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Introduction 

In recent years, genome-wide association studies (GWAS) for longitudinal traits (e.g., 
body weight or cholesterol levels) have been carried out in cohorts, where multiple mea-
surements have been collected from each individual [1-7]. Although GWAS have suc-
cessfully discovered a large number of novel genetic variants associated with these traits, 
the identified variants typically account for only a small proportion of overall heritability 
[8-10]. A presumed explanation for the “missing heritability” is that existing methods 
have low power to identify gene-gene and gene-time/environment interactions [11]. 
Since traditional methodologies are limited to the identification of variants with marginal 
effects using a single measurement per individual, a large amount of useful information in 
longitudinal data is lost and variants that interact with other variants or have time-varying 
effects may not be detected [12]. It is more appropriate to analyze multiple variants si-
multaneously, using all available measurements, for longitudinal genetic studies. 

There are methodological challenges associated with the genetic analysis of longitudi-
nal traits for multiple variants. Most complex traits are typically controlled by multiple 
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variants that interact with each other or environmental factors. It 
may be exceedingly difficult to model all candidate variants with 
epistatic effect and gene-time/environment interactions for longi-
tudinal traits because genetic data are generally high-dimensional 
relative to the number of samples. Bayesian multiple quantitative 
trait loci (QTL) mapping methods [13-16] have been proposed 
for modeling epistatic effects. Multiple QTL can be simultaneous-
ly detected by treating the number of QTL as a random variable 
using the reversible jump Markov-chain Monte Carlo (MCMC) 
method [13,14]. Alternatively, multiple QTL can be viewed as a 
variable selection problem [15,16]. Bayesian model selection ap-
proaches are used for identifying QTL with main and epistatic ef-
fects [17], as well as QTL that interact with other covariates [18] 
based on the composite model space framework. These approach-
es use a fixed-dimensional parameter space by setting an upper 
bound on the number of detectable QTL and introduce latent bi-
nary variables for deciding which variables will be included in the 
model. This technique reasonably reduces the model space using 
efficient MCMC algorithms. For multiple QTL mapping with 
multivariate traits, Banerjee et al. [19] extended the Bayesian vari-
able selection method of Yi [16] via a model that allows different 
genetic models for different traits. This method provides a multi-
ple QTL mapping strategy for correlated traits, but it does not ac-
count for the dependence structure among repeated measure-
ments from each subject. 

Several statistical methods have been proposed for dealing with 
within-subject variation. For data collected at the same time points 
across all individuals, the measured values at each time point can 
be treated as one variable. The data can then be treated as multi-
variate outcomes and jointly analyzed [20-23]. For data collected 
at different time points across some or all individuals, the mea-
sured values cannot be effectively grouped; thus, standard multi-
variate analysis is no longer applicable. Alternatively, mixed models 
are used for longitudinal data to map QTL [24]. Mixed models are 
flexible in modeling such unbalanced data because they allow 
non-constant correlations among observations. Chung and Zou 
[25] developed a Bayesian multiple association-mapping algo-
rithm based on a mixed model with a built-in variable selection 
feature. It models multiple genes simultaneously and allows gene-
gene and gene-time/environment interactions for repeatedly mea-
sured phenotypes. However, in that model, we made the strong as-
sumption that the covariance matrix is known up to a constant. We 
plan to relax that assumption here. 

In this paper, we develop a Bayesian variable selection method 
for longitudinal data where phenotypes are not measured at a fixed 
set of time points for all samples. It jointly models the main and 

pairwise interactions of all candidate genetic variants. We propose 
a novel grid-based approach to parsimoniously model each sub-
ject’s covariance matrix as a function of a covariance matrix de-
fined on a set of pre-selected time points where each observed 
time point is mapped to its two adjacent grid time points via linear 
interpolation. This approach thus deals only with a covariance ma-
trix of a fixed dimension. The covariance matrix is then modeled 
nonparametrically using the modified Cholesky decomposition of 
Chen and Dunson [26], which facilitates the use of normal conju-
gate priors. The deviance information criterion (DIC) and the 
Bayesian predictive information criterion (BPIC) are proposed for 
the selection of an optimal number of grid points. The paper is or-
ganized as follows. In the Methods section, we introduce a novel 
grid-based Bayesian method for longitudinal genetic data and pro-
vide its theoretical basis. In the Results section, we show numerous 
simulation results using whole-genome sequencing data from the 
1000 Genome Project to evaluate the performance of the pro-
posed methods and assess the effects of sample size, number of 
variants, causal variants, and heritability. We conclude the paper 
with some discussions on the proposed methods and future re-
search. 

Methods 

Genotype data 
For our simulation studies, we utilized the whole-genome se-
quencing data from the 1000 Genome Project, which created a 
catalogue of common human variations using samples from peo-
ple who provided open consent who declared themselves healthy. 
It ran between 2008 and 2015, generating a large public catalogue 
of human variations and genotype data. We randomly selected 400 
out of 504 individuals of East Asian (EAS) ancestry from the 1000 
Genome Project data (phase 3 version 5) and then removed sin-
gle-nucleotide polymorphisms (SNPs) with a minor allele fre-
quency < 5% and p(Hardy-Weinberg equilibrium) < 10-6, which 
resulted in 6, 247, 288 SNPs. 

