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abstract

 

Type-II ryanodine receptor channels (RYRs) play a fundamental role in intracellular Ca

 

2

 

�

 

 dynamics
in heart. The processes of activation, inactivation, and regulation of these channels have been the subject of inten-
sive research and the focus of recent debates. Typically, approaches to understand these processes involve statisti-
cal analysis of single RYRs, involving signal restoration, model estimation, and selection. These tasks are usually
performed by following rather phenomenological criteria that turn models into self-fulfilling prophecies. Here, a
thorough statistical treatment is applied by modeling single RYRs using aggregated hidden Markov models. Infer-
ences are made using Bayesian statistics and stochastic search methods known as Markov chain Monte Carlo.
These methods allow extension of the temporal resolution of the analysis far beyond the limits of previous ap-
proaches and provide a direct measure of the uncertainties associated with every estimation step, together with a
direct assessment of why and where a particular model fails. Analyses of single RYRs at several Ca

 

2

 

�

 

 concentrations
are made by considering 16 models, some of them previously reported in the literature. Results clearly show that
single RYRs have Ca

 

2

 

�

 

-dependent gating modes. Moreover, our results demonstrate that single RYRs responding
to a sudden change in Ca

 

2

 

�

 

 display adaptation kinetics. Interestingly, best ranked models predict microscopic re-
versibility when monovalent cations are used as the main permeating species. Finally, the extended bandwidth re-
vealed the existence of novel fast buzz-mode at low Ca

 

2

 

�

 

 concentrations.
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I N T R O D U C T I O N

 

Type II calcium release RYR channels play a fundamen-
tal role in the intra cellular Ca

 

2

 

�

 

 signaling dynamics of
cardiac muscle cells that govern contractility of the
heart. RYR channels are activated by a small Ca

 

2

 

�

 

 influx
through the surface membrane by a process known as
Ca

 

2

 

�

 

-induced Ca

 

2

 

�

 

 release (CICR). The CICR process,
an inherently self-regenerating process, is precisely
controlled in cells. The regenerative feedback that
counters the positive feedback of CICR is thought to
depend on the cytosolic Ca

 

2

 

�

 

 concentration (Fabiato,
1985). Since then, the cytosolic RYR Ca

 

2

 

�

 

 regulation
has been the subject of extensive research (Györke and
Fill, 1993; Laver and Curtis, 1996; Schiefer et al., 1995;
Sitsapesan et al., 1995; Zaradnková et al., 1999; Copello
and Fill, 2002), and resent matter of debate (Fill et al.,
2000; Lamb et al., 2000; Sitsapesan and Williams 2000).

Several models of single RYR channel gating have
been developed to explain the RYRs role in the overall
Ca

 

2

 

�

 

 dynamics of cardiac muscle cells. These models,

however, have been usually chosen and estimated by fol-
lowing rather phenomenological criteria in order to re-
produce experimentally observed properties such as
the Ca

 

2

 

�

 

-dependent activation, inactivation (Zaradni-
ková and Zahradník, 1995; Stern et al., 1999), adapta-
tion (Cheng et al., 1995; Sachs et al., 1995; Keizer and
Levine, 1996; Villaba-Galea et al., 1998; Fill et al., 2000),
and modal gating—as well as the local RYR-mediated
intracellular Ca

 

2

 

�

 

 release events known as Ca

 

2

 

�

 

 sparks
(Jafri et al., 1998; Sobie et al., 2002; Villaba-Galea et al.,
2002). Even in the presence of high quality data, model
estimation and selection have only rarely been statisti-
cally addressed. For example, Saftenku et al. (2001)
present a maximum likelihood approach that is subject
to several drawbacks. The raw data is idealized by using
standard threshold methods at a relatively limited band-
width (i.e., 2 kHz). Second, models for particular visu-
ally identified gating modes are then separately esti-
mated via maximum likelihood (Qin et al., 1996). This
analysis heavily relies on the quality of the initial ideali-
zations and the accuracy of the mode identification
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steps. This makes it subject to errors that are very dif-
ficult to statistically assess. Even more importantly, it
does not reveal the connections between the identified
modes and thus presents only a partial picture of the sa-
lient dynamics with limited predictive power.

This article presents a first step toward a statistical
analysis of single type II RYRs at steady-state. The analy-
sis provides some substantial benefits when compared
with previously used approaches. First, the applicable
bandwidth of the analysis is extended up to 10 kHz by
the use of hidden Markov models (HMMs; see Michalek
et al., 1999; Venkataramanan and Sigworth, 2002). Sec-
ond, statistical inferences are made using a combination
of Bayesian statistics and stochastic search methods
(Markov chain Monte Carlo [MCMC]). These tech-
niques have proven to be particularly well suited for
complex estimation problems where the more com-
monly applied maximum likelihood–based approaches
fail (Robert and Casella, 1999; Liu, 2001). The MCMC
method not only provides a rich description of the mod-
eling process but also a direct indication of where and
why a particular model fails. More importantly, it allows
us to directly assess the errors incurred at each estima-
tion step, since all the estimates used throughout are en-
dowed with a central limit theorem. The MCMC tech-
nique used here, namely a Gibbs sampler, is a generali-
zation of the method described in Rosales et al. (2001)
that allows us to consider the constraints imposed by the
aggregation of states into conductance classes and the
set of state interconnections. These techniques are simi-
lar in spirit to those of Ball et al. (1999) and Hodgson
(1999); however, here the continuous gating of the
channel is approximated by a discreetly sampled pro-
cess, producing a less computationally intensive algo-
rithm that is based on a solid probabilistic theory.

16 gating models were compared on this basis by ana-
lyzing three datasets containing the steady-state activity
of single RYRs at 1, 10, and 100 

 

�

 

M Ca

 

2

 

�

 

. The results
obtained provide direct evidence for the existence of
different Ca

 

2

 

�

 

-dependent gating modes. The open/
closed states associated with each mode were also iden-
tified. Additionally, gating schemes were used to pre-
dict the relaxation kinetics of single RYR channel re-
sponse to Ca

 

2

 

�

 

 step stimuli. The kinetic predictions for
the top ranked schemes agree well with those that have
been experimentally defined, showing that single RYRs
respond transiently to sudden Ca

 

2

 

�

 

 steps. Our results
also demonstrate that gating follows detailed balance at
the experimental conditions so far considered.

 

M A T E R I A L S  A N D  M E T H O D S

 

2.1 Microsome Preparation

 

Heavy microsomes enriched in type II RYRs obtained from ca-
nine ventricular cardiac muscle (Tate et al., 1985) were reconsti-
tuted in planar lipid bilayers (Miller and Racker, 1976). Briefly,

the tissue was kept in a saline solution (154 mM NaCl, 10 mM
Tris-malate, pH 6.8) at a temperature of 4

 

�

 

C before being
chopped and then homogenized. Heavy microsomes were ob-
tained by differential centrifugation and then kept at 

 

�

 

70

 

�

 

C in
saline solution with 300 mM sucrose until used.

 

2.2 Reconstitution and Recording

 

Planar lipid bilayers were formed across a 150 

 

�

 

m hole in a Del-
rin cup. Bilayers were obtained with a mixture (50 mg/ml in de-
cane) of phosphatidylcholine (PC) and phosphatidylethanola-
mine (PE) (Avanti Polar Lipids, Inc.) in a 7:3 relation. Bilayers
with an electrical capacitance of 200–400 pF were used in our ex-
periments. The microsomes were added to one side of the bi-
layer defined as cis. The other side, defined as trans, was held at
virtual ground. The standard solution was 20 mM CsCH

 

3

 

SO

 

3

 

, 20

 

�

 

M CaCl

 

2

 

, 20 mM HEPES, pH 7.4. The fusion of the microsomes
was promoted by mechanical stirring and an osmotic gradient
(i.e., addition of 400 mM CsCH

 

3

 

SO

 

3

 

). The orientation of an in-
corporated RYR was such that their cytoplasmic side was in the
cis compartment (i.e., defined by sidedness of ATP sensitivity).
After channel incorporation, the trans CsCH

 

3

 

SO

 

3

 

 concentration
was adjusted to 420 mM. The charge carrier was Cs

 

�

 

. All experi-
ments were done at room temperature.

A patch clamp amplifier (Axopatch 200B; Axon Instruments,
Inc.) was used to optimize single channel recording (Györke and
Fill, 1993). The acquisition software (pClamp 6.0; Axon Instru-
ments, Inc.) was run on a Pentium III computer controlling a 12-
bit analogue/digital-digital/analogue converter (Axon Instru-
ments, Inc.). Single-channel data were digitized at 100 kHz and
filtered at 32 kHz. To reduce posterior computational effort, the
data was digitally Gaussian filtered down to 10 kHz and sampled
at 25 kHz. Long single RYR channel recordings (3

 

�

 

10

 

6

 

 samples
each) were made at three different steady-state free Ca

 

2

 

�

 

 concen-
trations (1, 10, and 100 

 

�

 

M cis). Free Ca

 

2

 

�

 

 concentration was ver-
ified using a Ca

 

2

 

�

 

 electrode.

 

2.3 Data Analysis

 

A representative single-channel recording at each Ca

 

2

 

�

 

 concentra-
tion was selected for analysis. The baseline was corrected to ac-
count for any drift and other irregularities. The files were ana-
lyzed separately with each of the 16 gating models shown in Fig. 1.
The data was modeled by considering constrained HMMs and a
combination of Bayesian statistics and MCMC methods. The most
relevant aspects of these techniques together with a brief mention
to further methods used are described bellow. A detailed account
of the Bayes/MCMC framework is given in Rosales (2004).

