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Due to the wide applications, spreading processes on complex networks have been intensively studied.
However, one of the most fundamental problems has not yet been well addressed: predicting the evolution of
spreading based on a given snapshot of the propagation on networks. With this problem solved, one can
accelerate or slow down the spreading in advance if the predicted propagation result is narrower or wider
than expected. In this paper, we propose an iterative algorithm to estimate the infection probability of the
spreading process and then apply it to a mean-field approach to predict the spreading coverage. The
validation of the method is performed in both artificial and real networks. The results show that our method
is accurate in both infection probability estimation and spreading coverage prediction.

M
any complex systems can be characterized by networks in which nodes represent the individuals and
edges represent the interactions. Examples include citation networks1,2, communication networks3,
transportation networks4, cyber networks5, financial networks6, just to name a few. The study of complex

networks has therefore become a common focus of many branches of science. So far, great efforts have been made
to understand and predict the evolution of networks. For instance, link prediction intends to identify which pair
of nodes will be connected in the future7,8. Trend prediction aims at predicting the future degree of nodes2,9.
However, most of the related works focus on the structural aspect of networks. Even though dynamical processes
commonly take place in real networks10, the prediction of the evolution of dynamics on networks has been
seriously overlooked.

Spreading is an important kind of dynamics which has been applied to model many real processes on network
such as spreading of disease11–14, propagation of news and rumors15–18, cascading failure of power grid19, and so on.
In this paper, we focus on predicting the evolution of spreading. Solving this problem is very meaningful from the
practical point of view. In the context of disease spreading, one can immunize nodes and links in advance to
prevent the virus from covering the whole network if the predicted coverage of the spreading is very wide13,20–24.
On the other hand, the propagation of some important information can be accelerated by adding more spreading
seeds beforehand if the predicted coverage of the propagation is very narrow25–30.

In the cases where prediction is needed, the known information of the spreading process is usually very limited,
especially in the early stage of the spreading31,32. Similar to the ref. 33, we assume in this paper that only a snapshot
of the spreading result is given. In the literature, the prediction of spreading is mostly based on the time series
analysis34. The closest studies based on spreading snapshot are refs. 35, 36 where the observed snapshot is used to
identify the initial spreader of a certain disease or information. In the prediction of spreading, the essential
problem is how to accurately estimate the infection probability from the observed snapshot. One can consider the
most straightforward method in which the infection probability is estimated based on each infected node i as mi 5

mi/Mi where mi and Mi are respectively the infected number and the total number of i’s neighbors. By averaging mi

over all the infected nodes in the network, one can estimate the infection probability of the spreading. This
method is referred as the ‘‘benchmark’’ method in this paper. However, the benchmark method may lead to
serious overestimation of the infection probability. As this method doesn’t distinguish which node spreads the
virus to the infected node, each infected node may be used more than once in mi 5 mi/Mi for different i (see the
illustration in Fig. 1).

To solve this problem, we develop an iterative algorithm for estimating the infection probability (IAIP for
short) in which the problem of multiple use of the infected nodes is avoided. We validate the IAIP by simulating
the Susceptible-Infected-Removed (SIR) model37 in both artificial and real networks. The results show that our
method can significantly outperform the benchmark method. Moreover, we study the case in which the iterative
process is removed from our method (denoted as IAIP0). The results show that IAIP0 performs much less
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effectively than IAIP, indicating the crucial role of the iterative pro-
cess. When the obtained infection probability is used in predicting
the future spreading coverage, a much more accurate prediction can
be achieved by using IAIP.

Results
We consider a network with N nodes and E links. The network is
represented by an adjacency matrix A, where Aij 5 1 if there is a link

between node i and j, and Aij 5 0 otherwise. To simulate the spread-
ing process on networks, we employ the Susceptible-Infected-
Removed (SIR) model37. In a network, we randomly select one node
as the initial spreader. The virus from this node will infect each of this
node’s susceptible neighbors with probability m, namely the infection
probability. After infecting neighbors, the node will immediately
become recovered (i.e., the recovering probability is 1). The new
infected nodes in next step will infect their neighbors as the initial
node. The spreading will be ended when there is no more infected
node in the network. If it is not specially stated, we take the snapshot
after five steps of spreading from the initial node as the known
information.

Epidemic spreading is a stochastic process. Given an infection
probability and an initial infected node, the spreading results can
vary significantly in different realizations. An observed snapshot
may be corresponding to many different m values. Therefore, one
cannot use the deterministic models to exactly infer the m value from
the spreading snapshot. In this paper, we propose an iterative
method to infer the m value. Though the inference is not exact, we
will show below the expected value of the obtained m is very close to
the real infection probability, with a relatively small dispersion.