Bayesian mixed models 
For a given trait, suppose we have n individuals where individual i 
has phenotypes measured at ni time points (i = 1, ..., n) and p SNPs. 
Let N = ∑i

n
= 1

 ni. We set the number of main effect terms equal to p, 

the number of SNP-SNP interaction term s to              , and the 

number of SNP-covariate interaction terms to pq, where q is the 
number of covariates in the model, including time. We define λ =  
(λ1, ..., λd)T as the SNP positions associated with the above genetic 

p(p–1)
2
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effects, where d = p +               + pq. Each SNP can be associated 
with the trait through its main effect or interactions with other 
SNPs (epistatic effects) or covariates. We introduce latent binary 
variables γ = (γ1, ..., γd)T for the selection of genetic effects to be in-
cluded in (γi = 1) or excluded from (γi = 0) the model. The vector 
(γ, λ) determines the number and positions of SNPs. For the ith 
individual, xti denotes the ni × q design matrix of time/environ-
mental covariates, xgi denotes the ni × p design matrix of the p 
SNPs, xggi denotes the ni

 ×                   design matrix of the epistatic ef-

fects, and xgti denotes the ni × pq design matrix of the SNP-time/

SNP-environment interactions. We define the final design matrix as 
xi = (xti , xgi , xggi , xgti ).

Given γ, λ, and xi, we consider the following mixed model:

yi = μ i + xi Γβ + pivi + ei(i = 1, ..., n),                          (1)

where yi = (yi1, ..., yini
)T is an ni × 1 phenotype vector of individual i; 

μi = μ1ni is an ni × 1 overall mean vector; Γ is a diagonal matrix with 
upper diagonal elements 1q (i.e., the model always contains all 
non-genetic covariates) and lower diagonal elements Υ;β =  (βt

T , βg
T, 

βg
T
g , βg

T
t )

T is a vector of genetic effects, time/environmental effects, 
epistatic effects, and SNP-time/environment interactions; and ei is 
an ni × 1 vector of random errors with ei~N(0, σ2Ini). To model the 
correlation among repeated measurements of the same individual, 
we partition the observed time interval by k pre-specified grid 
points, t = (t1, ... , tk)

T, and define νi as a k × 1 vector of random ef-
fects at the grid time points with νi~N(0, D) where D is a k × k co-
variance matrix. Let pi =  (pi

T
1 , ... , pi

T
ni)

T and P = diag(p1, ... , pn) 
where pi is defined as follows. If all subjects have k observations 
measured exactly on the k grid time points, then pi becomes an 
identity matrix. We apply an interpolation procedure (e.g., linear, 
polynomial, or spline) to any observation that does not fall on any 
of the k grid time points. For simplicity, we choose a linear interpo-
lation here. When the jth measurement of individual i falls at time t, 
which is in between the grid points tr and tr+1 (tr ≤  t ≤  tr+1), we set 

pij = (0(
T
r–1),             ,            , 0(

T
k–r–1)). When t = tr, we get pij = (0(

T
r–1), 1 , 

0(
T
k–r)). We can re-express pij as pij = aij1e1+...+aijkek, where aijr is the 

rth element of pij and er (1 ≤  r ≤  k) is a 1 ×  k vector whose ele-
ments are all zero except the rth component, which equals 1. Note 
that ∑r

k
= 1aijr =  1, 0 ≤ aij1, ... , aijk ≤ 1 and at most two adjacent aijr val-

ues can be non-zero due to the linear interpolation we employ 
here.  

Re-parameterized model 
For Bayesian estimation of the mixed model (1), we factor D, the 
covariance matrix of the random effects, by employing the modi-
fied Cholesky decomposition of Chen and Dunson [26]. Let L 
denote a k × k lower triangular Cholesky decomposition matrix 
that has nonnegative diagonal elements, such that D =  LLT. Let 
L = ΔΨ, where Δ = diag(δ1, ..., δk) and Ψ is a k × k matrix with the (l, 
m)th element denoted by ψlm. To make Δ and Ψ identifiable, we 
make the following assumptions: δl ≥  0, ψll = 1 and ψlm = 0, for l = 1, 
..., k; m = l+1, ..., k. These conditions make Δ a nonnegative k ×  k 
diagonal matrix and Ψ a lower triangular matrix with 1’s in the di-
agonal elements. This leads to the decomposition D = ΔΨΨTΔ, 
and thus we reparametrize model (1) as  

yi = μ i + xi Γβ + piΔΨbi + ei(i = 1, ..., n),                    (2)

where bi = (bi1, ...bik)
T such that bij~N(0, 1) and bij ┴ bʹij (j ≠ jʹ), 

j = 1, ..., k. For later use, we define vi = piΔΨ = (vi1, ..., vini)
T and 

v = diag(v1, ..., vn).