 

2.3.1 Constrained HMMs

 

Observations were modeled by using constrained HMMs. Briefly,
the gating dynamics of single RYR channels were assumed to fol-
low a discreetly time sampled homogeneous Markov process with
a finite state space 

 

E

 

 

 

�

 

 {1, 2, ..., 

 

n

 

}. States were further aggregated
into two conductance classes 

 

O

 

 

 

�

 

 {

 

O

 

1

 

, ..., 

 

O

 

v

 

} and 

 

C

 

 

 

�

 

 {

 

C

 

1

 

, ..., 

 

C

 

w

 

},
with 

 

v

 

 

 

�

 

 

 

w

 

 

 

�

 

 

 

n

 

 and 

 

O

 

i

 

 and 

 

C

 

i

 

 denoting single states, hereafter la-
beled open and closed. Transitions between the states of this pro-
cess are not directly observed. The data arising from bilayer ex-
periments is inherently corrupted by additive noise, assumed o
be independent and Gaussian distributed as a first approxima-
tion. The constraints on the HMM parameter space considered
here are those induced by the topology of the associated graph
of a gating mechanism and those inherent to the association of
states into 

 

C

 

 and 

 

O

 

. The parameters involved are the transition
probabilities 

 

p

 

ij

 

, grouped into a transition probability matrix 

 

P

 

 

 

�

 

[

 

p

 

ij

 

], for any 

 

i

 

, 

 

j

 

 

 

�

 

 

 

O

 

, or 

 

C

 

, the class conductance levels 

 

�

 

C

 

 and 

 

�

 

O

 

,
the class noise variances 

 

	

 

2

 

C

 

 and 

 

	

 

2

 

O

 

, and finally the initial den-
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sity for the hidden process 

 




 

 

 

�

 

 [

 

�

 

i

 

], 

 

i

 

 

 

�

 

{

 

O

 

, 

 

C

 

}. For convenience
hereafter we write 

 

�

 

 

 

�

 

 (

 

P

 

, 

 

�

 

C

 

, 

 

�

 

O

 

, 

 

	

 

2

 

C

 

, 

 

	

 

2

 

O

 

, 

 




 

).

 

2.3.2 Bayesian Treatment

 

Within this framework, the identification of a gating model from
the raw data leads to the following well posed statistical tasks: (A)
signal idealization, (B) parameter estimation, and (C) model se-
lection. Statistical inferences concerning C are considered by us-
ing an asymptotic form of penalized ratio test, namely the Baye-
sian information criterion, whereas tasks A and B are considered
from a Bayesian perspective. Let 

 

y

 

 denote a set of 

 

N

 

 observations

 

y

 

1

 

, 

 

y

 

2

 

, ... 

 

y

 

N

 

, and 

 

z

 

 a particular realization 

 

z1, z2, ..., zN of the under-
lying process, i.e., z represents a sequence of states visited by the
channel. Furthermore, let Z stand for the space of all possible

state sequences, and � a subset of the Euclidean space formed by
the set of all possible values for �. For each gating mechanism de-
note by L(�, z) the likelihood function,

(1)

defined as the joint probability for the occurrence of the data
and a hidden realization, given a particular value for the parame-
ters �. Let (�) denote the prior, a density that expresses belief
or knowledge about the parameters before the observations have
been examined. Then, following Bayes theorem, the joint poste-
rior density for both unknowns � and z, is

(2)

L θ z,( ) P y z, θ( ) P y z θ,( )P z θ( ) ,= =

π θ z, y( ) L θ z,( )φ θ( )w 1– ,=

Figure 1. Gating models.
Oi and Ci denote open and
closed states, respectively, and
Mi

a,b, with i � 1, ..., 16, corre-
sponds to model labels with a
for associated number of free
parameters and b for their
ranking as given by Table I.
Scheme M10 was proposed by
Zaradniková and Zahradník
(1996), M12 by Villalba-Galea
et. al (1998), M13 by Mc-
Manus and Magleby (1991),
M14 by Fabiato (1985), M7 by
B.A. Suarez-Isla (personal
communication), and M16 by
Schiefer et al. (1995).
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with

Estimates for model parameters, task B, are based on this density
by integrating out z, for instance,

(3)

(4)

constitute unbiased estimates for the model parameters and
their associated variances. The same argument also applies for es-
timates of the hidden sequence z by integration of �, which then
represents a solution to task A.

2.3.3 MCMC

Although there are clear theoretical advantages for the use of
posterior based inferences over maximum likelihood based ap-
proaches in this setting, none of the integrals in Eqs. 2–4 can be
evaluated directly. This occurs even for the simplest gating mech-
anism and regardless of the choice of (�), due the complex
structure of the HMM marginal likelihood . Thus, the
required integrals have to be evaluated numerically. This task is
performed here by using MCMC methods, more precisely by us-
ing the Gibbs sampler initially described by Rosales et al. (2001)
and further modified by Rosales (2004) in order to accommodate
class constraints. The basic principle behind any MCMC algo-
rithm is to perform Monte Carlo integration by drawing samples
of the required posterior in Eq. 2, and then evaluating sample av-
erages to approximate the expectations in Eqs. 3 and 4. More pre-
cisely, in the current setting, the Gibbs sampler generates a se-
quence of random variables (�u, zu), u � 1,2, ..., m, by running a
Markov chain for a long time, such that in the limit as m→ �∞,

w L θ z,( )φ θ( ) θ.d
Θ
∫

z Z∈
∑=

Eπ θ[ ] θπ θ z, y( ) θ,d
Θ
∫

z Z∈
∑=

Varπ θ[ ] θ Eπ θ[ ]–( )2π θ z, y( ) θ,d
Θ
∫

z Z∈
∑=

L θ z,( )
z Z∈
∑

the pair (�m, zm) is asymptotically distributed according to the tar-
get distribution �. In fact, for the constrained HMM outlined
above, the Gibbs sampler converges toward � from any arbitrary
starting point (�1, z1). These and other regularity properties of
the sampler have been formally established in Rosales (2004).

An example of the output generated by analyzing a small data
segment with model M3 of Fig. 1 is shown in Fig. 2. This example
shows how the sampler performs a random walk on two of the
model parameters �, namely on  and . After a few steps
the walk finally stays within a boundary that corresponds to a re-
gion of maximum posterior probability for ( , ). This fig-
ure also presents the output generated for the hidden process
shown as a randomly chosen set of idealized traces, zu, each one
generated at a given iteration of the MCMC run. Well identifi-
able features are actually recovered in almost all iterations,
whereas very brief events appear only in some of the sampled
realizations.

Formally, due to convergence toward �, Monte Carlo estimates
for the posterior mean and standard deviation of � (Eqs. 3 and
4) are, respectively, the empirical averages of the obtained se-
quence (�u), i.e., 

(5)

(6)

for some 1 � b � m and G � m � b � 1.
The use of these equations may be illustrated by the following

example. Let Q* � [kij* for i,j �{O,C} be a transition rate matrix
for the process z estimated from the data and associated to P as

(7)

σO2
2 σC2

2

σO2
2 σC2

2

µ̂π θ( ) 1
G
---- θu Eπ θ[ ]≈

u b=

m

∑=

σ̂π θ( ) 1
G
---- θu( )

2

u b=

m

∑ µ̂π
2 θ( )–

1 2⁄

Varπ
1 2⁄ θ[ ],≈=

P Q*δ( ) ,exp=

Figure 2. MCMC output example. (Top left) Brief segment of RYR activity at 10 kHz. Horizontal axis is 0.1 s long and vertical axis
stretches over 5 pA. (Bottom left) Ensemble of 10 MCMC-sampled realizations of the hidden process obtained by analyzing the data at the
top with gating scheme M3 of Figure 1. The first five realizations are within the first 1,000 iterations of the sampler and the last 5 are from
the remaining 1,000 iterations. (Right) Trajectory followed by 2,000 iterations of the MCMC sampler on the class variances 	2

O (x-axis), 	2
C

(y-axis) plotted as solid lines. Dashed lines represent 12 contour levels for a surface proportional to the HMM log posterior computed by
varying (	2

O,	2
C) and leaving all other model parameters fixed at their posterior estimates.
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with exp as the matrix exponential and � as the sampling period
of the acquisition system. It should be emphasized that Q* is not
the infinitesimal generator, Q � [kij], of the hidden process, but
rather a rate matrix associated to the limiting time resolution �.
Hereafter, however, for notational convenience we write Q for Q*
and kij for k*ij, the elements of Q*. If the continuous process is
sampled fast enough, i.e., if

then, following standard theory (see for instance Eq. 7 of Colqu-
houn and Hawkes, 1995a),

(8)

A posterior estimate for the observed transition rate matrix
and its standard deviation follow immediately from these equa-
tions and Eqs. 5 and 6, namely

(9)

and

(10)

Convergence of the sampler, and hence estimation of b in Eqs.
5 and 6, was assessed by the Raftery-Lewis and Heidelberger-
Welch tests, both implemented in R (http://cran.r-project.org)
or SPlus by the BOA program (Bayesian Output Analysis pro-
gram; Version 1.0.0 for S-PLUS and R; http://www.public-health.
uiowa.edu/boa/). MCMC runs were started at an arbitrary initial
point �1 �� for each model. The same values were used for any of
the three Ca2� conditions and each model (see Fig. 1). The ini-
tial hidden realization, z1, was drawn from the initial density 
1

and the initial probability matrix P1. A weak informative prior for
� was considered (see Rosales et al., 2001).