We first test the IAIP (see the Method section for description) in
artificial networks: Watts-Strogatz (WS) networks38 and Barabási-
Albert (BA) networks39. In Fig. 2(a) and (b), we show the estimated
infection probability from the benchmark, IAIP0 and IAIP methods
me as a function of the true infection probability mr. Obviously, if a
method can accurately estimate the infection probability, the curve of
this method in Fig. 2(a) and (b) should overlap well with me 5 mr. One
can immediately notice that the curve of the IAIP locates around me

5 mr while the curve of the benchmark method is significantly higher
than that, indicating a serious overestimation of the infection prob-

Figure 1 | A snapshot of the spreading result in a toy network. The blue

nodes are susceptible (marked by S), yellow nodes are infected (marked by

I) and pink nodes are recovered (marked by R). Since each node inside the

shade ellipse is connecting to two R nodes, one cannot distinguish which R

node actually infected these two I nodes in the previous step. In the

benchmark method, these two I nodes will be used when estimating the

infection probability based on each R node, which finally leads to an

overestimation of the infection probability.

Figure 2 | The estimated infection probability me from different methods as a function of the true infection probability mr in (a) WS and (b) BA networks.

me 5 mr is plotted with dashed lines to guide eyes. The distributions of me in (c) WS and (d) BA networks are shown. The error bars in (a)(b) and the

distribution in (c)(d) are obtained by estimating the infection probability me under 100 spreading realizations from each node in the network. The

network parameters are N 5 4000, Ækæ 5 10, p 5 0.4 for WS networks, and N 5 4000, Ækæ 5 10 for BA networks.
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ability in the benchmark method. Moreover, without the iterative
process the curve of the IAIP0 is lower than me 5 mr. In Fig. 2(c) and
(d), we fix an infection probability and investigate the disparity of me

from the IAIP under different choice of initial spreaders (each node is
selected once as the initial spreader). The distribution of me is rather
narrow with Æmeæ < mr, indicating the stable performance of the IAIP.
Moreover, the deviation of me is much smaller in BA networks than
that in WS networks. We thus conclude that IAIP performs more
stably in the networks with heterogenous degree distribution which
can be widely observed in real systems.

In order to quantify the accuracy of the infection probability

estimation, we define an error rate metric as d~
me{mrj j

mr
.

According to the definition, a smaller d indicates a more accurate
estimation. We then investigate how the network topology affects the
value of d. For WS networks, we study the effect of the rewiring
parameter p on d. For BA network, we consider a variant of it in
which each new node i connect to the existing node j with probability
pi 5 (ki 1 B)/Sj(kj 1 B)40,41. This modified model allows a selection
of the exponent of the power-law scaling in the degree distribution
p(k) , k2c, with c 5 3 1 B/m in the thermodynamic limit. With this
network, we study the effect of B on d. Related results on the WS and
the modified BA networks are shown in Fig. 3. By comparing
fig. 3(a)(b)(c), one can immediately see that when p is small, d of
IAIP can be approximately 10 times smaller than that in the bench-
mark method and 3 times smaller than that in IAIP0. Though d in
both methods decreases with p, this effect is much stronger in the
benchmark method. The local clustering effect of the WS network is
destroyed when p is large, which makes the infected nodes adjacent to
each other less frequently. The problem of multiple use of the
infected nodes in mi 5 mi/Mi becomes less serious in the benchmark
method accordingly. However, note that in real social networks the
clustering coefficient is usually very high, which indicates a low
accuracy of the benchmark method in real applications.
Fig. 3(d)(e)(f) show the results of the benchmark, IAIP0, IAIP meth-

ods on the modified BA networks. One can see that IAIP still enjoys
the smallest d. Moreover, d of the benchmark method decreases with
B in the modified BA networks. On the contrary, the performance of
the IAIP method doesn’t strongly depend on the network structure,
indicating the high reliability of the IAIP method.