Model identifiability
Model identifiability is a property that a model must satisfy for 
accurate inference to be possible. A model is identifiable if it is 
theoretically possible to estimate the true values of the underlying 
parameters of the model, while a model is non-identifiable or un-
identifiable if two or more parametrizations are observationally 
equivalent [27]. The proposed Bayesian model has an identifi-
ability issue associated with the covariance matrix of y = ( y1

T, ... , yn
T

 

)T, which equals PDPT+σ2IN where D = In⊗D. The condition is 
that PDPT+σ2IN =  PD^PT+σ̂2IN if and only if D^= D and σ̂2 = σ2. This 
is equivalent to the system of equations PD

~
PT+σ~2IN = 0 having no 

non-zero solutions for D~ and σ~2 when D~ = D–D^ and σ~2 = σ2–σ̂2. Let 
the (r, s)th element of D~ be d˜r,s. The system of equations PD

~
PT 

+σ~2IN = 0 is equivalent to the system of equations AX = 0, where 
A = (A1

T, ... , An
T)T is a [ 2–1

   ∑i
n
= 1 ni(ni+1)] × [ 2–1

   k(k+1)+1] matrix 
whose elements are functions of the aijrs and X = (d˜1,1 , d

˜
1,2 , ... , d

˜
1,k 

,d˜2,2 , ... , d
˜

k,k , σ~
2 )T which contains all elements of the matrix D~ and 

σ~2 (see proof of Lemma 1 in Supplementary Data 1).Therefore, 
the proposed Bayesian model (2) is identifiable if and only if rank 
(A) = 2–1

   k(k+1)+1 (see proof of Theorem 1 in Supplementary 
Data 1).

Lemma 1 and Theorem 1 enable us to check whether a given 
model is identifiable. A toy example is provided below. Suppose 
there are 3 grid points that produce 2 time intervals. According to 
the theorem, the rank of A must be  2–

1
    3(3+1)+1 = 7 for the model 

to be identifiable. Suppose the phenotypes of all individuals are 

p(p–1)
2

p(p–1)
2

tr+1–t
tr+1–tr

t–tr

tr+1–tr
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observed exactly on the 3 grid points. Then

The rank of A is  2–
1
    3(3+1) = 6. Therefore, PDPT+σ2IN is non-iden-

tifiable. If we have one additional individual who has one pheno-
type measured not on any of the grid points, the model becomes 
identifiable since the rank of A now increases to 7. If we do not 
have any additional individuals, we can avoid the identifiability is-
sue simply by setting σ2 = 0 and modeling D directly.  

Prior specifications 
For the random effects of the proposed Bayesian model, we em-
ploy the priors presented by Chen and Dunson [26]. Specifically, 
independent half normal priors are imposed on the diagonal ele-
ments of Δ and normal priors on the lower triangular elements of 
Ψ. For the fixed effects, we straightforwardly extend the priors pre-
sented in Yi et al. [17, 18]. 

Priors on γ and λ 
Let wa = P(γa =  1) be the inclusion probability of the ath genetic 
effect. We assume that all inclusion probabilities are independent 
of each other and thus the prior of γ is Πa

r
= 1 wa

γa   (1–wa)
1–γa. The in-

clusion probability wa is pre-determined and can vary according to 
whether it corresponds to a main genetic effect, SNP-SNP interac-
tion, or SNP-covariate interaction [17]. To specify a prior on λ, we 
assume that the locations are again independent and uniformly 
distributed over all SNPs. For the number of SNPs (i.e., p), the pri-
or distribution of genetic variant location λ is therefore given by 
P(λ) = Πa

r
= 1P(λa). 

Priors on b, Δ, and Ψ 
In model (2), we let the distribution of each bij independently fol-
low a standard normal distribution. Thus, the joint prior distribu-
tion of b = (b1

T,  ... , bn
T)T is P(b) =d  N(0, Ink). As priors for Δ and Ψ, 

we define two vectors δ = (δl ∶l = 1, ..., k)T and ψ = (ψml ∶m = 2, ... 
, k;l = 1, ... , m-1)T. The prior distribution for δ is P(δ) = Πl

k
= 1 P(δl)

Πl
k
= 1 N+(δ1|ml0 , sl

2
0), where N+(δ1|ml0, sl

2
0) is the density of a half 

normal distribution that is a N(δ1|ml0, sl
2
0) density truncated below 

by zero. The prior distribution for ψ is P(Ψ) =d N(Ψ0 , R0), where 
ψ0 and R0 are pre-specified hyperparameters. 

Priors on β, μ, and σ2  

The prior for the ath genetic effect is a normal distribution, P(βa|γa 

,σβ
2) =d N(0, γa σβ

2) and the prior for the variance σβ
2 is a scaled inverse 

χ2 distribution, P(σβ
2) =d inv–χ2(vβ, sβ

2
 ) whose expectation is E(σβ

2) =   

               . The degree of freedom νβ controls the skewness of the pri-
or for σβ

2 (we set νβ = 6) and the scale parameter sβ
2 controls the pri-

or confidence region for the heritability of the associated genetic 
factor. Let V be the total phenotypic variance and Va be the sample 
variance of the column of xi associated with βa. The heritability of 
the ath genetic factor, ha, is therefore Va βa

2/V. Setting E(σβ
2) = E(βa

2), 
we have sβ

2
 = (vβ–2)E(βa

2)/Vβ = (Vβ–2)E(ha)V/(vβVa), with E(ha) =  
0.1. The prior for the overall mean μ is given by P(µ) =d N(η0, τ0

2). 

We empirically set η0 = y–= (    )∑i
n
= 1 ∑j

n
=
i

1 yij and τ0
2 = sy

2 = (       ) ∑i
n
= 1 

∑j
n

=
i

1(yij– y–)2. The prior for the residual variance σ2 is chosen as an 

scaled inverse χ2 distribution, P(σ2) =d inv – χ2
(vσ , sσ

2).

