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Highlights
Writers, readers, and erasers have now
been discovered for many mRNA
modifications.

Global topographic candidate maps
have been generated for many modifica-
tions, but high error rates need to be ad-
dressed by technical improvements in
detection and validation using orthogo-
nal methods that apply rigid selection
criteria.

Nanopore single-molecule direct RNA
sequencing is progressing towards reli-
Modified nucleotides in mRNA are an essential addition to the standard genetic
code of four nucleotides in animals, plants, and their viruses. The emerging field
of epitranscriptomics examines nucleotide modifications in mRNA and their im-
pact on gene expression. The low abundance of nucleotide modifications and
technical limitations, however, have hampered systematic analysis of their oc-
currence and functions. Selective chemical and immunological identification of
modified nucleotides has revealed global candidate topology maps for many
modifications in mRNA, but further technical advances to increase confidence
will be necessary. Single-molecule sequencing introduced by Oxford Nanopore
now promises to overcome such limitations, and we summarize current progress
with a particular focus on the bioinformatic challenges of this novel sequencing
technology.
able detection of modified nucleotides
in mRNA.

1Ontario Institute for Cancer Research,
Toronto, ON M5G 0A3, Canada
2Department of Computer Science,
University of Toronto, Toronto, ON M5S
2E4, Canada
3Department of BioHealth Informatics,
School of Informatics and Computing,
Indiana University–Purdue University
Indianapolis, Indianapolis, IN 46202,
USA
4Department of Medical and Molecular
Genetics, Medical Research and Library
Building, Indiana University School of
Medicine, Indianapolis, IN 46202, USA
5Center for Computational Biology and
Bioinformatics, 5021 Health Information
and Translational Sciences, Indiana Uni-
versity School of Medicine, Indianapolis,
IN 46202, USA
6School of Biosciences, College of Life
and Environmental Sciences, University
of Birmingham, Edgbaston, Birmingham
B15 2TT, UK

*Correspondence:
m.soller@bham.ac.uk (M. Soller).
@Twitter: @MatthiasSoller
Epitranscriptomics – A Rapidly Developing Field
Chemical modifications on RNA are well-established and evolutionarily conserved features of
structural RNAs such as rRNA and tRNA [1–3]. In the past few years the occurrence of these
modifications on protein-coding mRNAs, long noncoding RNAs (lncRNAs), and small regulatory
RNAs (srRNAs) has received renewed attention to determine their role in regulating gene expres-
sion, development, and health and disease (Box 1). The rapid evolution of transcriptome se-
quencing technologies has made it possible to develop methodologies that interrogate the
topography of RNA modifications transcriptome-wide. This new field, termed
epitranscriptomics (see Glossary), seeks to elucidate the role of RNA modifications in regulat-
ing gene expression, with a special focus on their biological functions in mRNA.

Major recent methodological advances in mass spectrometry (MS) and next-generation se-
quencing combined with immunoprecipitation and chemical or enzymatic conversion methods
have increased the catalog of known mRNA modifications, and have led to new insights into
the role of these modifications in regulating gene expression in humans and model organisms
such as yeast, plants, Drosophila, and mice. However, the field still faces considerable method-
ological challenges because modifications in mRNA generally are not abundant. Moreover, many
current methods for probing RNAmodifications are hampered by high error rates, low specificity,
and poor reproducibility. We summarize below current approaches and emerging technologies
for assessing mRNA modifications. We aim to highlight the strengths and limitations of current
methods regarding specificity, sensitivity, and reproducibility, with a particular focus on emerging
single-molecule direct RNA sequencing by Nanopore.

Current Catalog of Modifications in mRNA
To date, 13 different chemical modifications have been identified in mRNA transcripts, and these
can be divided into modifications of cap-adjacent nucleotides and internal modifications
(Figure 1). These modifications are added by a variety of dedicated enzymes (Box 2 and
Table 1). Modifications of cap-adjacent nucleotides are added to the 5′-ends of RNAs transcribed
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Glossary
AlkAniline-Seq: RNA alkaline
hydrolysis and aniline cleavage
sequencing.
ALKBH5: ALKB homolog 5, an m6A
mRNA demethylase that removes the
methyl group associated with N6-
methylated adenosine
Epitranscriptomics: the study of
transcriptome-wide distribution and
function of RNA modifications.
FTO protein: fat mass and obesity
associated protein, an m6A mRNA
demethylase that removes the methyl
group of N6-methylated adenosine at
the first position after the cap.
LAIC-seq: m6A-level and isoform-
characterization sequencing.
m1A-ID-seq: meRIP for m1A that
leverages the inherent stalling of reverse
transcriptases at modified nucleotides to
give improved resolution.
m1A-MAP: misincorporation-assisted
profiling of m1A.
m6A-REF-seq: m6A-sensitive RNA
endoRNase-facilitated sequencing.
MAZTER-seq: RNA digestion via m6A-
sensitive RNase and sequencing.
meRIP-seq: methylated RNA
immunoprecipitation and sequencing.
METTL3: methyltransferase-like 3, the
catalytic subunit of the m6A
methyltransferase complex that is
involved in m6A deposition on mRNA,
also named MTA-70, MTA, and IME4.
METTL14: methyltransferase-like 14, a
catalytically inactive component of the
m6A methyltransferase complex that
serves as a support protein for METTL3.
miCLIP-seq: methylated individual
nucleotide resolution crosslinking
immunoprecipitation and sequencing.
NsunC271A-CLIP: miCLIP for 5-
methylcytosine (m5C) using covalent
binding of the methyltransferase Nsun2
to its RNA targets.
PA-m6A-seq: photo-crosslinking-
assisted m6A sequencing
RiboMethSeq: ribose methylation
sequencing.
RibOxi-seq: site-specific identification
of 2′-O-methylation sites using ribose
oxidation sequencing.
RNMT: mRNA cap guanine-7
methyltransferase, an enzyme that
methylates the inverted guanosine at the
mRNA cap to m7G.
TRIBE: targets of RNA-binding proteins
identified by editing.
YTH proteins: a class of proteins that
specifically recognize m6A in mRNA.