2.3.4 Density Estimates

Posterior dwell-time density estimates based on the MCMC sam-
pled realizations, (zu), for each model were computed by using
optimal nonparametric kernel density estimation methods in-
stead of standard log-binned histograms (Rosales et al., 2002).
Where indicated, dwell-time densities were also calculated di-
rectly from the Q matrix estimates (Colquhoun and Hawkes,
1995b). Interclass state correlations were visually inspected by
computing the dependency-difference plot introduced by Ma-
gleby and Song (1992). Estimates for the posterior parameter
densities were also computed by using kernel methods and the
MCMC output (�u). In this case estimates were obtained by fol-
lowing Bowman and Azzalini (1997).

2.3.5 Model Choice

Models are compared by using the Bayes information criterion
(BIC), see for instance Gelfand and Dey (1994), which intro-
duces a penalty according to the total number of free parameters

δ 1–  << supi jε O C,{ }, kij,

kii pij δ⁄
j i≠
∑–≈ ,     kij pij δ⁄( ) .≈

µ̂π kii( ) 1
δG
-------– pij

u

j i≠
∑

u b=

m

∑ ,=

µ̂π kij( ) 1
δG
------- pij

u

u b=

m

∑ ,=

σ̂π kii( ) 1

δ2G
--------- pij

u

j i≠
∑ 

  2

u b=

m

∑ µ̂π+ kii( )2
1 2⁄

,=

σ̂π kij( ) 1

δ2G
--------- pij

u( )
2

u b=

m

∑ µ̂π kij( )2–

1 2⁄

.=

and the length of the data record. For any mechanism this is
given by

(11)

with N� as the total number of associated free parameters and L
as the marginal likelihood,

evaluated at some �� that maximizes its value. Here we have cho-
sen the posterior mean estimate, i.e., �� � . From Eq. 1,

(12)

This quantity is efficiently computed, once  is obtained
from the MCMC runs, by using Baum’s forward procedure
(Baum et al., 1970). Finally, if the data y is partitioned into s inde-
pendent segments of lengths N1, N2, ..., Ns and the likelihood for
the ith segment is denoted by Li, then from Eq. 11 the BIC takes
the form

(13)

A model is preferred over another if its BIC as defined by Eq.
13 is smaller.

2.3.6 Evolution Toward Equilibrium

Let �(k�) � [�i(k�)], i �{C,O}, be a n-dimensional row vector de-
noting the state occupation density at any time k�1,2, ..., for
� � 0. Relaxation toward the equilibrium distribution, �(∞), is
given by

(14)

with �(0) as an arbitrary initial distribution (see theorem 1.13 of
Norris, 1997). This relation describes the evolution for the �-dis-
cretisation of the continuous time process (see theorem 2.1.1 of
Norris, 1997). In fact, the continuous time version for Eq. 14 is
standard and may be found in the current context at several
places by setting Pk� � exp(Qk�) (see Eq. 19 of Colquhoun and
Hawkes, 1995b). The open probability Po as a function of k�, is
thus obtained via Eq. 14 by adding the entries in � that involve
open states, i.e.

(15)

In this study, however, the scope of Eq. 15 is restricted to the
evaluation of �(k�) by using only one of the estimated Q at
a time, representing one of the Ca2� conditions considered
experimentally.

2.3.7 Online Supplemental Material

The MCMC sampler used in this study was written in ANSI C and
is freely available under the GNU license as online supplemen-
tal material (available at http://www.jgp.org/cgi/content/full/
jgp.200308868/DC1). Code is distributed with documentation
concerning compilation and running examples. Compilation un-
der various platforms including SUN Sparks running Solaris 8,
and several Pentiums with Linux and most Windows versions was

2– L θ�( )[ ]ln 2Nθ N( ),ln+

L θ�( ) L θ� z,( )
z Z∈
∑ ,=

µ̂π θ( )

L θ�( ) L µ̂π θ( )( )

L µ̂π θ( ) z,( )
z Z∈
∑ P y z µ̂π θ( ),( )P z µ̂π θ( )( ) .

z Z∈
∑

=

= =

µ̂π θ( )

BIC 2 Li µ̂π θ( )( )[ ]ln
i 1=

s

∑ 2Nθ Ni( ).ln
i 1=

s

∑+–=

η ∞( ) lim
k ∞→

η kδ( ) lim
k ∞→

η 0( )Pkδ,==

Po kδ( ) ηi kδ( ).
i O∈
∑=
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made with gcc (http://gcc.gnu.org). Precompiled binaries may
be available upon request by writing to the first author. Code and
documentation for dwell-time kernel estimates is also available as
online supplemental material. Kernel estimates for the parame-
ter posterior marginals were computed from the MCMC output
by using the sm library implemented in R and conforming to
Bowman and Azzalini (1997). Simple plots were made with gnu-
plot (http://www.gnuplot.info) and others including surfaces
with R. All Q matrix computations were made by using Maple 7
(Waterloo Maple, Inc.). When run on the dataset at 10 �M Ca2�

(3.051 � 106 samples) with scheme M3 (9 states and 29 free pa-
rameters), each iteration of the sampler took 17.8 s on a Dell Pre-
cision 330 with a 1.4 GHz Pentium 4 processor.

R E S U L T S

3.1 Model Comparison

Results obtained by analyzing single RYR channel data
collected at three different Ca2� concentrations with
the gating schemes shown in Fig. 1 are summarized in
Table I. This table presents the values for the negative
of the marginal log likelihood evaluated at the poste-
rior mean estimates for the associated parameters at
each Ca2� concentration. Models are ordered from top
to bottom according to their BIC ranking, as deter-
mined by Eq. 13. Simple inspection suggests that the in-
formation in the data strongly supports model com-

T A B L E  I

Model Ranks for the Gating Schemes in Fig. 1

Model 1 �M Ca2� 10 �M Ca2� 100 �M Ca2� BIC/2

M3 5,017,201.39 4,622,527.19 8,198,295.779 17,839,341.024

M1 5,016,912.009 4,622,752.312 8,198,978.954 17,839,959.940

M13 5,017,478.084 4,622,561.437 8,198,668.95 17,839,979.734

M2 5,017,461.44 4,622,935.34 8,198,278.653 17,839,992.098

M8 5,017,074.007 4,622,573.273 8,199,085.133 17,840,049.078

M6 5,018,281.31 4,622,578.398 8,198,451.814 17,840,355.774

M7 5,017,204.83 4,622,840.487 8,199,158.714 17,840,384.489

M4 5,017,889.128 4,621,674.612 8,200,051.146 17,841,067.758

M5 5,019,861.823 4,622,046.314 8,198,188.557 17,841,413.359

M12 5,019,369.695 4,623,852.529 8,201,986.333 17,846,525.222

M11 5,019,316.927 4,623,867.826 8,210,510.667 17,854,875.878

M9 5,022,059.333 4,626,502.531 8,206,993.875 17,856,872.404

M10 5,022,645.991 4,626,611.635 8,207,225.326 17,857,390.997

M16 5,021,177.153 4,630,058.04 8,206,816.649 17,858,596.676

M14 5,021,616.988 4,630,147.467 8,206,814.655 17,859,214.742

M15 5,021,768.858 4,630,484.904 8,207,424.004 17,860,177.191

Column values for the 1, 10, and 100 �M Ca2� conditions are the marginal
�log(likelihood) evaluated at the posterior mean for the parameters (see
Eq. 12). Posterior means are computed via Eq. 5 from the MCMC output
by discarding the first 2,500 samples out of a total of 3,000. The column
entitled “BIC/2” represents half the penalized total given by the BIC
computed by using Eq. 13.

Figure 3. MCMC samples for the Q matrix and the noise variances 	2
O, 	2

C for scheme M3. Samples for the transition rates of communi-
cating states of scheme M3 are plotted against the number of iterations, when analyzing data at 1 �M Ca2� (top left), 10 �M Ca2� (top
right), and 100 �M Ca2� (bottom left). The plot at the bottom right presents the samples for the class noise variances at 10 �M Ca2�.
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plexity, as shown by the difference of 20,787.47 BIC
units between the best ranked model (scheme M3) and
the worst one (scheme M15). Complexity in this con-
text is related to the total number of free parameters.

The following general topological properties of the
graph associated to a mechanism may be inferred from
Table I:

(1) RYR channel gating schemes with three open
states are preferred over those with two open states.
Two open state schemes are preferred over those with
one open state. Three open states would be consistent
with the RYR channel experimental results published
by Sitsapesan and Williams (1994) and Saftenku et al.
(2001).

(2) RYR gating schemes with two communicating
open states are preferred, see for example M1 and M2.

(3) RYR gating schemes with a hexagonal cycle of
states have higher BIC values than those with smaller
cycles.

(4) The best RYR gating schemes with three
open states, except for scheme M13, share a common
motif that includes states O2, O3, C4, C5, and C6.
Schemes, such as M5 and M6, lacking this structure are
ranked low.

(5) RYR gating schemes with more than two consecu-
tive closed states not communicating with an open state
at the left of the cycle such as C1, C2, and C3 in M4 and
M5 are also heavily penalized.

(6) Table I also suggest the existence of more than
four pathways between the open and the closed class.
Interestingly, more than one pathway is necessary to ex-
plain modal RYR channel gating, an experimentally ob-
served feature of single RYR channels (Zaradniková
and Zahradník, 1995; Copello et al., 1997).