Posterior calculation and MCMC algorithm 
The joint posterior distribution is proportional to the product of 
the likelihood and the prior distributions of all unknown parame-
ters, which can be expressed as 

(3)
P(γ, θ|y)   P(y|γ, θ)P(γ)P(λ)P(β|γ)P(b)P(δ)P(ψ)P(µ)P(σ2), 

where θ = (λ, β, b, δ, ψ, μ, σ2)T. To obtain MCMC samples of all pa-
rameters, we utilize the Metropolis-Hastings and Gibbs sampling 
algorithms, and alternately update each unknown parameter or set 
of unknown parameters conditional on all the other parameters 
and the observed data.  

For γ and λ, we use the Metropolis-Hastings algorithm within 
Gibbs sampler since their conditional distributions have no known 
distributional forms. To update those parameters, we straightfor-
wardly extend the Metropolis-Hastings algorithm proposed by Yi 
et al. [18] for our Bayesian model. These algorithms are described 
in the Supplementary Data 1. For the other parameters, we applied 
the Gibbs sampling algorithm. Specifically, since b, δ, and ψ have 
multivariate normal or half normal priors, the full conditional dis-
tributions are easy to derive by their conjugacy properties. The full 
conditional posterior distributions of b, δ and ψ are P(b|y, γ , θ–b) 

=d N(b*, ∑b*), P(δl|y, γ , θ–δl) =d N+(δl
*
 , ³σl

*
 
2), and P(ψ|y, γ , θ–ψ) =d N (ψ*, 

∑ψ
*), respectively, where θ-f represents all the elements of θ except f. 

The expressions for b*, ∑b* , δl
*
  , δl

*
 
2, ψ*, and ∑ψ

* are again given in Sup-
plementary Data 1. The full conditional distributions of β, σβ

2, μ 

pi = I3 , A1 =  ... =  An = and X =

1 0 0 0 0 0 1
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 1

d˜1,1

d˜1,2

d˜1,3

d˜2,2

d˜2,3

d˜3,3

σ~2

vβsβ
2
 

vβ–2

1
N

1
N–1
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and σ2 are P(βa|γa =  1, γ–a , θ–βa , y) =d N(μ~a, σ~β
2), P(σβ

2|βa) =d Inv 
– 

χ2(vβ+1, (βa
2+vβsβ

2)/(vβ+1)), P(μ|γ, θ–μ , y) =d (μ*, σμ
2*), and P(σ2|γ, θ–

σ2 , y) =d Inv 
– χ2(vσ + N,                     ), respectively, where μ~a, σ~β

2, μ*, σμ
2*, 

and σ̂2 are given in Supplementary Data 1 as well.

Posterior analysis
The posterior samples can be used to approximate the posterior 
distribution of the parameters. MCMC samples from the initial it-
erations are discarded as “burn-in” and the subsequent samples are 
thinned by keeping every cth MCMC sample, where c is an integer, 
and discarding the rest. The posterior inclusion probability of each 
SNP can be calculated using its inclusion proportion in the 
MCMC samples as P(κl|y) =     ∑t

T
= 1 ∑w

r
= 1 1(λw

(t)= κl , γ w
(t)

 = 1) where 
κl is lth SNP position (l = 1, ..., h) and T is the total number of 
MCMC samples. With the prior P(κl) =        , the Bayes factor can be 
calculated to quantify the evidence for inclusion of the lth SNP (κl) 
against exclusion of the lth SNP as  

(4)

The Bayes factor BF(κl) reflects how our belief in the impor-
tance of the lth SNP changes as we move from prior knowledge to 
posterior information. Jeffreys [28] and Yandell et al. [29] suggest 
the following criteria for judging the significance of each SNP: 
weak support if BF(κl) falls between 3 and 10; moderate support if 
BF(κl)falls between 10 and 30; and strong support if BF(κl) is larg-
er than 30.

Choice of the number of grid points
A critical issue with the proposed Bayesian model is how to choose 
an optimal number of grid points, k. We achieve this goal by evalu-
ating the goodness of the predictive distributions of our Bayesian 
models. Spiegelhalter et al. [30] proposed the DIC as DIC =  
– 2Eγ,θ|y [logP(y|γ, θ)]+PD. The second term of the DIC, PD, is the 
effective number of parameters, which is defined as PD =  – 2Eγ,θ|y 

[logP(y|γ, θ)]+2logP(y|γ–, θ
–
), where γ– and θ

–
 are the posterior 

means of γ and θ. Since P(yi|γ, θ)=d  N(μi + xi Γβ , piDpi
T

 + σ2Ini) in 
model (1), the DIC is easy to compute with the MCMC samples. 
However, as stated by Robert and Titterington [31], the observed 
data are used twice to calculate PD, and thus the predictive distri-
bution from the DIC tends to overfit the data. To overcome the 
overfitting problem, Ando [32] developed the BPIC, which is de-
fined as BPIC = – 2Eγ,θ|y[logP(y|γ, θ)]+2nb^ where b^ is the asymp-
totic bias in the posterior mean of the expected log-likelihood. Un-

der a certain mild regularity condition, the bias term can be ap-
proximated by nb^≈PD, resulting in the simplified BPIC = 2Eγ,θ|y[log-
P(y|γ, θ)]+2PD. It should be noted that the penalty term of the 
simplified BPIC is twice that of the original DIC. We select the op-
timal number of grid points for our model by minimizing DIC or 
simplified BPIC scores.