Box 1. Discovery of RNA Modifications and Their Biological Functions

In 1957, Davis and Allen discovered pseudouridine as the first known chemically modified RNA nucleotide [121]. Since
then, 162 more RNA modifications have been described and catalogued (RNA Modification Databases: http://mods.
rna.albany.edu and http://modomics.genesilico.pl [115]). RNA modifications occur in all domains of life and in all types
of RNA (tRNA, rRNA, mRNA, srRNA, snoRNA, snRNA, and lncRNA), and have been extensively linked to development,
health, and disease. The high copy number of rRNAs and tRNAs in cells has greatly facilitated the study of modifications
in these RNA species. rRNAs and tRNAs have complex 3D structures, whichmediate ribosome function and protein trans-
lation. Modified nucleotides in rRNAs and tRNAs play essential roles in ribosome assembly and dynamics, and disruption
of these modifications has been associated with lethality, severe growth defects, intellectual disability, diabetes, and can-
cer [32,33,122]. Although nucleotide modifications in mRNA have been known for >40 years, their functional interrogation
has only become possible in the past decade owing to high-throughput sequencing-based mapping methodologies that
overcome the low abundance of these modifications, as well as to the discovery of writer, reader, and eraser proteins (Box
2). Since then, may biological functions in development and disease have been associated to mRNAmodifications, includ-
ing a variety of cancers, mental disorders, and fertility and metabolic phenotypes [4,30,32,33].
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by RNA polymerase II [mRNA, primary (pri-)miRNA transcript, lncRNA, small nucleolar (sno)RNA,
and small nuclear (sn)RNA] [4]. The composition of the cap varies with the type of RNA molecule,
and typically consists of a 7-methylguanosine (m7G) moiety added in a characteristic 5′–5′ tri-
phosphate linkage to the first transcribed nucleotide (Figure 1A). In some snRNAs and snoRNAs
the cap guanosine is trimethylated to m2′2′7G, and further alternative cap structures including
NAD+ have recently been identified [4–6]. The first and second nucleotides adjacent to the cap
can be 2′-O-methylated at the ribose (cOMe) in animals, viruses, and protists. If the cap-
adjacent nucleotide is an adenosine, it can be further methylated to N6,2′-O-dimethyladenosine
(m6Am, Figure 1A) [4,7–11]. Of further special note are the extensive modifications in trypano-
somes of cap-adjacent nucleotides in the splice leader RNAs that are trans-spliced onto the
body of the mRNAs (Figure 1A) [12]. Modifications of cap-adjacent nucleotides are common, dif-
fer among tissues and transcripts, and regulate mRNA stability and translation [4,5,7,8,10,11,13].

Internal modifications occur in 5′ and 3′ untranslated regions (UTRs), coding regions, and introns
of mRNAs (Figure 1B). Mass spectrometric (MS) quantification indicates that N6-
methyladenosine (m6A) and adenosine to inosine (A to I) editing are the most abundant internal
mRNA modifications [14]. Less abundant internal mRNA modifications are 5-methylcytosine
(m5C) [15], pseudouridine (Ψ) [16–19], N1-methyladenosine (m1A) [20,21], N4-acetylcytidine
(ac4C) [22], hydroxymethylcytosine (hm5C) [23], 3-methylcytidine (m3C) [24], cytosine to uridine
(C to U) editing [25], m7G [26,27], Nm [28], and 7,8-dihydro-8-oxoguanosine (8-oxoG, as a result
of guanosine oxidation by reactive oxygen species) [29].

Internal mRNA modifications are involved in a variety of gene-regulatory functions in the cell,
where m6A is thought to be the most diverse because of the presence of multiple bona fide
readers of the YTH protein domain family (Box 2). Internal m6A can regulate all aspects of
gene expression of anmRNA, includingmRNA splicing, 3′-end processing, export, stability, local-
ization, and translation [30–35]. Other internal modifications tend to be more process-specific
and can affect translation efficiency (e.g., inosine [36], m1A [37], ac4C [22], m6Am [9], m3C
[24]), codon recoding (e.g., inosine [36], 8-oxoG [29]), mRNA stability (e.g., ac4C [22]), and nu-
clear export (e.g., m6A [38]). Among these mRNA modifications, m6A, m6Am, and m1A have
been proposed to function dynamically because they can be reversed by eraser proteins
[13,30,39,40] (Box 2).

Although the abundance of mRNAmodifications are generally low, with a prevalence below 0.5%
of all nucleotides [14,24,26], they play important functional roles in mRNA regulation, cell function,
development, the immune system, and homeostasis (Box 1). In addition, many mRNA modifica-
tions play key roles in viral infection and replication, and in response to stress [4,25,34,35]. For
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Box 2. Writers, Readers, and Erasers: The Complex Machinery Underlying mRNA Modifications

The enzymes that deposit, remove, and bind to mRNA modifications have been termed 'writers', 'erasers', and 'readers',
respectively [31,34,35] (see Table 1 in main text). Writers bind to short consensus sequence motifs in target mRNAs; how-
ever, these motifs are far more common than the modifications themselves, suggesting that additional factors determine
writer binding. Other writers, such as CMTrs, PUS1, and METTL16, bind to mRNA based on mRNA structure motifs
[31,123]. Erasers and readers recognize the modifications themselves; however, given the large variety of different reader
proteins, additional factors are probably involved in targeting readers to their mRNA targets. The machinery of writers,
erasers, and readers is complex, often consisting of large protein complexeswith a variety of cofactors. The writer complex
for m6A, for instance, consists of a ~900 kDa complex with two core methyltransferases (METTL3 and METTL14) and
several auxiliary cofactors [31]. Although loss of themethyltransferases does not result in lethality inDrosophila, loss of sev-
eral of the cofactors does, suggesting that these enzymes exercise alternative functions unrelated to m6A-methylation.
Some writer proteins can also act as reader proteins, as is the case for METTL16 under particular cellular conditions
[31]. In addition, some modifications have alternative writers, erasers, and readers. METTL3/METTL14, METTL4, and
METTL16 writers for m6A act in different complexes, and both FTO and ALKBH5 have been shown to erase m6A [31].
A varying number of m6A readers have been identified across organisms, with a record of 13 different readers in plants
[31]. There is also crosstalk between modifications, and some enzymes target more than one type of modification. For in-
stance, FTO was first described as an eraser for internal m6A [124], but was later shown to also demethylate m6Am at the
cap [125]. Furthermore, mRNA modifications might influence the ability of mRNA binding proteins to bind to mRNA tar-
gets. For instance, interferon-induced proteins with tetratricopeptide repeats (IFITs), mRNA binding proteins that are in-
volved in innate immunity and viral response, show low affinity for mRNA transcripts with ribose methylation at the cap
[47–49]. Whether alternative writers, erasers, and readers of mRNA modifications act in different tissues, in different cellu-
lar/physiological contexts, or on different mRNA targets remains mostly an open question. Furthermore, although the ma-
chinery acting on m6A has been well characterized in recent years, the factors acting on other modifications are less well
explored, and new enzymes or functions could be discovered in years to come. Further identification of these enzymes will
aid our understanding of the biological functions of mRNA modifications and yield prime new targets for pharmaceutical
targeting of mRNA modification-associated diseases such as cancer and obesity.
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instance, m6A and/or m6Am levels are altered in specific brain regions of acutely stressed mice
and by glucocorticoid administration [41]. Human patients with major depressive disorder have
lower m6A and/or m6Am levels in their blood and do not respond to glucocorticoid stimulation
[41]. Human cells under serum starvation and peroxide treatment show stress-specific induced
m1A sites [20]. Internal mRNA m7G is enriched in coding sequences (CDS) and 3′-UTRs, and is
depleted in 5′-UTRs in mammalian cells and brain tissues in response to heat shock and oxidative
stress [42]. Similar responses to stress have been described forΨ [17,19], 8-oxoG [29], and C to
U editing [43].