T A B L E  I I

MCMC Convergence Assessment

R-L H-W

 [Ca2�] 1 �M 10 �M 100 �M 1 �M 10 �M 100 �M

C1→C2 72 15 4 1,500 1,500 1,200

C2→C1 18 42 9 1,500 1,500 1,500

C2→C3 168 54 32 1,500 1,500 1,500

C2→O3 36 70 240 1,500 1,500 1,500

C3→C2 155 196 30 1,500 1,500 1,200

C3→O1 4 25 235 1,500 1,500 1,200

C4→C5 56 60 360 1,500 1,500 1,500

C4→O2 35 84 35 1,500 1,500 1,500

C4→O3 96 20 70 1,500 1,200 1,200

C5→C4 72 36 330 1,500 1,500 1,500

C6→O2 119 80 16 1,500 1,500 1,500

O1→C3 16 15 300 300 1,500 1,500

O1→O2 6 20 36 300 1,500 1,200

O2→C4 63 30 20 900 1,500 1,500

O2→C6 60 56 144 300 1,500 300

O2→O1 6 32 48 300 600 900

O3→C2 15 8 238 1,500 1,200 1,500

O3→C4 30 10 650 1,500 1,500 1,500

Estimates for the MCMC sampler burn in period (b in Eq. 5) obtained via
the Raftery-Lewis (R-L) and the Heidelberger-Welch (H-W) tests for the
transition rates of scheme M3 at three Ca2� conditions.

T A B L E  I I I

Q Matrix Estimates for Scheme M3

1 �M Ca2� 10 �M Ca2� 100 �M Ca2�

C1→C2 1.4258160 � 0.04962111 0.0706565 � 0.0080813 0.0309433 � 0.0057437

C2→C1 1.0481374 � 0.0267937 0.0238650 � 0.0050402 0.0021193 � 0.0004699

C2→C3 0.7015191 � 0.0332045 0.2704625 � 0.0333583 0.0228213 � 0.0031189

C2→O3 0.0352840 � 0.0018467 0.3641249 � 0.0137403 0.3958404 � 0.0100573

C3→C2 4.3244367 � 0.24452607 0.4015897 � 0.0267361 0.9611583 � 0.0897372

C3→O1 0.0010442 � 0.0006090 0.0096410 � 0.0015421 4.4228817 � 0.2084783

C4→C5 1.8593915 � 0.2305158 0.0306152 � 0.0214537 0.4156589 � 0.0244401

C4→O2 0.2292084 � 0.0290348 0.8407021 � 0.0611324 0.0746159 � 0.00327612

C4→O3 0.4643987 � 0.04477838 0.0908996 � 0.0062598 0.9488903 � 0.01257812

C5→C4 0.5778158 � 0.04520021 0.3246417 � 0.1324921 2.5809008 � 0.13811970

C6→O2 24.5557880 � 0.15655333 3.8166455 � 0.1845010 1.8312432 � 0.02034814

O1→C3 0.0021002 � 0.00150776 0.0235335 � 0.0026635 0.5574192 � 0.02015974

O1→O2 0.0460808 � 0.00468395 0.2075024 � 0.0099914 0.1843850 � 0.01264873

O2→C4 0.8825940 � 0.03636925 0.2341961 � 0.0151709 0.2774037 � 0.01046813

O2→C6 3.9963179 � 0.10731264 0.2614998 � 0.0156431 2.6105679 � 0.028012529

O2→O1 0.1324386 � 0.01503245 0.0806450 � 0.0058234 0.0406819 � 0.00331926

O3→C2 0.5483176 � 0.03331976 1.3070995 � 0.0165400 0.4294915 � 0.03175259

O3→C4 0.7087304 � 0.03225781 0.0792834 � 0.0053881 3.5881837 � 0.03938660

Posterior mean value for Q and associated posterior standard deviation (�) for: 1, 10, and 100 �M Ca2�. Mean and standard deviation values are computed
from the MCMC output by using Eq. 9, and taking the last 500 iterations out of 3,000. Diagonal entries of the transition rate matrix are not shown (kii �
�j � i � kij for all i,j �{O,C}). All mean values are expressed in ms�1.
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Results and predictions for the top ranked models
with three open and six closed states are very similar
and thus will not be detailed separately here. Instead,
we will turn our attention below to the best ranked
model, namely RYR gating scheme M3.

3.2 Q Matrix Estimates

Estimates for the Q matrices at each Ca2� concentra-
tion constitute the basis for all further descriptions and
predictions of the dynamics of single RYR channel
behavior here. Fig. 3 displays the sampled values of
the transition rates between communicating states of
mechanism M3 for each Ca2� condition, plotted against
the MCMC iteration. These rates were obtained from
the sampled probabilities by using Eq. 8. This figure
also presents the sampled values for the variance of the
open and the closed levels, 	O2 and 	C2, respectively.

Simple inspection suggests that rate estimates for 1

and 100 �M Ca2� have converged after �1,000 itera-
tions. Convergence takes perhaps longer for the data at
10 �M Ca2� (see Fig. 3, top right). Convergence at
each concentration was quantitatively assessed by the
Raftery-Lewis and Heidelberger-Welch tests (see Table
II). The latter being more conservative than the first
one indicates a convergence period lag of 1,500 itera-
tions. Based on this information, the first 2,500 itera-
tions were discarded and only the remaining 500 iter-
ations were considered for further inferences.

The posterior mean and standard deviation for each
rate, computed by using the last 500 samples via Eqs. 9
and 10, are shown in Table III. Few posterior marginal
density estimates for some individual parameters are
shown in Fig. 4. They were computed directly from
the MCMC output according to Bowman and Azzalini
(1997).

In general, the rates leaving short-lived states with
small occupancy probability (see Tables V and IV be-

Figure 4. Parameter posterior marginals. Den-
sity estimates for few selected parameters: kC2C3

(A), kC3O1 (B), kO2C4 (C), kO3C4 (D), 	2
O (E), and

	2
C (F). Estimates were computed by taking the

last 500 samples for the MCMC run at 10 �M Ca2�

for scheme M3 (see Figure 3), and the routines
provided by Bowman and Azzalini. Gray shaded
reference bands indicate the region where the es-
timate is likely to lie if the data were normally dis-
tributed. Bars at the bottom show the actual
MCMC samples.
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low) have relatively high variances. An example is pro-
vided by C6 at 1 �M Ca2�. Rates leaving long-lived states
with larger occupancy probabilities, such as C1 at 1 �M
Ca2�, have relatively smaller variances.

The presence of multiple maxima in the posterior
marginals (Fig. 4, A and C), and thus almost surely
on the respective likelihood projections, should warn
against the naive use of maximum likelihood methods
for HMMs. This may include the use of standard devia-
tions obtained from the likelihood curvature at “the
maximum” (see Qin et al., 2000).

3.3 Single-state Ca2�-induced Changes

Straightforward computations with the Q matrix esti-
mates lead to the associated stationary probabilities of
being at each state and the expected time spent in each
state. These quantities, shown in Tables IV and V, when
considered together allow us to draw a detailed picture
for the Ca2� induced changes. For this, the next section
starts with a description of the RYR channel gating
modes present at 1 �M Ca2� and follows then by identi-
fying the states involved in each mode.

Gating modes are clearly visible at 1 �M Ca2�. Fig. 5
displays two representative single RYR channel records
illustrating at least three gating modes. The first of
them, labeled Gl, consists of long openings interrupted
by brief closures. The second, named Gz, consists of
brief openings followed by brief closures and finally the
third mode, named Go, is formed by brief openings fol-
lowed by long shut periods. As shown in Fig. 5, open so-
journs in Gl and Gz are grouped in clusters forming
burst-like behavior. Gl has previously been identified in
single RYR channel studies as a mode of high open
probability named H gating mode, and Go as a mode
with low probability named L gating mode (Zaradni-
ková and Zahradník, 1995, 1996; Armisén et al., 1996).
Gz is not mentioned in these earlier references. The
states participating in each of the Gl, Gz, and Go modes
and the closed periods between them may be identified
directly by inspecting the last MCMC sampled realiza-
tions for the hidden process (zu). However, as men-
tioned above, this may also be done by considering the

single state time constants and occupation probabilities
(see Tables V and IV) obtained from the Q matrix
estimates.

At 1 � Ca2� the channel spends most of its time at the
C1 and C2 states, which account for the long closed so-
journs between the Gl and Gz modes. From the C2 state,
the channel may then enter the O3 state generating a
brief opening. From the O3 state, it may enter the C4

state forming events corresponding to the Go gating
mode. Also from the C2 state, via C3, the RYR channel
may also (very rarely) enter the O1 sate generating a
long lasting opening. These long openings may be fol-
lowed by transitions toward the O2 state (brief open-
ings) and subsequently to the C4 or C6 states (brief clos-
ings) forming bursts of channel activity characteristic
of the Gl gating mode. From either the O1 or O2 states,
Gl bursts are terminated either via O2→C4→O3→C2 or
O1→C3→C2. The appearance of the Gz gating mode is
associated with transitions of the form O3→C4↔O2↔C6,
where the C6 state is responsible for the very fast closed
characteristic of this mode. From the rates leaving C2

shown in Table III, there are 23 more transitions per
unit of time toward the C3 state, the intermediate state
for the initiation of a Gl gating mode bursts, than those
for the O3 state that starts the Go gating mode. Despite
this, Gl gating mode bursts are quite rare when com-
pared with the occurrence of the Go gating mode. This
is due to an extremely low rate for the transition from
the C3 to O1 state. The appearance of the Gz or Go

modes is governed by the rates leaving the state C4 to
the O2 and O3 states, respectively. Note that transitions
to the O3 state are twice as frequent as those to the O2

state. This explains the apparent excess of the occur-
rence of Go mode over Gz bursts. These results suggest
the following gating mode frequency relations, Gl Gz Go.
At this Ca2� concentration the open probability for the
channel is 0.06599. A schematic view of the modes de-
scribed above and their participating states is summa-
rized in Fig. 6.