Implementation in gridbayes
The proposed grid-based Bayesian mixed models have been im-
plemented in an R package named gridbayes [33], which is built 
on top of the R packages, qtl [34] and qtlbim [29]. The MCMC 
algorithm in C and the data manipulation procedure in R were 
modified for longitudinal analysis. The gridbayes package employs 
both DIC and simplified BPIC scores to select the optimal num-
ber of grid points. The software package and the source code are 
available for download at https://github.com/wonilchung/Grid-
Bayes.

Results

Simulation I
To evaluate the performance of the proposed method, we con-
ducted the following simulations. We first used 400 individuals 
and 1, 000 SNPs from the 1000 Genome Project data. The num-
ber of measurements for each individual ranged from 3 to 7 and 
the total number of observations was set to 2, 000. Six different 
setups (Setups 1–6) were considered. We simulated the datasets 
containing 10 causal SNPs, which are randomly selected (i.e., the 
proportion of causal SNPs =  1%) with only main effects (Setup 
1). For individual i, the phenotype values were generated from the 
model: yi = cg1 ·(∑a

10
= 1 xia+ ti) + pivi + ei , where xia (a = 1, ... , 10) were 

genotype values of the causal SNPs, cg1 is used to set trait-heritabil-
ity to 40%, ti = (ti1, ... , tini

)T were the time covariates generated from 
the uniform distribution U[0, 1] and then standardized to have 
mean 0 and variance 1, and ei~N(0, σ2Ini). We set σ2 = 1. The true 
number of grid points was set to 3 (i.e., true k = 3), and pi was cal-
culated from ti by the linear interpolation as we described in the 
Methods section. We set δ = (δ1, δ2, δ3) =  (1, 1.2, 0.8) and ψ = (ψ21, 
ψ31, ψ32) = (0.6, 0.4, 0.6). That is, νi~N(0, D) with diag(D) = (1, 
1.96, 0.97) and the lower triangle elements (d21, d31, d32) = (0.72, 
0.32, 0.81). The prior distributions for the elements in δ were in-
dependent N+(0, 30) and the prior distributions for the elements 
in ψ were independent N(0, 0.5). For each simulated dataset, the 
MCMC algorithm ran for 4 ×  105 iterations after discarding the 
first 1, 000 burn-in iterations. The remaining samples were further 
thinned for every 40 iterations, yielding 104 MCMC samples for 

vσsσ
2

 +Nσ^2 
vσ+N

1 
T

p 
h

P (κl | y)/P (κl)

(1–P(κl | y))/(1–P(κl))

(P (κl | y)

(1–P(κl | y)
=BF(κl) =

1–P(κl)

P(κl) .
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the posterior analysis.
To further investigate the Bayesian mixed model, we analyzed 

additional datasets containing two SNP-SNP interactions (Setup 
2), five SNP-SNP interactions (Setup 3), two SNP-time interac-
tions (Setup 4), five SNP-time interactions (Setup 5), or ten SNP-
time interactions (Setup 6). Specifically, we simulated data accord-
ing to the following models: 
yi = cg2·(∑a

6
= 1 xia + xi7·xi8 + xi9·xi10 + ti) + pivi + ei for Setup 2, 

yi = cg3·(xi1·xi2 + xi3·xi4 + xi5·xi6 + xi7·xi8 + xi9·xi10+ ti) + pivi + ei for 
Setup 3, 
yi = cg4·(∑a

8
= 1 xia + ∑a

10
= 9 xia·ti) + pivi + ei for Setup 4, 

yi = cg5·(∑a
5

= 1 xia + ∑a
10

= 6 xia ·ti) + pivi + ei for Setup 5 and 
yi = cg6·(∑a

10
= 1 xia·ti) + pivi + ei for Setup 6. In our simulations, cgj (j = 1, 

... , 6) were varied to ensure that trait-heritability to 40%. To dis-
play time-dependent SNP effects for Setups 4 and 5, we compared 
the time-dependent curves of averaged phenotype values for three 
different genotypes (0, 1, 2) at the first causal SNP (with no SNP-
time interaction) and 10th one (with SNP-time interaction). Sup-
plementary Fig. 1 clearly showed that the first causal SNP had only 
a main effect, but the 10th causal SNP interacted with time. We 
first conducted gridbayes [33] using all the data. For model com-
parisons, we then conducted qtlbim [29] in two ways: once on a 
subset of each simulated data, where only one measurement from 
each subject was randomly selected, and once with all the data by 
(incorrectly) assuming that all the measurements were indepen-
dent. We named the two qtlbim analyses “qtlbim-sub” and “qtl-
bim-all, ” respectively. 

The one-dimensional genome-wide profiles of 2log(BF) for the 
combined main, epistatic effects, and SNP-time interactions of 
each SNP under the six setups were presented in Figs. 1 and 2. The 
dashed vertical lines indicate the locations of the 10 causal SNPs. 
The gridbayes analysis of all the data and qtlbim-sub detected the 
causal SNPs reasonably well, but gridbayes clearly outperformed 
qtlbim-sub in general. The qtlbim-all method occasionally identi-
fied the true causal SNPs, but it produced far more false-positive 
findings than gridbayes and qtlbim-sub. 

