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ABSTRACT Compared with the well-studied soil prokaryotic communities, little is known
about soil eukaryotic communities. Here, we investigated the eukaryotic community
structures in 43 arable soils using amplicon sequencing of 18S rRNA genes. Major taxo-
nomic groups, such as Fungi, Holozoa, and Stramenopiles, were detected in all samples.

Recent developments in high-throughput sequencing have unveiled soil microbial
community structures in detail. While numerous studies have reported prokaryotic

community structures in soil (1), much less is known about eukaryotic communities.
Nevertheless, eukaryotic microbes play vital roles in the soil ecosystem; they drive
biogeochemical cycling (2), prey on prokaryotes (3), and are potential plant pathogens
(4). To fill this knowledge gap, we investigated eukaryotic community structures in
Japanese arable soils by using well-established 18S rRNA gene amplicon sequencing.

Details on the soil sampling have previously been reported (5). Briefly, 43 arable Andisols
sampled from 11 regions in Japan (32.9° to 43.0°, 130.7° to 143.3°) were investigated. For
each region, soil was sampled from one to six (different) cropland field(s). They included
both fallow (n � 7) and planted soils (n � 36), with various crop rotations and fertilization
regimes. Collected soil samples were sieved through 2-mm mesh and stored at �30°C. DNA
was extracted from 400 to 500 mg of soil using a FastDNA spin kit for soil (Qbiogene,
Carlsbad, CA, USA) following the manufacturer’s protocol, with a modification that a casein
solution (2% [wt/vol]; pH adjusted to 8.0 with 300 mM sodium phosphate buffer) was
added to mitigate DNA adsorption to soil minerals (6). The partial sequences of 18S rRNA
genes, typically 100 to 150 bases long, were amplified using the fusion primers Euk1391f
and EukBr (7, 8) that incorporated index and Illumina adaptor sequences. PCR conditions
included an initial 3 minutes of denaturation at 72°C, followed by 25 cycles of denaturation
(94°C, 30 s), annealing (57°C, 45 s), and extension (72°C, 1 min). The amplicons were purified
by electrophoresis in agarose gels with subsequent reextraction from the gel using the
Wizard SV gel and PCR cleanup system (Promega, Madison, WI, USA). The amplicon libraries
from all samples were mixed in equimolar amounts and sequenced on a MiSeq instrument
(Illumina, CA, USA), generating 150-bp paired-end reads. Paired-end reads with �20 bases
of overlapping regions were merged, and low-quality sequences with expected errors of 0.5
bases or more were eliminated using USEARCH v11.0.667 (9). In cases where one read goes
beyond the beginning (5= end) of the opposite read, the exceeded regions were trimmed.
Furthermore, merged sequences falling beyond the range of 100 to 150 bases long (8) were
discarded. Sequences passing these filtering steps were taxonomically annotated using
naive Bayesian classifier (NBC) implemented in QIIME v1.9.1 (10, 11), trained with SILVA
v132 (12), and optimized for NBC (https://www.arb-silva.de/fileadmin/silva_databases/
qiime/Silva_132_release.zip), with a bootstrap confidence value threshold of 0.5. Poten-
tial plant-derived sequences (i.e., sequences annotated as Chloroplastida) and unan-
notated sequences were discarded.
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Within the total 2,053,072 high-quality sequences, 1,595,038 (77.7%) were success-
fully annotated (37,093 sequences per sample on average). Dominant taxonomic clades
included Fungi (43.3% � 10.6%, mean � SD), Holozoa (14.7% � 6.13%), Stramenopiles
(12.4% � 6.13%), Cercozoa (12.4% � 5.06%), Amoebozoa (6.71% � 3.36%), and Exca-
vata (2.20% � 1.57%) (Fig. 1).

Data availability. The amplicon sequence data have been deposited in DDBJ/ENA/
GenBank under the accession number PRJDB6544 and also under DRA009572.
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