At 10 �M Ca2� the channel tends to leave C1 and C2,
which are shorter than at 1 �M Ca2�, and starts spend-
ing more time in states C3 and C4, both intermediately

T A B L E  I V

Equilibrium Densities and Ca2� for Scheme M3

C1 C2 C3 C4 C5 C6 O1 O2 O3

�1(∞) .29646 .40328 .06542 .03963 .12754 .00168 .02973 .0103 .02596

�10(∞) .09013 .26684 .18034 .06187 .00583 .01514 .08467 .22102 .07414

�100(∞) .00806 .11761 .00293 .40861 .06581 .15602 .02345 .10944 .10809

The densities at each condition were computed from the Q estimates
shown in Table III as �(∞) � u(SST)�1, with S as a n � n � 1 matrix formed
by augmenting the Q estimate with a column of ones, ST as the transpose
of S, and u as a n-column vector with each element equal to 1 (see for
example Eq. 17 of Colquhoun and Hawkes [1995b]).

T A B L E  V

Single-state Time Constants and Ca2� for Scheme M3

Ca2� �C1 �C2 �C3 �C4 �C5 �C6 �O1 �O2 �O3

�M ms ms ms ms ms ms ms ms ms

1 53.8077 .4502 .1888 .3337 7.4782 .0407 21.2984 .1995 .7955

10 15.4694 5.3341 1.1258 1.0231 3.2319 .262 5.3206 1.6144 .7213

100 32.4956 2.4008 .1856 1.2086 .3132 .5461 1.354 .3411 .2489

The ith time constant, �i, is found by taking the inverse of the ith
eigenvalue of �Q. The Q matrices each Ca2� condition used here are those
shown in Table III.
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lived. Consequently, the inter -burst time is reduced,
and this makes burst-like behavior less apparent. The
channel also spends more time in all three open states,
elevating the open probability to 0.37983. At this Ca2�

concentration, the preferred open state is now O2. This
state is shorter than the most probable open state at 1
�M Ca2� (O1), which was responsible for long open so-
journs during Gl bursts. This accounts for a consider-
able reduction in the total Gl open time. Bursts of type
Gz are �9 times more frequent than sojourns in the Go

mode, whereas the proportion between the Gl and Go

gating modes is more equally distributed in contrast to
the situation at 1 �M Ca2�.

Finally, at 100 �M Ca2� the channel now prefers to
stay at C4, a briefly lived closed state, and mostly fre-
quents two intermediate brief open states, O2 and O3.
This accounts for a decrease in the open probability,
which is now 0.24098, and also to the disappearance of
long openings and closings between bursts.

3.4 Dwell Time Density Estimates

Apart from the mean times and the probabilities at
each state, further insights into the Ca2�-induced
changes in single RYR channel activity may be gained
by inspection of the relative frequencies of visits to par-
ticular states. These are shown in Fig. 7, which presents
the log dwell-time densities for the sojourns in the
open and closed classes together with their single-state
components. Overall densities and components were
computed by using the spectral decomposition of Q

(Colquhoun and Hawkes, 1995b) and the estimates
shown in Table III. At 1 �M Ca2� both open and closed
densities show two clearly defined maxima. Fast events
in the open class (Fig. 7 A) constituted by sojourns in
O2 and O3 are about five times more frequent than slow
sojourns in O1. A high frequency of transitions to O3 ac-
counts for most openings in the Go mode. The closed
class (Fig. 7 B) presents quite frequent fast and slow
events corresponding to sojourns in C6 and C1, C5, re-
spectively. The presence of multiple maxima in both
classes at 10 �M Ca2� is not as apparent as for 1 Ca2�.
This accounts for a partial disappearance of modal be-
havior. At this Ca2� concentration (10 �M) the maxi-
mum for the open class is slightly shifted toward the
right (Fig. 7 C) when compared with the mayor maxi-
mum at 1 Ca2�. Furthermore, O3 is now the most fre-
quent open state, being then closely followed by O2 and
O1. The most frequent states for the closed class (Fig. 7
D) are C6 and C4. Provided the gating modes have still
the same meaning as at 1 �M Ca2�, both plots at 10 �M
Ca2� suggest the following mode frequency relations
Gl � Go � Gz. Finally at 100 �M Ca2� (Fig. 7, E and F)
the densities for both classes have essentially a single
well-defined maximum. This corresponds to a com-
plete disappearance of modal behavior. At this concen-
tration (100 �M Ca2�), the single-state frequency pro-
portions are roughly the same as for 10 �M Ca2�. These
results suggest that a mayor change in the single state
frequencies occurs only around 1–10 �M Ca2�.

The univariate single-class densities suggest the exist-
ence of Ca2�-dependent RYR channel modal gating.
However, direct evidence for this is only provided by
the adjacent open-closed sojourn correlations. These
are presented in Fig. 8, which displays a MCMC poste-
rior estimate for the log open-closed dwell time densi-
ties and their derived dependency-difference plots.
Dwell-time densities were computed by using only the
last five MCMC sampled realizations of the hidden pro-
cess. Use of more MCMC realizations did not apprecia-

Figure 5. Gating modes at 1 mM Ca2�. Two segments of data
used at 1 �M Ca2� showing three distinct gating modes labeled as:
Gz, Go, and Gl. The vertical range for both traces is 3.5 pA, whereas
the horizontal is 160 ms. Data was filtered down to 2 kHz with a
digital Gaussian filter for display purpose.

Figure 6. Gating modes for scheme M3 at 1 mM Ca2�. The
scheme highlights the more critical set of transitions for each gat-
ing mode in model M3.
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bly improve these estimates. A gating mode corre-
sponds (in principle) to the existence of a peak (or
maximum) in the joint density estimate. Inspection of
Fig. 8 (top) suggests the existence of two modes at 1
Ca2�. These modes appear to gradually merge into a
single mode at progressively higher Ca2� concentra-
tions (10–100 �M Ca2�). Such a simple visual inspec-
tion of the joint density plots can be misleading. Spe-
cific correlations between communicating states may
be shown instead via dependency-difference plots. At 1
�M Ca2� Fig. 8 B suggests the existence of at least three
maxima (yellow to faint yellow contoured regions in
the range of 0.0 to 0.04). The first of them corresponds
to fast open-closed events associated to the Gz mode
and is located at the bottom left corner of the plot. An-

other clearly identified maximum corresponds to long
openings followed by brief closures (Gl mode). This is
located in the region that starts at (2,0) at stretches
horizontally to about (5,0). A third relatively minor
maximum corresponds to intermediate openings fol-
lowed by somewhat longer closings (Go mode). This
one may be identified with a region that starts at (0,0)
and stretches vertically up to about (0,4).

This analysis also suggests there is a major change in
modal gating characteristics between 1 to 10 �M Ca2�.
At 10 Ca2� the dependency-difference plots show evi-
dence of two maxima instead of three (Fig. 8 D). One
of these corresponds to brief openings followed by in-
termediate length closures. The other corresponds to
intermediate openings followed by short closures. This

Figure 7. Single-class dwell-time densities. (Left
column) Log dwell-time densities for the sojourns
in the open class of scheme M3 at 1 (plot A), 10
(C), and 100 (E) �M Ca2�. (Right column) Densi-
ties for the dwell times in the closed class of
scheme M3 at 1 (plot B), 10 (D), and 100 (F) �M
Ca2�. Solid lines are the class densities, whereas
dashed lines present their single-state compo-
nents. Densities are shown by taking their square
root.
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pattern is also evident at 100 �M Ca2� (Fig. 8 F). How-
ever, correlations at 100 �M Ca2� are much smaller
(note contour level scales). This analysis presents direct
evidence for RYR channel modal gating and reveals
how it changes at different Ca2� concentrations.

3.5 Filter and Threshold at 2 kHz

This section presents a standard filter and threshold
analysis at 2 kHz. The purpose of this exercise is to illus-
trate the significance of the extended bandwidth analy-
sis obtained by using the HMM approach. The data
used for the MCMC analysis was first filtered down to 2
kHz with a digital Gaussian filter. The filtered data was

then idealized by using a standard half amplitude
threshold. The resulting dwell-time list was then finally
used for dwell-time kernel density estimation. Fig. 9
presents the single-class estimates, whereas Fig. 10
shows the joint density for adjacent open-closed so-
journs at each Ca2� concentration.

Both figures show several differences when com-
pared, respectively, to Figs. 7 and 8. Simple inspection
shows that changes are quite dramatic at 1 �M Ca2�. In-
deed, Fig. 9, A and B, shows that fast events in both the
open and the closed classes have disappeared almost
entirely at 2 kHz. As a consequence both densities are
shifted to the right. This effect is more markedly appre-

Figure 8. Joint open-closed
dwell-time densities and de-
pendence differences. Joint
densities for MCMC-sam-
pled open-closed sojourns of
scheme M3 at 1 (surface A),
10 (C), and 100 (E) �M Ca2�.
Surfaces show the square root
of the density estimate. De-
pendence difference plots
shown as contours for 1 (con-
tour B), 10 (D), and 100 �M
Ca2� (F).
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ciated in the closed class (Fig. 9 B), since at 10 kHz this
density presents one of the fastest components identi-
fied with sojourns in state C6 (see Fig. 7 B and also Table
V). Fig. 9 B also presents smaller probability values than
Fig. 7 B for the slowest events. This effect is due to noise
events that still cross the threshold at 2 kHz and break
long shut periods. A comparison of the joint density in
Fig. 10 A against the one in Fig. 8 A also suggests the
disappearance of fast adjacent open-closed sojourns
that form the Gz gating mode. This is confirmed by
comparison of the dependence-differences in Figs. 10 B
and 8 B. The disappearance of Gz modifies the correla-
tion pattern observed at 1 �M Ca2�, which is actually in-
verted when compared against the one in Fig. 8 B. Fig.
10 B presents two regions of positive correlations that
correspond to intermediary fast and slow open-closed
sojourns, much like the pattern found for 10 and 100
Ca2� (see Figs. 10, D and E, and 8, D and E).