To evaluate the performance of our Bayesian model, we further 
calculated the receiver operating characteristic (ROC) curves. For 
each setup, we conducted 100 simulations. The ROC curves with 
a false-positive rate less than 0.2 are presented in Fig. 3. The solid 
lines represent the results of gridbayes, the dot-dashed lines corre-
spond to qtlbim-sub and the results from qtlbim-all are summa-
rized by the long-dashed lines. The ROC curves demonstrated 
that gridbayes with all measurements appeared to outperform the 
qtlbim analyses in terms of improved true positive rates. 

To diagnose the convergence of the MCMC samples, we con-

ducted 10 parallel chains with different, over-dispersed initial val-
ues with respect to the true posterior distribution. Using 104 itera-
tions, Geweke’s Z-scores [35] for each chain based on the first 
10% and last 50% of the samples indicated good convergence of all 
parameters. Based on 10 chains, Gelman and Rubin’s potential 
scale reduction factors [36] were calculated, and the upper limits 
were less than 1.01 for all parameters. Supplementary Fig. 2 pres-
ents the trace plots of σ2, δ1, δ2, δ3, ψ21, ψ31 and ψ32 for each setup, 
showing that all chains moved around the true values for all pa-
rameters, indicating good convergence. We plotted the marginal 
posterior and prior densities of all parameters based on 10, 000 
random draws (Supplementary Fig. 3). It appeared that the ran-
dom draws were approximately normal, with means close to the 
simulated values. Supplementary Fig. 4 displays the 95% highest 
posterior density (HPD) intervals for σ2, δ1, δ2, δ3, ψ21, ψ31 and ψ32 
for each setup. Most of the 95% HPD intervals contained the cor-
responding true values. Table 1 summarizes the posterior esti-
mates of all parameters. The posterior means and medians were 
close to the true values and all the 95% HPD intervals contained 
the true values, demonstrating the good performance of our algo-
rithm. 

Simulation II 
We conducted another simulation to estimate the number of true 
grid points using the DIC [30] and simplified BPIC [32,37]. The 
settings were almost the same as those in the previous simulations, 
except that the true number of grid points now varied from 2 to 4 
(i.e., true k = 2, 3, 4). We simulated 100 datasets with 400 individu-
als and 1, 000 SNPs containing 10 causal SNPs (i.e., the propor-
tion of causal SNPs =  1%) with only main effects. The causal 
SNPs were randomly assigned. The trait-heritability was set to 
40%. The phenotype values were generated from the model: 

yi =  cg1·(∑a
10

= 1 xia·ti) + pivi + ei , where xia (a = 1, ..., 10) are geno-
types of the causal SNPs and ti = (ti1, ..., tini)

T are the time points of 
the ith individual. We set (δ1, δ2, δ3, δ4) = (1, 1.2, 0.8, 0.7) and (ψ21, 
ψ31, ψ32, ψ41, ψ42, ψ43) = (0.6, 0.4, 0.6, 0.2, 0.4, 0.6). Table 2 shows 
the average DIC, simplified BPIC scores over 100 simulations, and 
the proportion of times that the number of true grid points was 
correctly selected. All average DIC and average BPIC scores 
achieved the minimums at the true grid point number, and the 
percentages correctly selecting the true number of true grid points 
were 79%, 91%, and 100% for setups with 2, 3, and 4 true grid 
points using the DIC, and 94%, 98%, and 93% using the simplified 
BPIC. This illustrated the usefulness of the DIC and simplified 
BPIC in selecting the true number of grid points. 
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Simulation III 
For a more detailed evaluation of our Bayesian method, we con-
ducted the following simulations with 100 replications for each 
scenario. We first considered 400 individuals with three to seven 
time points, resulting in 2,000 observations, and decreased the 
sample size from 400 to 100 to assess the effect of sample size in 
ROC curves (Fig. 4A). The simulation data contained 1,000 SNPs 
with 1% causal SNPs (i.e., 10 causal SNPs) with only main effects. 
The trait values were generated from the model: yi =  cg1·(∑a

10
= 1 xia·-

ti) + pivi + ei , where xia are genotypes of the causal SNPs and ti = (-
ti1, ..., tini)

T are the time points of the ith individual. As in the previ-
ous simulations, we set the number of grid points to k =  3 and σ2 
=  1, δ = (δ1, δ2, δ3) =  (1, 1.2, 0.8), ψ = (ψ21, ψ31, ψ32) = (0.6, 0.4, 
0.6). The trait-heritability was set to 40%. As the sample size de-
creased from 400 to 100, the true positive rates decreased in ROC 
curves, indicating that including more samples increased the true 
positive rates with fixed false positive rates. Next, we evaluated the 
effect of the number of SNPs (Fig. 4B). The simulation data were 

Fig. 1. Genome-wide profiles of 2log(BF) for all combined effects using gridbayes with all time points, qtlbim with one randomly-selected 
time point (qtlbim-sub) and qtlbim with all time points (qtlbim-all) for Setups 1 (A), 2 (B), and 3 (C).

