5 48 36

The 3rd type of case study for Carcinoma

Hepatocellular

10 5 44 33

https://doi.org/10.1371/journal.pcbi.1007209.t008
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The success of this model is mainly due to the following points. First, comprehensive statis-

tical features, graph theoretic features and matrix factorization results were extracted from

similarity information and known associations so that informative input features for the

model could be obtained. Furthermore, because feature profiles made the most of similarity

and known associations, EDTMDA could work for new diseases without known association

information. Second, ensemble learning was designed to integrate multiple basic classifiers

for more accurate prediction. In addition, feature dimensionality reduction with PCA could

remove noise or redundancy to further improve prediction performance. Third, for the base

classifier, the regression tree model with the arithmetic of Classification and Regression Tree

(CART) was selected in our model, which was the binary tree with simple structure and could

avoid the data fragmentation existing in multi-branching tree.

However, there were several limitations in our prediction model. To begin with, known

miRNA-disease associations were inadequate (with only 2.86% of 189,585 miRNA-disease

pairs being labeled) and increasing associations confirmed by experiments in the future would

further improve model performance. Additionally, similarity calculation of miRNA and dis-

ease in this study may not be perfect and we expect more biological information would be

incorporated into similarity measurement. Moreover, EDTMDA might cause bias to miRNAs

which have more associated disease records. Finally, negative samples (miRNA-disease pairs

without associations) were needed in our model. We randomly sampled some pairs without

known associations as negative samples for model training. In order to reduce bias and

improve prediction performance, multiple base classifiers were trained and integrated. More-

over, dimensionality reduction was employed for each base classifier to reduce noise and

redundant information, which further improve performance of model. Actually, it is still diffi-

cult to obtain true negative samples (That is, miRNA-disease pairs show no evidence of associ-

ation), because these true negative samples are scarcely reported in literature. We will make

efforts to develop the new approach to identify reliable negative samples in the future.

Supporting information

S1 Table. We applied EDTMDA to prioritize all the candidate miRNA-disease pairs based

on all the known miRNA-disease associations in HMDD V2.0 database as training sam-

ples. This prediction result is released for further experimental validation and research.
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