3.6 Reversibility

Reversibility can be evaluated by the Kolmogorov’s cri-
terion for Markov chains with cycles (see Eq. 1.22 in
Kelly, 1979) using the Q matrix estimates. Let a1, a2, ...,
an�1, an denote the states involved in the cycle of a par-
ticular gating mechanism. Gating is reversible if the
transition rates in the cycle satisfy

(16)

For the cycle of scheme M3, the clockwise product of
the six rates involved at 1 �M Ca2� is 6.9 � 10�6. The
product of the six rates in the opposite direction prod-
uct is 6.6 � 10�6. For 10 �M Ca2� the products are 1.5 �
10�5 and 1.8 � 10�5 respectively. For 100 �M Ca2� these
products are 2.1 � 10�3 and 2.3 � 10�3. These results
present direct evidence for the reversibility of single
RYR channel gating dynamics at the experimental con-
ditions tested here. They are also consistent with Fig. 11.
It should be emphasized that none of the cyclic models
used so far considered reversibility constraints for the
values of the transition probabilities pij. The results of
these tests thus provide strong evidence in favor of time-
reversible gating as a genuine feature of the data.

3.7 Response to Sudden Ca2� Steps

The response of RYR channels to fast Ca2� changes can
be evaluated by computing the relaxation toward equi-
librium of the probability of being in the open class, Po.
Here, we present the response of mechanism M3 to in-
stantaneous changes in the Ca2� concentration from 0
to 1, 10, or 100 �M Ca2�. The predicted response of a
single RYR channel was computed using Eq. 15, and
considering several initial densities that represent pos-
sible candidates of the resting state. These were chosen
by assigning different probability values to the closed
states and 0 to any open state. For all the Ca2� steps and
initial conditions considered, Fig. 12 shows that the Po

rapidly peaks and the slowly relaxes toward a new equi-
librium. This pattern of single RYR channel behavior
has been experimentally observed (Györke and Fill,
1993; Valdivia et al., 1995). Closer inspection of the
plots in Fig. 12 shows that the rising phase of the re-
sponses is strongly dependent on the resting condition.

3.8 MCMC Method Reliability

To test the reliability of the MCMC method, simulated
single-channel data was obscured by adding random
noise. � and z were then estimated and compared to
their original values. To this end, two synthetic datasets
were generated assuming two different Ca2� condi-
tions. One synthetic dataset was generated using Q ma-
trix estimates for the M3 model at 1 �M Ca2�. The spe-
cific rate constants used for the M3 model are pre-

ka1a2
...kan 1– an

ka2a1
...kanan 1–

.=

Figure 9. Single-class dwell-time densities at 2 kHz. (Left col-
umn, solid lines) Log dwell-time densities for the sojourns in the
open class for the data filtered at 2 kHz at 1 (plot A), 10 (C), and
100 (E) �M Ca2�. (Right column, solid lines) Densities for the
dwell times in the closed class for the data filtered at 2 kHz at 1
(plot B), 10 (D), and 100 (F) �M Ca2�. Dashed lines represent the
density estimates obtained via MCMC (see Fig. 7). Densities are
shown by taking their square root.
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sented in Table III. The second synthetic dataset was
generated using Q-matrix estimates for the M10 model
at 10 �M Ca2�. The specific rate constants used for the
M10 model are presented below (in ms�1).

kC1C2 1.372 kC2C1 0.759=,=

kC2O1 0.017 kO1C2 0.025=,=

kC2O2 2.598 kO2C2 0.329=,=

kC3O1 0.146 kO1C3 1.362=,=

kC3O2 0.34 kO2C3 0.025=,=

kC3C4 0.021 kC4C3 0.18=,=

Synthetic datasets with N � 2 � 106 samples were
generated by sampling at � � 0.04 ms. The following
parameters were set to mimic those estimated from real
data; �C � 0.9985, �O � 2.6784 and 	2

C � 	2
O �

0.5955. The synthetic dataset were then processed us-
ing the Gibbs sampler. The Gibbs sampler was run for
3,000 iterations with different gating schemes. Conver-
gence in each case was diagnosed as described in Sec-
tion 2.3.3. Only the last 1,000 iterations were used for
estimation.

For the synthetic dataset generated using the M3

model, the Gibbs sampler was run with four different
gating schemes (M3, M2, M7, and M14). The actual

Figure 10. Filtered joint
open-closed dwell time densi-
ties and dependence-differ-
ences. Joint densities for 2
kHz filtered data at 1 sur-
face (A), 10 (C), and 100 (E)
�M Ca2�. Surfaces show the
square root of the density esti-
mate. Dependence-difference
plots shown as contours for 1
(contour B), 10 (D), and 100
(F) �M Ca2�.
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Q-matrix samples for the M3 model are shown in Fig.
13. This figure also contains results obtained from
the real single channel data for comparison (also see
Fig. 3).

The BIC/2 factors as given by Eq. 13 for M3, M2, M7,
and M14 are, respectively, 3,227,097.713, 3,227,131.317,
3,227,155.629, and 3,798,851.394. This means that the
rank order of best-fit models was M3 � M2 � M7 � M14.
In the M3 model case, the estimates generated for �C,
�O, and 	2

C and 	2
O were 0.9979, 2.679, and 0.5961,

respectively. The estimates for the rate constants (in
ms�1) are listed below.

For the synthetic dataset generated using the M10

model, the Gibbs sampler was also run for with four dif-
ferent gating schemes M1, M3, M10, and M11. The rate
constant estimates (in ms�1) are listed below.

kC1C2 1.801 0.193 kC2C1 1.241 0.219±=,±=

kC2C3 0.570 0.127 kC3C2 3.223 0.472±=,±=

kC2O3 0.041 0.003 kO3C2 0.565 0.03±=,±=

kC3O1 0.001 0.001 kO1C3 0.004 0.002±=,±=

kC4C5 2.41 0.957 kC5C4 0.678 0.071±=,±=

kC4O2 0.248 0.077 kO2C4 0.888 0.05±=,±=

kC4O3 0.524 0.209 kO3C4 0.692 0.034±=,±=

kO1O2 0.039 0.004 kO2O1 0.163 0.02±=,±=

kC6O2 20.927 0.47 kO2C6 2.496 0.074±=,±=

The BIC/2 factors for the M1, M3, M10, and M11 mod-
els are 2,571,612.52, 2,571,723.112, 223,01,276.171 and
345,101.05, respectively. This means that the rank or-
der of best-fit model was M10 � M11 � M1 � M3.

In both cases, the estimated rate constants are similar
to the original values used to generate the simulated
datasets. Thus, the HMM-MCMC analysis performed
reasonably well under noise conditions similar to those
found experimentally. Further, the BIC values show that
the method was also able to accurately choose the cor-
rect model.

3.9 Reproducibility of the Best-fit RYR Channel
Model Prediction

Model selection was done using real single RYR chan-
nel data collected at three different cytosolic Ca2� con-
centrations. Here, the reproducibility of the model se-
lection is evaluated using real single RYR channel re-
cordings at a single cytosolic Ca2� concentration (100
�M). These recordings were collected from two differ-
ent RYR channels. For each recording, the Gibbs sam-
pler was used to generate estimates of rate constants

kC1C2 1.31 kC2C1 0.703=,=

kC2O1 0.021 kO1C2 0.021=,=

kC2O2 2.59 kO2C2 0.325=,=

kC3O1 0.121 kO1C3 1.377=,=

kC3O2 0.34 kO2C3 0.024=,=

kC3C4 0.022 kC4C3 0.167=,=

Figure 11. Graphical reversibility test.
Reversibility tests for 1 (A), 10 (B), and
100 (C) �M Ca2�. Each surface was ob-
tained as described, but directly from
the kernel estimates shown in Fig. 8, A,
C, and E, respectively. The significance
of the deviations from 0, and hence vio-
lation of detailed balance, was com-
puted by following Song and Magleby
(1994). Let K�

ij and K�
ij denote the

joint dwell-time kernel estimates ob-
tained by taking adjacent open-closed
and closed-open dwell time pairs
(the open-closed kernels for each
Ca2� concentration are shown in Fig. 8,
A, C, and E). The ij indices represent
the coordinates in the kernel evaluation
grid. The observed differences are
significant at the 5% level if U �
(2�2)1/2 � (2D � 1)1/2 � 1.96, with
�2 � �ij [(K�

ij � K�
ij)2/(K�

ij � K�
ij)],

and D the total number of ij-pairs where
K�

ij � K�
ij � 5 � 10�2. The test gave U �

�0.10293 for A, U � �4.10542 for B
and U � 0.313686 for C.
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and BIC values. Two complete rate prediction and BIC
value sets from this analysis are provided here to il-
lustrate the degree of channel-to-channel variability
present. Rate estimates obtained from the analysis of
the previously presented data collected at 100 �M Ca2�

are presented in Table VI. Estimates obtained from the
analysis of another long (6.84 � 106 samples) single
RYR channel recording at 100 �M Ca2� are presented
in Table VII. The experimental conditions in which
both of these recording were done were exactly the
same.