In all the analysis above, we consider the spreading results at t 5 5
as the observed snapshot. As in real cases the snapshot at hand may
be from different spreading stage, it is therefore interesting to study
the relation between d and t. In Fig. 4, we report the dependence of d
on t. Fig. 4(a) and (b) are the results of the IAIP in WS and BA
networks, respectively. One can see that there is an optimal d when
tuning t. In order to understand this phenomenon, we show the
number of infected nodes NI versus the spreading step t in
Fig. 4(c) and (d). Consistent with previous results in the literature,
we observe here that NI first increases then decreases with t.
Interestingly, the optimal t* for d is the same as the t where NI

achieves its maximum. When t is large, NI is very small and the
spreading is more or less at its final stage. In this situation d of
IAIP is relatively high. However, this is not a problem in practice
since usually we only need to predict the future spreading coverage
when t is small. We also check the dependence of d on t in the
benchmark method. We observe that d quickly increases with t.
This is because the risk of overestimation of the infection probability
becomes more serious when the virus covers a large part of the
network.

We further test the IAIP method in some large-scale real networks.
Both undirected and directed networks are considered: Cond-mat
(undirected scientific collaboration network)42, Youtube (undirected
online users friendship network)43, EmailEU (directed email com-
munication network)44, Delicious (directed online user friendship
network)45. In Cond-mat, EmailEU and Delicious, the real infection
probability is set as mr 5 0.2, and in Youtube, it is set as mr 5 0.05. In
each realization, we randomly pick a node from the network and
apply the benchmark, IAIP0 and IAIP methods on the spreading
snapshot at t 5 5. We calculate the error rate d after the me is

Figure 3 | The dependence of the error rate d on p in WS networks for the (a) benchmark, (b) IAIP0 and (c) IAIP methods. The dependence of

the error rate d on B in the modified BA networks for the (d) benchmark, (e) IAIP0 and (f) IAIP methods. In all artificial networks, the network size is

N 5 4000 and average degree is Ækæ 5 10. The mean values and error bars are obtained by estimating the infection probability me under 100 spreading

realizations from each node in the network.
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obtained. The mean error rate Ædæ of each method is finally obtained
by randomly selecting 1000 initial nodes and simulating 100 spread-
ing realizations from each of these initial nodes. Results on the real
networks are reported in table 1. Consistent with the results in arti-
ficial networks, the IAIP method enjoys a much smaller error rate
than the IAIP0 and benchmark methods.

Accurately estimating m can lead to many applications, here we are
mainly interested in predicting the spreading coverage based on the
me. At the mean-field level, the dynamics of the SIR model in complex
networks can be described by differential equations as46

dSk tð Þ
dt

~{mkSk tð ÞH tð Þ,

dIk tð Þ
dt

~{Ik tð ÞzmkSk tð ÞH tð Þ,

dRk tð Þ
dt

~Ik tð Þ,

ð1Þ

where Sk(t), Ik(t) and Rk(t) are the density of susceptible, infected, and
removed nodes of degree k at time t, respectively. According to the
definition, Sk(t) 1 Ik(t) 1 Rk(t) 5 1. The factor H(t) represents the
probability that any given link points to an infected node and is given
by

H tð Þ~
P

k kP kð ÞIk tð Þ
kh i , ð2Þ

where P(k) is the degree distribution and Ækæ is the average degree of
the network. In order to predict the coverage at time t 1 1, one can
follow

NS tz1ð Þ~NS tð ÞzdNS tð Þ

~NS tð Þ{Nm
X

k

kP kð ÞSk tð ÞH tð Þ,

NI tz1ð Þ~NI tð ÞzdNI tð Þ

~Nm
X

k

kP kð ÞSk tð ÞH tð Þ,

NR tz1ð Þ~NR tð ÞzdNR tð Þ~NR tð ÞzNI tð Þ:

ð3Þ

The equation (3) can be iteratively used to predict the spreading
coverage in longer term, namely t 1 m. We refer this method as
the mean-field (MF) prediction method. From equation (3), one
can see that the essential parameter determining the prediction accu-
racy is m. We thus study the prediction accuracy when me of the

Figure 4 | The dependence of the estimation accuracy d of the IAIP on the time of the snapshot t in (a) WS and (b) BA networks. (c) and (d) are

respectively the number of infected nodes NI versus the spreading step t in WS and BA networks. The network parameters are the same as those in Fig. 2.

The mean values and error bars are obtained by simulating 100 spreading realizations from each node in the network.

Table 1 | Basic structural properties (network size N, edge number E) and the mean error rate Ædæ of the benchmark, IAIP0 and IAIP methods
in real networks

Network N E Ædæbenchmark dh iIAIP0
ÆdæIAIP

Cond-mat 27,519 116,181 2.0678 0.3513 0.0957
EmailEU 265,214 418,956 3.3186 0.3999 0.0245
Delicious 582,377 1,679,090 1.4066 0.3519 0.1465
Youtube 1,134,890 2,987,624 8.2508 0.2479 0.0878

www.nature.com/scientificreports
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benchmark, IAIP0 and IAIP methods are used. The results in Fig. 5
show that the mean-field predictors with both IAIP0 and IAIP meth-
ods are close to the true evolution.