A

B

C
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generated with 400 individuals, 1% causal SNPs, and 40% trait-her-
itability. As the number of SNPs increased from 1,000 to 5,000 (i.e., 
the corresponding number of causal SNPs increased from 10 to 
50), the true positive rates decreased, meaning that the inclusion of 
more SNPs deceased the true positive rates. We then examined the 
effect of the proportion of causal SNPs (Fig. 4C). The sample size 
and number of SNPs were fixed to 400 and 1,000, and the trait-her-
itability was set to 40%. The true positive rates decreased as the 
proportion of causal SNPs increased from 1% to 5% (i.e., the corre-

sponding number of causal SNPs increased from 10 to 50) because 
per-SNP heritability—or the average proportion of phenotypic 
variation explained by a single SNP—decreased as the proportion 
of causal SNPs increased while keeping trait-heritability constant. 
Lastly, to demonstrate the effect of trait-heritability, we considered 
a setting where the sample size, number of SNPs, and proportion of 
causal SNPs were 400, 1,000, and 1%, respectively. We then 
changed trait-heritability from 40% to 10% in Fig. 4D. The 
true-positive rates decreased as trait-heritability decreased, showing 

Fig. 2. Genome-wide profiles of 2log(BF) for all combined effects using gridbayes with all time points, qtlbim with one randomly-selected 
time point (qtlbim-sub) and qtlbim with all time points (qtlbim-all) for Setups 4 (A), 5 (B), and 6 (C).

A

B

C
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that larger heritability increased the true positive rates. Supplemen-
tary Tables 1, 2, 3, and 4 summarize the posterior means, medians, 
standard deviations and 95% HPD intervals of all parameters in the 
simulations for sample size, number of SNPs, proportion of causal 
SNPs, and heritability, respectively. The posterior means and medi-
ans were close to the true values, and all the 95% HPD intervals 
contained the true values, indicating that our Bayesian method per-
formed well. 

Supplementary Table 5 showed the average DIC and simplified 
BPIC scores over 100 replications for all simulations. Table 3 sum-
marizes the simulation settings for all simulation setups based on 

genetic effect terms, the number of grid points, sample size, num-
ber of observations, number of SNPs, number of causal SNPs, and 
trait-heritability. 

Discussion 

We developed a grid-based Bayesian mixed model for longitudinal 
genetic data with a built-in variable selection feature. The pro-
posed Bayesian method modeled multiple candidate SNPs simul-
taneously and allowed SNP-SNP and SNP-time interactions, 
which enabled us to identify SNPs with time-varying effects. Such 

Fig. 3. Receiving operating characteristic curve analyses in the simulation study for Setup 1 (A), 2 (B), 3 (C), 4 (D), 5 (E) and 6 (F). The red 
solid lines represent the results of gridbayes, the blue dot-dashed lines correspond to qtlbim-sub and the green long-dashed lines display the 
results from qtlbim-all. gridbayes: grid-based Bayesian mixed models with all the data; qtlbim-sub qtlbim with a subset of each simulated 
data where only one measurement from each subject was randomly selected; qtlbim-all: qtlbim with all the data by (incorrectly) assuming 
that all the measurements were independent. G, gene; T, time.

A

D

B

E

C

F
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SNPs are of great scientific and medical interest. In addition, we 
proposed a new grid-based method to model the covariance struc-
ture nonparametrically. Not only is the proposed method parsimo-
nious in estimating the covariance matrix, but also by employing a 
reasonable number of grid-points, it can flexibly approximate any 
type of covariance structure. The number of grid points was pre-

set, but DIC and simplified BPIC can be used to select the optimal 
number. 

The simulation studies showed that the proposed Bayesian meth-
od using all time points outperformed the ordinary Bayesian meth-
od with one or all time points included. As expected, the proposed 
method that utilized the full data was more powerful than the cor-

Table 1. Posterior means, medians, standard deviations, and 95% HPD intervals of the parameters for random errors and random effects in the 
simulation study

Setup Par True Mean Med SD 95% HPD Setup Par True Mean Med SD 95% HPD
1 σ2 1 1.01 1.01 0.04 0.92 to 1.09 2 σ2 1 1.01 1.01 0.04 0.93 to 1.10

δ1 1 0.98 0.98 0.11 0.77 to 1.19 δ1 1 0.98 0.98 0.10 0.78 to 1.19
δ2 1.2 1.19 1.19 0.13 0.92 to 1.43 δ2 1.2 1.19 1.19 0.13 0.92 to 1.43
δ3 0.8 0.76 0.76 0.13 0.5 to 1.00 δ3 0.8 0.72 0.73 0.13 0.48 to 0.97
ψ21 0.6 0.65 0.63 0.21 0.31 to 1.13 ψ21 0.6 0.67 0.64 0.21 0.33 to 1.14
ψ31 0.4 0.52 0.51 0.24 0.09 to 1.04 ψ31 0.4 0.51 0.49 0.24 0.07 to 1.01
ψ32 0.6 0.56 0.53 0.27 0.11 to 1.18 ψ32 0.6 0.67 0.64 0.29 0.20 to 1.34

3 σ2 1 1.00 1.00 0.04 0.92 to 1.08 4 σ2 1 1.00 1.00 0.04 0.92 to 1.09
δ1 1 1.06 1.06 0.10 0.85 to 1.26 δ1 1 0.99 0.99 0.10 0.78 to 1.19
δ2 1.2 1.20 1.20 0.13 0.94 to 1.44 δ2 1.2 1.18 1.19 0.13 0.92 to 1.42
δ3 0.8 0.74 0.74 0.12 0.49 to 0.98 δ3 0.8 0.74 0.74 0.13 0.48 to 0.98
ψ21 0.6 0.69 0.67 0.20 0.36 to 1.14 ψ21 0.6 0.62 0.60 0.20 0.29 to 1.07
ψ31 0.4 0.65 0.64 0.24 0.22 to 1.17 ψ31 0.4 0.47 0.45 0.24 0.03 to 0.96
ψ32 0.6 0.65 0.62 0.27 0.19 to 1.27 ψ32 0.6 0.65 0.61 0.29 0.18 to 1.31