Another important function of mRNA modifications resides in the immune system. Of particular
importance here is A to I editing, which in vertebrates tunes down the autoimmune response to
double-stranded RNA [44,45]. Furthermore, 2′-O-ribosemethylation of cap-adjacent nucleotides
(cOMe) has been proposed as a mechanism to distinguish self from non-self mRNAs because it
repels binding of interferon-induced proteins with tetratricopeptide repeats (IFITs) and RIG-I, the
Figure 1. Catalog of Currently Known mRNA Modifications. (A) RNA modifications at the mRNA cap. The firs
transcribed base (base 1) is linked first to an inverted guanosine by a 5′–5′-triphosphate linkage and subsequently
becomes methylated to 7-methylguanosine (m7G) by RNMT (RNA guanine 7-methyltransferase). The first and second
nucleotides of the mRNA can be ribose 2′-O-methylated (cOMe) by the cap methyltransferases CMTr1 and CMTr2. I
base 1 is a ribose 2′-O-methylated adenosine it can be further methylated to N6,2′-O-dimethyladenosine (m6Am) by PCIF1
(phosphorylated CTD-interacting factor 1). In the splice leader sequence added to all mRNAs in trypanosomes (shaded in
grey) the third and fourth nucleotides are also 2′-O-ribose methylated, the first adenosine is trimethylated to N6N6,2′-O-
trimethyladenosine (m6

2Am) instead of m6Am, and the fourth base is methylated to 3,2′-O-dimethyluridine. (B) Interna
mRNA nucleotides carry different modifications depending on the nucleotide (Box 2 for enzymes). Adenosine can be
converted to inosine by adenosine deaminases (ADARs), or methylated to N1-methyladenosine (m1A), N6-
methyladenosine (m6A), or N6,N6-dimethyladenosine. Cytidine can be converted to uridine (U), acetylated N4-
acetylcytidine (ac4C), or methylated to 3-methylcytidine (m3C) or 5-methylcytidine (m5C). m5C can be converted to 5-
hydroxymethylcytidine (hm5C). Guanosine can be methylated to 7-methylguanosine (m7G) or oxidized to 7,8-dihydro-8-
oxoguanosine (8-oxoG). Uridine can be converted to pseudouridine (Ψ). Finally, the ribose sugars of all nucleotides can be
2′-O-methylated (Nm).
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Table 1. Mammalian Writers, Readers, and Erasers of mRNA Modifications
mRNA
modification

Writer Eraser Reader

Cap modifications

m7G RNMT [4]

cOMe CMTr1, CMTr2 [4,122]

m6Am PCIF1a [7,10,11] FTO [125]

Internal modifications

m6A METTL3b, METTL14b

METTL4c, METTL16 [31]
FTO, ALKBH5 [31] YTHDF1–3, YTHDC1–2

[31]

m1A TRMT6/61A, TRMT61B
[37,63]

ALKBH1/3 [37] YTHDF1–3 [139]

m5C NSUN2 [73], DNMT2c [140] TET (through conversion to
hm5C) [141]

YBX1 [142–145]

hm5C TET1–3c,d [141] TET (through further
oxidation)

m3C METTL8 [24] ALKBH1 [146]

ac4C NAT10 [22]

Ψ DKC1, TRUB1, PUS7 [32,81]

m7G METTL1 [26,59]

8-OxoG Nonenzymatic [29]

Nm FTSJ3c [147]

A to I ADAR 1–3 [148]

C to U APOBEC family [25]

aRequires ribose methylation introduced by CMTr to methylate adenosine the at N6 position.
bPart of a 900 kDa holoenzyme.
cRemains to be confirmed for mRNA.
dRequires m5C.
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main inducers of antiviral and inflammatory responses [46–49]. However, cOMe likely has other
functions because only a fraction of host mRNAs carry cOMe, and levels differ between tissues
and transcripts in mice [8,13]. Moreover, IFIT1 in some viruses does not inhibit translation of
non-ribose methylated transcripts [50].

Current Methods for Global Assessment of mRNA Modifications
Although many recent studies outline the importance of mRNA modifications, transcriptome-
wide mapping of modifications still faces significant challenges. Because the abundance of
mRNAmodifications is generally low and variable (in the range 5–88% at a given site or transcript
[51,52], and only 2–5% of cellular RNA is mRNA), current methods (Table 2) require large
amounts of mRNAs and/or very deep sequencing. Furthermore, current methods have yielded
highly variable results, and suffer from many false positives and lack of specificity and/or single-
base resolution.

Assessing the Presence of Modifications Using MS
Liquid chromatography coupled to tandem MS (LC-MS/MS) has been widely applied to detect
and quantify the relative abundances of RNAmodifications [5,14,26,27,53,54]. Generally, the ap-
proach involves digesting total RNA or purifiedmRNA into individual nucleotides, followed by sep-
aration by LC and quantification by MS. The presence and amount of all nucleotide modifications
in an RNA sample can then be assessed by comparison of the MS peaks from the sample with
76 Trends in Biotechnology, January 2021, Vol. 39, No. 1



Table 2. Methods To detect Transcript-Specific mRNA Modifications Genome-Wide by Short-Read
Sequencing

Method name mRNA
modification

Method principle Refs

meRIP-seq, miCLIP-seq,
PA-m6A-seq, m1A-ID-seq,
m1A-MAP, LAIC-seq

m6A, m1A, m7G,
m6Am hm5C,
ac4C, m5Ca

Immunoprecipitation with
modification-specific antibody

[9,20–23,26,37,40,52,
61–63,67,70,149,150]

m6A-label-seq m6A Metabolic labeling to
N6-allyladenosine for further
chemical modification

[68]