These tables contain the rate constant estimates and
associated standard deviations for only three of the top
ranked models (M2, M3, and M13). These rate estimates
where computed by taking only the last 500 of 3,000 it-
erations of the Gibbs sampler. Convergence in each
case was diagnosed as described in Section 2.3.3. Partic-
ular rate estimates obtained from the two channels are
not identical. As expected, the natural biological vari-
ability between channels does impose variability in the
absolute values of the predicted time constants. How-
ever, the relative magnitudes of the particular rate con-
stants are relatively consistent between the channels.
To illustrate the consistency in magnitude, the coeffi-
cient of variation between the rate constants estima-

tions for all transitions in one of the top ranked models
(M2) are plotted in Fig. 14.

The BIC values obtained from the different analysis
sets were used to rank the models. The BIC values for
each analysis set are presented in Tables I and VIII. In
each case, the BIC values were then used to rank order
the best-fit models for each analysis set. The best-fit
rank orders for the two analysis sets are compared in
Table VIII. The rank orders from both analysis sets con-
tain the sequence M4 � M12 � M9 � M10 � M16 �M14 �
M15. More importantly, the top five best-fit models were
M2, M3, M5, M6, and M13 although not in exactly the
same order. Note that the BIC value differences be-
tween these top five ranked models in most cases are
quite small.

D I S C U S S I O N

Detailed knowledge about the dynamics of single RYR
channel Ca2� regulation is required to understand the
role these molecules play in the local control of excita-
tion-contraction coupling (Stern, 1992). Despite exten-
sive research, many questions regarding the mecha-
nisms that govern RYR channel gating remain unan-
swered. Several Markov models for the gating of single

Figure 12. Relaxation of
scheme M3 to instantaneous
Ca2� steps. Plots A, B, and C
present the relaxation to-
ward the equilibrium for the
probability in the open class
(Po) as a response to a instan-
taneous step to 1 (plot A), 10
(B), and 100 (C) �M Ca2�.
Single traces at each condi-
tion represent the relaxation
obtained via Eq. 15 for differ-
ent initial densities. Let the
entries of this density, �(0),
be ordered as �(0) � [�C1(0),
..., �C6(0),�O1(0), ..., �O3(0)].
The solid lines in A, B, and
C present the response for
�(0) � [0,0,0,0.3,0.7,0,0,0,0],
dashed for �(0) � [0,0,0,0,
1,0,0,0,0], dotted for �(0) �
[0,0,0.1,0.2,0.7,0,0,0,0], dot-
dashed for �(0) � [0,0,0.2,
0.3,0.5,0,0,0,0], long-dashed
for �(0) � [0,0,0.4,0.3,0.3,0,
0,0,0], and finally two-dashed
for �(0) � [0,0.01,0.49,0.3,
0.2,0,0,0,0]. Plot in D repre-
sents the time course for the
three Ca2� steps from 0 to 1,
10, and 100 �M that gener-
ated, respectively, A, B, and C.
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RYRs have been proposed. Typically, models have been
selected and parameters estimated rather heuristically,
usually by imposing a strong set of constraints that turn
them into essentially a self-fulfilling prophecy (see
Sachs et al., 1995; Zaradniková and Zahradník, 1996;
Villaba-Galea et al., 1998; Sobie et al., 2002). These ap-
proaches end up simply showing that the selected
model can reproduce a particular RYR channel at-
tribute (e.g., modal gating, adaptation, and/or inacti-
vation) with little (if any) statistical evaluation. The
principal objective here is to infer single RYR proper-
ties directly from data by setting a minimum number of
constraints on the model structure. By doing so, we
have considered sixteen gating models, six of them pre-
viously reported in the literature. Statistical inferences
were made from Bayesian perspective by using MCMC.
The next sections summarize the implications of our
findings and discuss their limitations.

4.1 Extended Bandwidth

The HMM approach applied here extends the analysis
of single-channel data to relatively high bandwidths.
This is particularly important for fast gating channels
like the RYRs (Zaradniková et al., 1999). Here, the
HMMs were applied to analyze single RYR channel data

at 10 kHz. This analysis was directly compared with stan-
dard filter and threshold at 2 kHz. Although the same
datasets were analyzed, there was a dramatic difference
in outcome (see Figs. 6–9). Filtering at 2 kHz removed a

Figure 13. Q matrix samples for M3. Plot A shows the MCMC
samples obtained for the real dataset at 1 �M Ca2� (same as Fig.
3). Plot B presents the MCMC samples obtained from a 2,000,000
point dataset generated by using the Q matrix estimates obtained
from the run in A (see Table III).

T A B L E  V I

Kinetic Parameters for Three Different Top-ranked Models for a Channel 
at 100 �M Ca2�

M2 M3 M13

C1→C2 0.041 � 0.007 C1→C2 0.031 � 0.006 C1→C2 0.056 � 0.008

C2→C1 0.002 � 0.0003 C2→C1 0.002 � 0.0005 C2→C1 0.006 � 0.001

C2→O1 0.105 � 0.005 C2→C3 0.023 � 0.003 C2→C3 1.055 � 0.049

C2→O3 0.887 � 0.025 C2→O3 0.396 � 0.01 C3→C2 0.235 �0.015

C3→O1 1.816 � 0.022 C3→C2 0.961 � 0.09 C3→C4 0.052 � 0.003

C3→O2 0.028 � 0.003 C3→O1 4.423 � 0.208 C3→O1 0.996 � 0.008

C4→C5 0.627 � 0.042 C4→C5 0.416 � 0.024 C4→C3 1.687 � 0.079

C4→O2 0.015 �0.002 C4→O2 0.075 � 0.003 C4→C5 1.971 � 0.106

C4→O3 0.854 � 0.043 C4→O3 0.949 � 0.013 C4→O2 3.032 � 0.078

C5→C4 1.736 � 0.097 C5→C4 2.581 � 0.138 C5→C4 0.209 � 0.009

C6→O2 5.189 � 0.204 C6→O2 1.831 � 0.02 C5→O3 1.666 � 0.017

O1→C2 0.289 � 0.013 O1→C3 0.557 � 0.02 O1→C3 3.951 � 0.019

O1→C3 2.627 � 0.03 O1→O2 0.184 � 0.013 O1→O2 0.0006 � 0.0007

O2→C3 0.146 �0.013 O2→C4 0.2777 � 0.01 O2→C4 1.023 � 0.019

O2→C4 0.137 � 0.01 O2→C6 2.611 � 0.028 O2→O1 0.001 �0.001

O2→C6 0.438 � 0.016 O2→O1 0.041 � 0.003 O2→O3 0.002 � 0.002

O3→C2 2.188 � 0.053 O3→C2 0.429 � 0.031 O3→C5 3.16 � 0.025

O3→C4 1.790 � 0.052 O3→C4 3.588 � 0.039 O3→O2 0.0003 � 0.0004

Values of the rate constants for state transitions and their standard
deviations are given for the channel described in Section 3.3. Three (M2,
M3, and M13) of the five top ranked models are compared.

T A B L E  V I I

Kinetic Parameters for Three Different Top-ranked Models for a Channel 
at 100 �M Ca2�

M2 M3 M13

C1→C2 0.0076 � 0.001 C1→C2 0.63 � 0.177 C1→C2 0.006 � 0.001

C2→C1 0.0005 � 0.0001 C2→C1 1.567 � 0.362 C2→C1 0.0009 � 0.0002

C2→O1 0.3997 � 0.004 C2→C3 0.006 � 0.004 C2→C3 0.934 � 0.036

C2→O3 0.0281 � 0.001 C2→O3 0.017 � 0.006 C3→C2 0.44 � 0.025

C3→O1 0.0006 � 0.0008 C3→C2 0.003 � 0.002 C3→C4 0.001 � 0.0009

C3→O2 1.265 � 0.061 C3→O1 2.899 � 0.075 C3→O1 0.742 � 0.01

C4→C5 0.304 � 0.027 C4→C5 0.377 � 0.014 C4→C3 0.003 � 0.002

C4→O2 0.039 � 0.002 C4→O2 0.029 � 0.001 C4→C5 0.003 � 0.003

C4→O3 1.078 � 0.016 C4→O3 0.692 � 0.008 C4→O2 0.956 � 0.011

C5→C4 1.024 � 0.049 C5→C4 0.852 � 0.024 C5→C4 0.323 � 0.089

C6→O2 4.584 � 0.347 C6→O2 0.938 � 0.01 C5→O3 2.623 � 0.099

O1→C2 2.827 � 0.025 O1→C3 0.5 � 0.011 O1→C3 2.513 � 0.019

O1→C3 0.0005 � 0.0005 O1→O2 0.177 � 0.008 O1→O2 0.109 � 0.006

O2→C3 0.321 � 0.02 O2→C4 0.057 � 0.003 O2→C4 1.465 � 0.014

O2→C4 0.103 � 0.005 O2→C6 1.449 � 0.016 O2→O1 0.067 � 0.005

O2→C6 0.228 � 0.018 O2→O1 0.083 � 0.005 O2→C3 0.085 � 0.006

O3→C2 0.056 � 0.003 O3→C2 0.001 � 0.0003 O3→C5 0.551 � 0.023

O3→C4 1.68 � 0.018 O3→C4 2.552 � 0.018 O3→O2 0.108 � 0.02

Values of the rate constants for state transitions and their standard
deviations are given for the channel described in Section 3.9. Three (M2,
M3, and M13) of the five top ranked models are compared.
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considerable proportion of very fast events, shifted dis-
tributions, and obscured (in some cases eliminated)
observed correlations between adjacent open-closed
events. The filtering distortion was most marked at low
Ca2� levels (i.e., 1 �M) and generated a completely dif-
ferent pattern of single-channel gating. This is an im-
portant finding. It introduces new information concern-
ing the physiological relevance of fast events of single
RYR channels at low Ca2� concentrations specifically.