5 σ2 1 1.00 1.00 0.04 0.92 to 1.09 6 σ2 1 1.00 1.00 0.04 0.92 to 1.09
δ1 1 0.98 0.98 0.10 0.77 to 1.18 δ1 1 0.96 0.96 0.11 0.75 to 1.17
δ2 1.2 1.20 1.20 0.13 0.93 to 1.43 δ2 1.2 1.18 1.19 0.13 0.92 to 1.41
δ3 0.8 0.72 0.72 0.13 0.47 to 0.97 δ3 0.8 0.75 0.75 0.13 0.48 to 1.01
ψ21 0.6 0.63 0.60 0.20 0.29 to 1.09 ψ21 0.6 0.61 0.58 0.20 0.27 to 1.07
ψ31 0.4 0.46 0.45 0.25 0.01 to 0.99 ψ31 0.4 0.32 0.31 0.24 –0.14 to 0.81
ψ32 0.6 0.65 0.61 0.29 0.18 to 1.31 ψ32 0.6 0.67 0.63 0.30 0.19 to 1.35

HPD, highest posterior density; Par, parameters; True, true values of parameters; Med, median; SD, standard deviation.

Table 2. Average DIC scores and simplified BPIC scores over 100 replications and the proportion selecting the model with the correct number of 
grid points using the proposed Bayesian model

True k k Avg DIC #Sel (%) Avg Sim BPIC #Sel (%) Avg PD
2 2 6,614.47 79 6,681.78 94 67.32

3 6,617.97 15 6,690.51 6 72.54
4 6,623.02 6 6,700.99 0 77.98

3 2 6,745.26 0 6,812.49 0 67.23
3 6,696.53 91 6,769.83 98 73.30
4 6,707.12 9 6,785.14 2 78.02

4 2 6,745.07 0 6,814.76 0 69.70
3 6,718.66 0 6,792.75 7 74.09
4 6,695.41 100 6,775.37 93 79.96

DIC, deviance information criterion; BPIC, Bayesian predictive information criterion; Avg DIC, average deviance information criterion scores over 100 
replications; #Sel (%), proportion selecting the model with the correct number of grid points; Avg Sim BPIC, average simplified Bayesian predictive 
information criterion scores over 100 replications; Avg PD, average PD.
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Fig. 4. Receiving operating characteristic curve analyses in the simulation study for sample size, number of single-nucleotide polymorphisms 
(SNPs), proportion of causal SNPs, and heritability. (A) We decreased the sample size from n = 400 (total number of observations, N = 2, 000) 
to n = 100 (N = 1, 000) for accessing the effect of sample size in receiver operating characteristic curves. The simulation data contained p 
= 1, 000 SNPs, c = 1% causal SNPs and h2 = 40% trait-heritability. (B) We increased the number of SNPs from p = 1, 000 to p = 5, 000 to 
evaluate the effect of number of SNPs. The simulation data contained N = 2, 000 observations, c = 1% causal SNPs, and h2 = 40% trait-
heritability. (C) We increased the proportion of causal SNPs from c = 1% to 5%. The simulation data contained N = 2, 000 observations, p = 1, 
000 SNPs, and h2 = 40% trait-heritability. (D) We decreased the trait-heritability from h2 = 40% to h2 = 10%. The simulation data contained 
N = 2, 000 observations, p = 1, 000 SNPs, and c = 1% causal SNPs.

A B

C D

responding univariate analysis method that only used a subset of 
the data. Furthermore, the proposed Bayesian method performed 
better than the ordinary Bayesian method because our method 
modeled the within-subject correlation. Further simulation studies 
showed that statistical power increased as the data had more sam-
ples, a smaller number of SNPs, a lower proportion of causal SNPs, 
and larger trait-heritability. For our simulation studies, we utilized 

data from the 1000 Genome Project. With only 400 independent 
samples of EAS ancestry, we restricted out analysis with up to 5, 
000 SNPs. With a sufficient sample size, our method can be applied 
to all available SNPs. We are currently developing a parallel com-
puting algorithm based on the message passing interface to execute 
multiple groups of SNPs simultaneously. This will make it feasible 
to apply our method to large-sample GWAS data. 
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Another important issue to mention is Bayesian model identifi-
ability. In the Bayesian community, there is a wide diversity of 
views on the identifiability issue. Lindley [38] remarked that 
non-identifiability causes no real difficulty in Bayesian approaches. 
Poirier [39] and Eberly and Carlin [40] argued that a Bayesian 
analysis of a non-identifiable model is always possible if priors on 
all of the parameters are proper, since proper priors yield proper 
posterior distributions, and hence every parameter can be well-es-
timated. However, if the priors imposed on any non-identifiable 
model are not proper, or too close to being improper, ill-behaved 
posterior distributions may be generated such that the trajectory 
of the parameters can drift to extreme values, as demonstrated by 
Gelfand and Sahu [41]. In this paper, we investigated the identifi-
ability of our Bayesian model, which motivated us to utilize only 
proper priors (see the Methods section). Non-identifiability oc-
curred when the number of the grid points equaled the number of 
observed time points (see Supplementary Data 1), but we found 
that the posterior distribution behaved well due to the proper pri-
ors employed. 
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