Writer-CLIP, Reader-CLIP,
DARTseq, TRIBE

All modifications Crosslinking or APOBEC or ADAR
editing nearby modifications

[91,92,94]

mRNA editing A to I and C to U
mRNA editing

Variant analysis (I reads as G) [72]

Bs-seq, RNA-BisSeq m5C Deamination of nonmethylated
cytosines to uridines using
bisulfite

[15,73,74]

Aza-IP, NsunC271A-CLIP m5C Crosslinking [75–77]

AlkAniline-Seq m7G, m3C Alkaline hydrolysis and aniline
cleavage at modified sites

[71]

m7G-MaP-seq m7G Reduction of modified sites to
abasic sites

[60]

m6A-SEAL-seq m6A FTO-assisted oxidation to hm6A
for biotin labeling to IP

[90]

Nm-seq, RibOxi-seq,
RiboMethSeq, 2′-OMe-Seq

Nm Iterative removal of
nonmethylated bases by
oxidation and dephosphorylation

[28,78–80]

Ψ-seq, pseudo-seq,
CeU-seq

Pseudouridine Chemical modification with CMC,
blocking reverse transcription at
modified nucleotides

[16,17,19]

MAZTER-seq,
m6A-REF-seq

m6A Restriction with endonucleases
that cut methylated but not
unmethylated nucleotides

[88,89]

aOnly applied to unicellular organisms so far.
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the MS peaks of standards [5,14,26,53]. Provided that the nucleotides can be sufficiently sepa-
rated, LC-MS/MS measurements are quantitative and concordant between studies even if the
levels of the modified nucleotides are low [14,26,27,53]. This approach has also been combined
with enzymatic digestion by nucleases which have differential activity towards cap and internal
m7G modifications to demonstrate the prevalence of internal m7G in mRNA [27] or enrichment
of caps by ion-exchange (CapQuant and CAP-MAP) [5,12,55]. However, LC-MS/MS requires
large amounts of input RNA (>0.65 μg polyA mRNA for internal modifications, and >20 μg
polyA mRNA for modifications of cap-adjacent nucleotides) and is limited for low-abundance nu-
cleotides such as caps (100- to 10 000-fold less sensitive than radioactive labeling) [5,12,14,27].
In addition, oligo-dT-purified polyA mRNA carries over rRNA, leading to misannotations [56].

LC-MS/MS does not provide information about the location of the modification in a transcript, but
this can be circumvented by using oligonucleotides obtained by digestion with different RNases
or from tRNAs [54,57,58]. Digestion with RNase, however, can introduce errors in mapping frag-
ments to the genome. For example, the m7G site in let-7 miRNA is in fact a fragment of rRNA with
a well-known Gm site [59,60]. Although the complement of modifications has been mapped in
cellular tRNAs, the amount of input and the computational challenges are significant [54,57].
Trends in Biotechnology, January 2021, Vol. 39, No. 1 77
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Antibody-Based Methods To Detect Modifications
The most widely used methods for transcriptome-wide mapping of mRNA modifications rely on
RNA immunoprecipitation (RIP) by commercially available antibodies that recognize modified nu-
cleotides (Box 2), but the specificity of these antibodies varies. For profiling transcripts carrying
modifications, RIP is generally followed by whole-transcriptome sequencing (RIP-seq or
meRIP-seq) to identify modified regions ~100–200 nt in length. To refine these regions to
single-base resolution, methods have been developed that take advantage of nucleotide mis-
matches or truncation signatures induced by crosslinking antibodies to modified nucleotides be-
fore reverse transcription and sequencing (e.g., PA-m6A-seq [61], miCLIP-seq [11,62], m1A-
MAP [63], and m7G-MeRIP-Seq [26]). LAIC-seq assesses m6A modifications without prior frag-
mentation to distinguish methylation levels between mRNA isoforms, but at the cost of lost posi-
tional information [52].

Results from antibody-based mRNA modification profiling are highly variable because, for exam-
ple, antibodies raised against m6A can also recognize adenosine, and thus IP will not enrich only
for m6A-carrying transcripts [64]. Early studies using meRIP-seq reported ~7000 mRNA targets
[40,65], whereas studies applying miCLIP for single-base resolution mapping reported ~3500
m6A-containing mRNA targets [62]. It is unclear whether these discrepancies are due to high
false-positive rates in meRIP-seq, high false-negative rates in miCLIP (owing to weak
misincorporation and truncation signatures), or reflect true biological variance in different cells
and conditions. However, reproducibility across m6A meRIP-seq datasets has been found to
be low (~30 to 60%), even in the same cell type and between biological replicates [61,66]. Fur-
thermore, commonly used m6A antibodies crossreact with m6Am [62]. Thus, the discordance
among antibody-based identification methods is largely a result of high false-positive rates.
Higher confidence in antibody-based identification methods can be gained by including a
mutant control. In yeast, 1308 high-confidence m6A sites in 1183 transcripts were identified by
comparing wild-type with METTL3 mutant (lacking m6A) cells [67]. A recent study used meta-
bolic labeling (m6A-label-seq) to substitute m6A with N6-allyladenosine (a6A) to map m6A
sites, and obtained a number of mRNA targets similar to that obtained with miCLIP (2480
-4512) [68].

Antibody-based detection of m1A initially reported >4000 mRNA targets [21]. Reanalysis of m1A-
induced misincorporation and truncation signatures from stalling of the reverse transcriptase in
later studies reduced the number of targets to ~450–600 (m1A-ID-seq [20] and m1A-MAP
[63]). Further, reanalysis of the 474 m1A sites previously identified by m1A-MAP [63] showed
that 89% of the identified sites were false positives originating from genetic variation, sequencing
errors, and misannotations [69]. In fact, the most recent studies using m1A-seq or LC-MS/MS
suggest that virtually all mapping of m1A is caused by crossreactivity of commonly used m1A an-
tibodies to the m7G cap, and that m1A sites in mRNA are in fact exceedingly rare [14,37,70], al-
though they have been validated in transcripts of the mitochondrial ND5 gene [37,70].

For several other modifications, the available mapping methods remain very limited. Two studies
using meRIP and miCLIP for m7G identified several thousands of internal m7G sites in different
mouse and human cell lines [26,42]. The overlap of targets identified in the different cell lines
was relatively high in one study (73.5%) [42], but low in the other (27%) [26]. Only one study
has used antibody-based methods to map ac4C [22]. It is thus not clear whether RIP for these
modifications is hampered by similar false-positive rates and antibody crossreactivities to other
modifications. Orthogonal methods to map m7G and m3C at single-base resolution by
alkaline hydrolysis (AlkAniline-Seq) [71] have so far failed to detect these modifications in
mRNA [71].
78 Trends in Biotechnology, January 2021, Vol. 39, No. 1
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Chemical Methods To Detect Modifications
Chemical reactions specific to a given RNAmodification, followed by short-read sequencing, pro-
vide an alternative to antibody-based detection of RNA modifications. In the case of A to I and C
to UmRNA editing by deamination, no conversion step is necessary because nucleotide changes
(I reads as G) can be directly assessed fromRNA sequencing data by applying carefully controlled
variant analysis [72].