4.2 Reversibility

Both the surface plots at Fig. 11 and the Kolmogorov’s
criterion for cycles for the Q matrix estimates show that
RYR channels gate in detailed balance. It should be
noted that this result is not in contradiction with recent
evidence that supports irreversible gating when Ca2� is
the main diffusing species (Wang et al., 2002). Fur-
thermore, this agrees and reinforces results of Rengifo
et al. (2002) and Villaba-Galea et al. (2002), which
propose the dissipation of the Ca2� gradient as the
source of free energy that keeps the system out of time
reversibility.

4.3 Modal Gating and Adaptation

The steady-state Ca2� sensitivity of single RYR channels
is well established (Zaradniková and Zahradník, 1995,
1996; Armisén et al., 1996). The dynamics of single
RYR channel Ca2� regulation is not (Copello and Fill,
2002). It is clear from numerous studies that single
RYR channels display rapid activation in response to a
fast Ca2� elevation (Györke and Fill, 1993; Zaradnková
et al., 1999). In some studies, channel activity peaks
and then spontaneously decays following the fast
Ca2� elevation. The spontaneous decay was originally
termed adaptation (Györke and Fill, 1993) and was par-
ticularly interesting because it occurred at Ca2� con-
centrations that do not inactivate the RYR channel

under steady-state conditions. The spontaneous decay
(i.e., adaptation) has now been attributed to a Ca2�

and time dependent modal gating shift (Zaradniková
and Zahradník, 1995, 1996; Villaba-Galea et al., 1998;
Györke, 1999; Zaradniková et al., 1999; Fill et al., 2000).

Interestingly, the highest ranked gating model se-
lected from steady-state single-channel data predicts a
spontaneous decay after a fast-step Ca2� elevation (see
Fig. 12). This is interesting because there has been vig-
orous debate about whether or not this is possible. In
the original adaptation studies (Györke and Fill, 1993),
the applied Ca2� elevation had a very fast (1 ms) over-
shoot at its leading edge. At first, this very fast Ca2�

Figure 14. Coefficient of variation for
each rate constant of model M2 for
different set of data. The coefficient
of variation (standard deviation ex-
pressed as a percentage of the mean)

 was com-
puted for model 2 using data extracted
from Tables VI and VII. The average
change of the rate constants for differ-
ent channels was 53%.

C x( ) var x( ) µ2⁄[ ] 100×=

T A B L E  V I I I

BIC Ranking for a Channel at 100 �M Ca2�

Model  BIC/2-channel A Model  BIC/2-channel B

M5 8,198,188.557 M2 10,526,296.294

M2 8,198,278.653 M13 10,526,519.547

M3 8,198,295.779 M3 10,526,296.294

M6 8,198,451.814 M6 10,526,590.176

M13 8,198,668.95 M5 10,526,752.767

M1 8,198,978.954 M8 10,527,500.14

M8 8,199,085.133 M7 10,527,582.358

M7 8,199,158.714 M1 10,528,876.02

M4 8,200,051.146 M11 10,530,168.661

M12 8,201,986.333 M4 10,530,343.001

M9 8,206,814.655 M12 10,530,508.683

M10 8,206,816.649 M9 10,537,283.837

M16 8,206,993.875 M10 10,537,822.011

M14 8,207,225.326 M16 10,538,386.957

M15 8,207,424.004 M14 10,538,715.39

M11 8,210,510.667 M15 10,540,334.274

The comparison for two different channels A (channel described in
Section 3.3) and B (channel described in Section 3.8) is shown. The first
five models (M2, M3, M5, M6, and M13) are common for the two channels
(see Section 3.9).
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overshoot was not considered to play a role in the
much slower spontaneous decay (Velez et al., 1997).
However, the possibility that the fast Ca2� overshoot
may actually generate the slow spontaneous decay was
quickly forwarded (Lamb and Stephenson, 1995; Lamb
et al., 2000; Sitsapesan and Williams, 2000). Here, a
spontaneous decay occurs in the absence of fast Ca2�

overshoot. The analysis here supports the notion that
this spontaneous decay is generated by a Ca2�- and
time-dependent modal gating shift (see below). The
analysis here also suggests that a fast Ca2� overshoot
may indeed accelerate the initial transition into the
open configuration, but will not have an impact on sin-
gle RYR channel behavior after that.

As mentioned above, single RYR channels display
rapid activation in response to a fast Ca2� elevation
(Zaradnková et al., 1999). There is no dispute concern-
ing this RYR channel attribute. The model with highest
BIC score, selected here from steady-state data, predicts
a Ca2� activation rate similar to those that have been
experimentally defined (Györke and Fill, 1993; Valdivia
et al., 1995; Velez et al., 1997). Not surprisingly, the
Ca2� activation rate depends on the initial conditions
that exist before the fast Ca2� change.

Several studies have detailed the Ca2�-dependent
modal gating of single RYR channels (Armisén et al.,
1996; Zaradniková and Zahradník, 1996; Zaradnková et
al., 1999). Again, the highest ranked model predicts
the existence of Ca2�-dependent modal gating (see Fig.
8). The analyses here show that the Ca2� dependence
of modal gating is steepest at relatively low Ca2� con-
centrations (�1 �M). This corresponds to the Ca2�

concentration range over which adaptation is experi-
mentally observed (Fill et al., 2000). This also supports
the notion that adaptation (i.e., the spontaneous de-
cay) is due to a Ca2�- and time-dependent modal gating
shift. As initially proposed by Zaradniková and Zahrad-
ník (1995) the Ca2�-dependent modal shift hypothesis
rests essentially on two basic assumptions: (a) an in-
crease of Ca2� should favor transitions out of states with
high Po, but (b) at resting conditions Ca2� can only
bind to transitions that lead to these states. These con-
ditions still remain to be fully demonstrated. The analy-
sis in Zaradniková et al. (1999) and the one presented
here are consistent with the first point; however, none
of them provides the means for the identification of
the specific Ca2�-dependent transitions.

4.4 MCMC Method Reliability and Robustness of the Fit

The reliability of the MCMC method was tested by sim-
ulating two different synthetic datasets using the pa-
rameters fitted for two different models under two dif-
ferent cytosolic Ca2� concentrations. Then noise was
added to recordings simulated from the Q matrices and
the HMM MCMC formalism was used for analyze the

simulated data (Section 3.8). Excitingly, the analysis
again correctly retrieves the model used to produce the
data for the synthetic datasets.

To test the Robustness of our methods, two different
channels under similar ionic conditions (100 �M free
cytosolic Ca 2� concentration) were analyzed using
the HMM MCMC formalism. In Section 3.9 the model
selection for two different channels and the rate con-
stants are compared. Although the model selection
rankings are note identical, the best first five models
were the same for all the channels. It is not surprising
that the ranking for different channels is not identi-
cal, mostly because the natural biological variability
between channels. Nevertheless, BIC values for these
top models are very similar. In addition, when the fit-
ted Q matrices for the same model (M2) and two dif-
ferent datasets were compared (Fig. 14) the rate con-
stants for each transition were not exactly the same
but were in the same order. This difference could be
explained again by the variability of the biological
samples.

4.5 Future Directions

A key limitation of the approach applied here is the es-
timation of a separate Q matrix for each Ca2� condi-
tion. The simultaneous estimation of a single common
matrix should significantly improve its statistical prop-
erties; moreover, this should lead to the identification
the Ca2�-dependent transitions of a gating scheme.
The latter would certainly clarify several aspects in the
Ca2�-dependent modal shift hypothesis. Finally, a sin-
gle Q matrix with well-identified Ca2�-dependent transi-
tions would enclose all the necessary information for
predicting the Ca2�-dependent dynamic properties of
single RYR channels. This includes the response to any
imaginable Ca2� waveform allowing comparison of pre-
dicted channel behavior with the myriad of experimen-
tal results that have been reported (Györke and Fill,
1993; Sitsapesan et al., 1995; Laver and Curtis, 1996;
Zaradnková et al., 1999). More importantly, it would al-
low prediction of single RYR channels to the nonsta-
tionary Ca2�-regulatory environment that exists in liv-
ing cells.

To make inferences by considering data at several
Ca2� concentrations simultaneously one has to be able
introduce constraints for the rates, such that the in-
volved states become well-defined occupancy sites for
Ca2�. For instance, one would generally like to set kij �
�ij[Ca2�], where �ij is the rate constant that results in
the case [Ca2�] � 1 �M, if kij is to be expressed in
�M � s�1. Unfortunately, these constraints do not
translate in a simple manner to P and hence into the
standard HMM formulation. The problem may be illus-
trated by considering an expansion of the exponential
form which relates P and Q (see Eq. 7), namely, 
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(17)

with I as the identity matrix. P may well be obtained
from Q by simple matrix operations, but a simple
change in one entry of Q takes a rather complicated al-
gebraic form in P. Work in progress, however, shows
that it is indeed possible to sample Q directly by using
hybrid MCMC moves that include Metropolis-Hastings
steps (Robert and Casella, 1999; Liu, 2001) inside the
Gibbs sampler used here. This approach is highly
promising, both in theory and in practice since it bor-
rows many of the properties of the Gibbs sampler so far
used.

In any case, unifying views of the Ca2�-regulatory dy-
namics of RYRs will certainly continue to stimulate
the research of thorough quantitative analytical ap-
proaches and innovative experimental strategies.
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