The most common chemical conversion for mapping m5C by bisulfite sequencing (Bs-seq or
RNA-BisSeq) relies on chemical deamination of cytidines, but not of m5C, to uridine by sodium
bisulfite [15,73,74]. Bs-seq is straightforward and cost-effective, but the efficiency of chemical
conversion sets a limit to the detection of rare modifications [73,75].

The catalytic mechanism of m5C methylation involves transient covalent binding of a cytosine
to the enzyme. This can be exploited by incorporation of azacytidine into nascent mRNA
followed by IP with an antibody against the methyltransferase and sequencing of the target
RNA [75,76]. Alternatively, mutating one of the two cysteines in the catalytic center of the
methyltransferase (C271A for Nsun2) will covalently bind the methyltransferase to its RNA tar-
gets [77]. Intriguingly, the overlap between Bs-seq, 5-azacytidine immunoprecipitation (Aza-
IP), and NsunC271A-CLIP is surprisingly low [75]. Because most m5C sites in tRNAs were
detected by these approaches, m5C potentially differs widely between cell types or is highly
dynamic, but the lack of overlap could also be due to rapid degradation of protein–RNA
adducts.

Chemical methods to map m7G and m3C have used alkaline hydrolysis of structural RNAs
(AlkAniline-Seq) [71] and reduction to abasic sites with sodium borohydride (m7G-MaP-seq)
[60], but this approach did not detect thesemodifications in mRNA owing to the limits of chemical
conversion for detecting rare modifications [71].

To map internal Nm, nonmodified nucleotides are removed from the 3′ end of RNA with it-
erative oxidation–elimination–dephosphorylation cycles, but Nm blocks this process. After
ligation of linkers to the Nm-modified nucleotide at the 3′-end, these sites can be mapped
by sequencing (Nm-seq or RibOxi-seq) [28,78]. In mammalian mRNA, Nm sites in 1267
transcripts were identified [28]. Determination of Nm levels in mRNA by MS suggested
that ~3% of nucleotides are ribose-methylated (18 Nm/mRNA), but this is likely a massive
overestimate as a result of rRNA carry-over [14,64]. Although not yet used for mRNA, Nm
can be mapped based on resistance to alkaline hydrolysis resulting in Nm nucleotides
being depleted from the start of sequencing reads (RiboMethSeq) [79]. In addition, Nm
stalls reverse transcriptase under low dNTP concentrations, resulting in Nm-specific trun-
cation signatures during reverse transcription (2′-O-methylation sequencing, 2′-OMe-Seq
[80]).

Ψ can be mapped by chemical conversion with N-cyclohexyl-N′-(2-morpholinoethyl)
carbodiimide metho-p-toluenesulphonate (CMC), which then blocks reverse transcription (Ψ-
seq or pseudo-seq) [16,19]. Ψ-seq detected 89 [16] and 353 [67] modified mRNA transcripts
in different human cell lines. As with Nm-seq, the number of sites identified with Ψ-seq is low
compared with the prevalence ofΨ reported by MS [14,17], and the overlap between the differ-
ent studies is very modest [81]. Furthermore, a method employing a chemical pulldown enrich-
ment step for Ψ (N3-CMC-enriched pseudouridine sequencing, CeU-seq) identified 1929
modified mRNAs [17], but whether most of these sites were missed by Ψ-seq or are false posi-
tives remains to be determined.
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Enzymatic Methods To Detect Modifications
The earliest methods to map modifications in mRNA relied on the cleavage specificity of RNases,
in particular RNase T1, which cleaves after guanosine [82,83]. Using this approach in combina-
tion with radioactive labeling and separation of individual nucleotides, m6A was first mapped in
prolactin and Rous sarcoma virus transcripts [84–86]. This approach remains the most sensitive
and can distinguish between mRNA and rRNA because m6A is not in a GA context in rRNA [71].
Moreover, cOMe can be analyzed in a similar sensitive way [8].

Recently, endoRNases have been discovered that are blocked by methylation [87]. InMAZTER-
seq [88] and m6A-REF-seq [89], the endoRNases MazF and ChpBK cut unmethylated RNA at
ACA and UAC motifs, respectively, leaving m6A methylated RNA intact, resulting in
transcriptome-wide m6A-dependent restriction profiles [88,89]. Although this method requires lit-
tle input RNA and is highly specific, the specificity for ACA restricts MAZTER-seq to ~16% of all
m6A sites in mammals [88].

Conversion of m6A to hm6A by FTO protein can be exploited by its reactivity towards
dithiothreithol that allows selective chemical labeling (m6A-SEAL) [90]. This approach revealed a
greater specificity and sensitivity than antibody-based (e.g., meRIP, miCLIP) and enzymatic
methods (e.g., deamination adjacent to RNA modification targets, DART-seq) [90].

The APOBEC (apolipoprotein B mRNA editing enzyme) family of cytidine deaminases has been
successfully used for transcriptome-wide mapping of m6A and hm5C. hm5C converted by T4
bacteriophage β-glucosyltransferase (T4-BGT) is protected from deamination by APOBEC3A,
allowing mapping of hm5C in RNA (APOBEC-coupled epigenetic sequencing, ACE-seq) [91].
Similarly to hm5C, m6A can be mapped by using an APOBEC1–YTH fusion protein in which
the m6A reader YTH targets m6A sites, and APOBEC1 deaminates adjacent cytidines (DART-
seq) [92]. DART-seq was shown to identify ~60% of m6AmeRIP targets, suggesting higher spec-
ificity than meRIP [92]. However, the efficiency of purified APOBEC1–YTH is limited in vitro, and
exogenous expression of APOBEC1–YTH in cells is necessary, which could introduce errors
owing to altered expression levels of the YTH RNA-binding protein [64,92,93]. A concept similar
to DART-seq underlies m6A mapping with TRIBE (targets of RNA-binding proteins identified by
editing). In TRIBE, the YTH (or METTL3) RNA-binding domains are fused to the catalytic domain
of ADARs. Binding of this fusion protein to m6A sites then results in A to I editing by the ADAR cat-
alytic domain in the vicinity [94]. TRIBE and DART-seq identify a subset of targets and also require
a complementary DNA sequencing dataset to identify RNA editing events.

Site-Specific Validation of Modifications
The limitations in the sensitivity and accuracy of transcriptome-wide mRNA modification mapping
techniques make validation by an orthogonal method essential. The most reliable technique to vali-
date the presence and methylation level of m6A is site-specific cleavage and radioactive labeling of
the modified nucleotide followed by ligation-assisted extraction and thin-layer chromatography
(SCARLET). Mapping of m6A is accomplished by chimeric oligonucleotides consisting of ribo- and
deoxyribonucleotides to direct site-specific cleavage of mRNA transcripts by RNase H [51,88,95],
but deoxyribozymes are a valid alternative to RNase H-directed cleavage [96,97]. If the candidate
site is not known at nucleotide resolution, in vitro transcribed substrate RNAs can be methylated in
nuclear extracts and the modifications can be mapped by molecular methods [64,84,86,98]

Direct RNA Sequencing by Nanopore
Oxford Nanopore Technologies™ (ONT) is a long-read sequencing platform that generates long
reads of up to several kilobases from single mRNA molecules in real time (Box 3) [99,100]. By
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Box 3. Nanopore Sequencing

Oxford Nanopore Technologies™ (ONT) sequencers are available as small hand-held devices (MinION) and larger high-
throughput sequencers (PromethION). The underlying technology is the same between sequencers, and the largest differ-
ence is sequencing output. ONT is a rapidly developing technology, and frequent improvements are released for sequenc-
ing reagents, sequencing flow cells, and bioinformatics. These technological updates have resulted in the rapid
improvement of ONT sequencing error rates (Box 4). Although bioinformatic updates can be applied to previous datasets
(Box 4), reagent and flow-cell updates might make it difficult to compare data from older and newer studies. ONT also re-
lies heavily on user-developed solutions. For direct RNA sequencing specifically, ONT only offers sequencing library kits for
mRNA or polyA RNA, and studies investigating other types of RNA (e.g., in vitro transcribed RNA, rRNA, tRNA) have de-
veloped their own custom adaptations [126,127].

For direct mRNA sequencing, polyA mRNA is enriched with oligo-dT beads and a cDNA strand is synthesized using an
oligo-dT primer (see Figure 2A in main text). The cDNA strand is not sequenced, but prevents RNA from forming second-
ary structures and protects against degradation by most RNases, and thus increases throughput. To prepare nucleic
acids for nanopore sequencing, an RNA sequencing adapter (RMX) is ligated to the 3′ end. This adaptor carries a 'motor
protein' at the 3′ end and a 'tether' protein at the 5′ end. Themotor protein moves the nucleic acid strand (~400 bases/s for
DNA and ~70 bases/s for RNA) through the pore while the tether protein prevents the cDNA from passing through the pore
and being sequenced.

The current nanopore (R9.4 or R9.5) consists of an engineered protein derived from Escherichia coli Curlin sigma S-de-
pendent growth (CsgG) pore [128] embedded in an electrically resistant membrane made from a synthetic polymer
[129–131] (see Figure 2B in main text). MinKNOW™, the software made by ONT to control the MinION device, performs
several core tasks such as assignment of run parameters, data acquisition, and feedback on how the experiment is
progressing. The membrane in a MinION flow cell holds individually addressable 2048 pores controlled in groups of 512
channels. MinKNOW assigns four pores per channel through mux scan (a process to check pore activity), thus allowing
simultaneous sequencing of 512 molecules [131]. Nanopores are immersed in an ionic solution, and when voltage is ap-
plied a ionic current passes through the nanopore that is individually recorded by a sensor [131–133]. The sensor mea-
sures the current several thousand times per second, and the collected data are sent to MinKNOW [131,133].

When a nucleic acid strand traverses the nanopore from one chamber to the other, the current changes in a characteristic
way such that the nucleic acid sequence can be identified. The raw signals (current measurements) plotted over time are
known as 'squiggle' plots (see Figure 2C in main text). Unlike fluorescence-based sequencing, where individual nucleo-
tides are recognized, the measured signal is affected by multiple nucleotides that reside in the pore, which is modeled
using 6 nt subsequences (k-mers) for DNA and 5 nt for RNA. These 5 nt subsequences from RNA result in 45 different sig-
nal configurations [101,134–136]. These signal configurations are modeled using Gaussian distributions where the mean
represents the level of the signal and the standard deviation represents the variation frommeasurement and intrinsic noise
(see Figure 2D in main text).
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contrast to other long-read sequencing technologies (e.g., PacBio), ONT allows direct RNA se-
quencing (DRS) without prior amplification or cDNA conversion. Therefore, ONT has potential
in the direct detection of RNA modifications, opening a completely new approach to the study
of epitranscriptomic modifications, but accurate detection faces significant challenges.

Nucleotide modifications in ONT sequencing reads were first demonstrated on CpG-methylated
DNA based on deviations of ONT raw current signals from a model of canonical nucleotides (Box
4 for bioinformatics of ONT basecalling) [101,102]. CpG-methylation calling software is now an
integrated feature of the ONT analysis software Nanopolish. This methylation caller is a hidden
Markov model that was trained on synthetically methylated DNA to distinguish between methyl-
ated and unmethylated cytosines using raw current signals [101], and has been applied to the
study of DNA methylation patterns in the human genome and epigenetic imprinting in mice
[103,104].

In 2018, ONT introduced a direct RNA sequencing protocol and showed raw signal differences
between modified m6A, m5C, and unmodified bases using a synthetically designed firefly lucifer-
ase (FLuc) transcript with embedded modifications [105]. Subsequently, ONT DRS was applied
to Escherichia coli full-length 16S rRNA, showing that ONT signals are sensitive to m7G andΨ via
corresponding errors in basecalling [106]. The first study applying ONT DRS to the human
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Box 4. Bioinformatics of Nanopore Sequencing

To obtain the sequences of the input molecules, the electrical signal must be translated into individual bases; a process
called basecalling. MinKNOW has a built-in basecaller for 'live' basecalling during the sequencing run, or the user can turn
this function off and instead basecall the raw files later.

Early versions of the sequencers from ONT used a basecaller that ran on the Metrichor™ cloud-based platform. This
basecaller used a hidden Markov model (HMM), a probabilistic model for decoding an unknown sequence of 'states'
based on an observed sequence. For nanopore basecalling the unknown states were k-mers of the DNA or RNA mole-
cule, and the observed sequence was a segmentation of the raw signal. This approach to basecalling has been super-
seded by neural network-based approaches (reviewed in [137]), as comprehensively benchmarked by Wick and
colleagues [134].

The latest ONT basecaller, called Guppy, uses graphical processing units (GPUs) to accelerate this crucial signal-to-se-
quence step to facilitate high-throughput sequencing experiments. Guppy has two different basecalling modes – a 'fast'
basecaller that aims to keep up with live data generation, and a 'high-accuracy' model that lowers the sequencing error
rate at the expense of longer processing times. Guppy (V3.4.5) has a basecalling error rate of 4–6% for DNA and
7–12% for RNA in high-accuracy mode [134]. Guppy’s latest version can also directly call modified bases in DNA (m5C
and m6A), although only in limited contexts (CpG and CCWGG for m5C, and GATC for m6A). Both HMM and recurrent
neural network (RNN) models depend on training signals, and the performance of a basecaller therefore depends on hav-
ing a good training data set. With each update to the basecaller and further reduction in error rates, it is possible to re-
basecall old datasets as long as the raw signal files are retained.
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transcriptome showed that m6A could be detected within the methylation consensus motif
(GGACU) in the human cell line GM12878. As a proof of concept, the study showed a raw
ONT signal difference at a known m6A site (chr19:3,976,327, GRCh38 human genome refer-
ence) in eukaryotic elongation factor 2 (EEF2) transcripts compared with an in vitro transcribed
unmodified transcript. The study then identified 86 genes that showed signal differences at the
sameGGACU site between different transcripts of the same gene [107]. The ONT software pack-
age Tombo can also identify modified bases in RNA based on signal deviations. This has been
used to call m5C methylation patterns in the viral RNA of human coronavirus [108]. These initial
studies provided the first evidence that ONT DRS sequencing is sensitive to RNA modifications
and thus might be used for transcriptome-wide mapping of epitranscriptomic marks.

Although direct RNA sequencing holds a great promise for the identification of RNAmodifications
at single-base resolution, the challenge, however, lies in the interpretation of raw signals corre-
sponding tomodified and unmodified base sequence contexts. Currently available computational
algorithms to map RNAmodifications using ONT DRS datasets are either based on modification-
induced basecalling errors (differential error calling) or machine-learning models that look at differ-
ences in raw signal levels. Both approaches generally require matching low- and high-
modification datasets, such as lack-of-function mutants for METTL3 [109,110], in vitro synthe-
sized RNA [105,109,111], or reverse transcribed RNA (cDNA) [112]. In addition, most studies
generally use antibody-based data, known modified sites, and/or and filtering for known motifs
(such as the DRACH motif for m6A) to refine and/or validate results [109,111–113].

Differential Error Calling
The first category of algorithms to call RNA modifications from ONT DRS reads operates on the
assumption that RNA modifications cause a deviation of ONT signal that results in bases being
miscalled. Thesemodification-induced calling errors are used as a surrogate to mapmodified nu-
cleotides on transcripts [112]. For instance, ELIGOS (epitranscriptional landscape inferring from
glitches of ONT signals) works on the percentage error of specific bases (%ESB) between native
RNA sequencing data and cDNA data for the same sample (because modifications are removed
from cDNA), and has been used to identify rRNA methylation sites in E. coli, yeast, and human
cells [112]. However, this approach is subject to differences arising from the different nanopore
motors, sequencing directions, and basecalling models between RNA and cDNA.
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An elegant approach to identify m6A-induced ONT sequencing errors used matched sets of syn-
thetic RNA molecules fromMALAT1 lncRNA with and without m6A at known locations. This ap-
proach was then extrapolated to use the differences in error calling between wild-type, METTL3-
defective mutant, and METTL3 genetic-rescue Arabidopsis to identify m6A sites transcriptome-
wide [109]. In the same system, m6A sites were further analyzed by miCLIP to show that 66%
of called nanopore DRS differential error sites fall within miCLIP peaks [109]. A similar approach
was taken to identify base-resolution and isoform-specific m6A sites in adenovirus RNA by com-
paring DRS errors in m6A wild-type and METTL3 knockout datasets [113].

Likewise, the algorithm EpiNano was trained on 100% methylated or unmethylated synthetic
RNA sequences to predict m6A modifications based on sequencing errors [111]. EpiNano pre-
dicted m6A sites with 90% accuracy in synthetic reads and 87% accuracy in yeast in vivo, but
prediction accuracy depends on the extent of methylation. The prediction accuracy of EpiNano
was validated on DRS reads from a yeast METTL3 knockout strain lacking m6A modifications.

Machine-Learning Methods Using DRS Raw Signals
The second category of methods to identify RNA modifications is based on training machine-
learning models using modifications identified by antibody-based methods. These maps are
then used to develop modification-specific basecallers for direct RNA-sequencing data to predict
modifications [110]. This approach was used to develop MINES (m6A identification using
Nanopore sequencing), a random forest classifier trained on miCLIP m6A sites within DRACH
motifs in HEK293T cells. MINES was able to predict m6A miCLIP modification sites with 80% ac-
curacy and identified a significant set of previously unannotated sites. The authors validated
MINES by showing the sensitivity of identified sites to METTL3 knockdown and ALKB5 overex-
pression. Importantly, sites identified by miCLIP, but not predicted by MINES, did not show sen-
sitivity of METTL3 or ALKB5 manipulations, as would be expected from false-positive miCLIP
sites [110].

It is worth noting that MINES extracts raw DRS signals using Tombo, which does not support
spliced mapping and only allows assessment of sites in the 3′-UTRs of transcripts. Comparing
the performance of Tombo with the error-based algorithm EpiNano revealed that ~50% of
reads were discarded by Tombo and that EpiNano achieved higher accuracy than Tombo
(87% vs 59%), but reduced sensitivity (32% vs 59%) [111].

Nanocompore, another machine-learning algorithm, uses Nanopolish to align raw DRS signals to
the reference genome, which allows spliced alignment of RNA reads [114]. Nanocompore runs
an automated pipeline for data preprocessing including basecalling, alignment using Minimap2,
and signal alignment using Nanopolish. It operates by comparing DRS signals between high-
and low-modification samples to detect transcriptome-wide m6A modification events. The au-
thors stipulate that, given an appropriate low-modification control, Nanocompore can be used
to detect a large variety of different RNA modifications [114].

Current Limitations of ONT RNA Modification Prediction
The methods mentioned here demonstrate that ONT sequencing harbors the potential to revolu-
tionize the transcriptome-wide prediction of RNA modifications. However, each of the available
solutions currently has limitations. Differential error algorithms require matched low- and high-
modification samples with identical genetic backgrounds because differences in DNA sequence
(e.g., SNPs) will result in errors that are unrelated to RNAmodifications. This limits the current use
of these algorithms to systemswhere a low-modification control can be obtained on the exact ge-
netic background of the sample of interest.
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Figure 2. Nanopore Sequencing. (A) Schematic of the library preparation procedure for Nanopore direct RNA sequencing. PolyA RNA is enriched using oligo-dT
primers and a reverse transcription (RT) adaptor is ligated. After second-strand synthesis, the sequencing adapter RMX, which is preloaded with motor protein and
tether protein, is then ligated. (B) Schematic of Nanopore direct RNA sequencing. The motor protein feeds the RNA molecule through the nanopore in the 3′–5′
direction. The five bases passing through a nanopore cause a characteristic disruption in the current which is stored as raw signal. (C) A current trace (squiggle plot)
showing the raw signal generated by nanopore sequencing of a single mRNA molecule. Leader and adapter sequences are shaded yellow and pink, the polyA tail is
shaded green, and the mRNA body is shaded orange. The inset (top right) illustrates how the nucleotide sequence is inferred from the raw current trace originating
from a sliding window of five nucleotides (k-mer). Machine-learning algorithms are then used to calculate the probability that a signal corresponds to a given k-mer,
thus inferring the nucleotide sequence from the calculated probabilities. (D) The two features recorded by Oxford Nanopore Technologies (ONT) sequencers are the
current signal (in arbitrary units, AU) and the time that a given k-mer takes to transverse the pore (signal length, retention time or 'dwell'). The scatter plot depicts the
distribution of mean current and signal length for 100 reads each in a different sequence context of the unmodified k-mer CACCC (blue) and the modified k-mer
CAm5CCC (orange, identified by parallel bisulfite sequencing, where m5C is 5-methylcytosine). Note that, despite an identical k-mer, the signal varies as a result of
different measurements and intrinsic noise in different reads, and possibly also by the different surrounding sequence of a given k-mer. This variability can be
represented as a signal density plot for each k-mer, depicted in the top-right inset (density distribution for raw current signal). RNA modifications can affect raw current
reads as well as signal length, resulting in a shift in signal distributions (e.g., divergence between blue and orange). However, these signal shifts can be modest, as
shown by the largely overlapping density plots for CACCC and CAm5CCC, making accurate prediction of modified bases a computational challenge. Plots were generated
with Sequoia, an interactive visual analytics platform for interpretation and feature extraction from ONT sequencing datasets [138].
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Outstanding Questions
Which nucleotides are modified in
mRNA?

What fraction of mRNAs carry modified
nucleotides?

Why do only a fraction of mRNAs carry
a specific nucleotide modification?

Are mRNA modifications dynamic?

Do mRNAs carry multiple different
modifications, and is there a
modification code?

How do mRNA modifications
contribute to development and cause
disease?
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The prediction of RNA modifications in ONT sequencing is further complicated by the fact that
each sequencing signal originates from a group (k-mer) of 5 nt rather than from a single nucleo-
tide. Moreover, the signal for each k-mer is variable, leading to a distribution of possible signals
(Figure 2D). RNA modifications can result in a shift in the signal distribution for a given k-mer,
and this shift can be used to predict the presence of modifications. However, these shifts can
be relatively small, and the distribution of signals generated by modified k-mers largely overlaps
with the distribution of unmodified k-mers (Figure 2D).

Modification prediction platforms that employ machine-learning models depend on the quality of
the training datasets (miCLIP or similar), and are thus limited by the quality of these datasets. Cur-
rently >160 RNA modifications have been reported in the literature [115]. Generating training
models that encompass these diverse modifications will require very large and complex training
datasets.

Concluding Remarks and Future Directions
The emerging field of epitranscriptomics has brought global insights into the topography of nucle-
otide modifications in mRNA and their impact on gene expression. The prevalent links of RNA
modifications to lifestyle diseases such as obesity, as well as to many neurological diseases
and cancer, have made RNAmodification enzymes prime targets for the pharmaceutical industry
in employing their classic repertoire to develop inhibitors. To better understand the biological roles
of RNA modifications, and how to pharmacologically interfere with them, accurate
epitranscriptomic maps are required.

Recent technical advances at many levels have increased the catalog of modifications in mRNA
and promise to overcome technical challenges to detect mRNA modifications with high confi-
dence to address key questions about their role in the regulation of gene expression. However,
it is important to consider the inherent limitations of antibody- and chemical conversion-based
methods to detect modifications that are generally not abundant. The reliability of results can
be improved by higher sample sizes (most studies currently only report 2–3 replicates), increased
sequencing depth [70], and by considering variability due to different reaction conditions, anti-
bodies, and enzymes [116]. A major improvement in obtaining higher accuracy in mapping mod-
ifications is to include a knockout of the writer and verification of specific targets by orthogonal
methods.

One big open question concerns whether the variability observed in global levels of mRNA mod-
ifications reflects limitations in current methods, cell-to-cell variability, or cell type-specific features
(see Outstanding Questions). In addition, current methods can only assess a single type of mod-
ification at a time, but it is likely that a combination of modifications is present on a given transcript.
Thus, to truly understand how mRNAmodifications regulate gene expression, it will be important
to develop methodologies to determine the combinations of modifications that are present in in-
dividual transcripts and from small amounts of input such as individual cells.

Single-molecule sequencing by ONT now promises the technological advances to eventually
measure low and dynamic changes in mRNAmodifications. Moreover, ONT will permit combina-
tions of modifications to be assessed on single transcripts in the near future. To address key
questions about the function of modifications, single-cell RNA sequencing will inevitably be re-
quired. Because direct RNA sequencing by ONT excludes cDNA amplification steps, sequencing
mRNAs from single cells presents a particular challenge, but solutions to this conundrum could
include using smaller devices and more replicates.
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For ONT to become the leading technology, further improvements at multiple levels are required,
with a particular focus on the major challenge in computational interpretation of sequencing sig-
nals. Several machine-learning algorithms have recently been developed to predict modifications
from ONT data. These algorithms are generally random forest models that predict modified sites
based on a combination of RIP-seq or ONT training data, but they also incorporate sequencemo-
tifs and other sequence features that have been developed from RIP-seq data [117–120]. The
main limitation here is that the ability of computational algorithms to predict modifications relies
on the quality of the training data. High false-positive rates in RIP-seq data and high rates of se-
quencing errors in ONT data thus limit the accuracy of such algorithms.

Given rapid technological progress, we anticipate soon being able to more comprehensively un-
derstand how the modification of nucleotides is dynamically instructed to impact on mRNA pro-
cessing, and how its misregulation results in human disease.
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