Besides the mean-field model, we have considered some more
realistic models, such as the pair approximation model47–49 and
moment closure approximation model50. The main difference
between the mean-field and pair approximation is that the former
(latter) approximates high-order moments in term of first (second)
order ones. For the moment closure approximation, it can incorp-
orate the structure of the network into the model and allows for the
definition of the triples in terms of pairs. We applied the estimated m
value to the pair approximation models47,48, and find consistent
results to the mean-filed case, i.e., the prediction based on IAIP0

and IAIP methods is very close to the true evolution.

Discussion
Prediction in complex networks has always been an important
research topic. Though many related researches have been done,
most of them focus on structural aspects such as link prediction
and node popularity prediction. The problems of estimating infec-
tion probability from a given spreading snapshot and accordingly
predicting the spreading results are very important, with many
potential applications in real systems. However, little has been done
in this research direction. In this paper, we first design an iterative
algorithm to estimate the spreading infection probability from an
observed spreading snapshot. The simulation in both artificial and
real networks shows that our method enjoys a high accuracy in
estimating the spreading infection probability. Finally, the estimated
infection probability is applied to a mean-field method for predicting
the evolution of the spreading coverage.

In this paper, we consider the basic SIR model in which the recov-
ery probability is set as b 5 1. The infectious period is one time-step.
We also investigate the more complicated case where b , 1. Our
model cannot be directly applied to estimate the parameter b.
However, in this case the m value obtained from our method is
actually corresponding to the effective infection probability, i.e. meff

5 m/b. We observe that the estimation of meff becomes less accurate
when b is smaller. In fact, the situation of b , 1 is very complicated,
which requires some new method directly estimating m and b.
Related research in this direction is an interesting extension in the
future.

Some more issues remain still open. In this paper, we focus on the
SIR model, it would be interesting to examine the proposed iterative
method in some other spreading models such as SI, SIS. Moreover,
the mean-field prediction method in this paper can only predict the
width of the spreading. A more interesting and important issue
would be predicting which nodes will be infected in the future.
Besides spreading, there are many other dynamical processes on

networks such as synchronization and percolation51,52. We hope
the method and results in this paper can inspire some prediction
methods for other dynamical processes.

Methods
We now describe the iterative algorithm for estimating the infection probability (the
IAIP method). In a snapshot of the spreading results, we denote the number of
infected nodes as NI, the number of susceptible nodes as NS and the number of
recovered nodes as NR. According to the definition, NS 1 NI 1 NR 5 N. The infection
probability can be calculated as

m~
NRzNIP

i [ R ki{mið Þ , ð4Þ

where mi is the number of already infected nodes (both I and R nodes) among i’s
neighbors when i tries to infect other nodes.

Apparently, the exact value of mi cannot be directly extracted from the snapshot.
One can estimate mi by its expected value

�mi~
XMi

l~1

l:p mi~lð Þ~
XMi

l~1

l:
m: 1{mð Þl{1

PMi
q~1 m: 1{mð Þq{1

~

PMi
l~1 l:m: 1{mð Þl{1

1{ 1{mð ÞMi
,

ð5Þ

where Mi is the total number of I and R nodes among i’s neighbors in the observed
snapshot.

In the equations above, one can see that m and �mi depends on each other. They are
expected to respectively approach their true values during the iterations. In the

simulation, we set the initial �mi~0, such that m0~ NRzNIð Þ
.X

i [ R
ki . The eqs. (4)

and (5) are then iterated until the change of the difference

D~
m{m’j j

m
, ð6Þ

in two successive steps is less than a small threshold of 1024.
In this paper, we consider also the performance of the above method without the

iterative process, denoted as the IAIP0 method. It simply calculates the m by eq. (4)
without updating �mi from eq. (5), i.e. directly setting �mi~0.

1. Lehmann, S., Lautrup, B. & Jackson, A. D. Citation networks in high energy
physics. Phys. Rev. E 68, 026113 (2003).

2. Wang, D., Song, C. & Barabási, A.-L. Quantifying long-term scientific impact.
Science 342, 127–132 (2013).

3. Onnela, J. P. et al. Structure and tie strengths in mobile communication networks.
Proc. Natl. Acad. Sci. USA 104, 7332–7336(2007).

4. Banavar, J. R., Maritan, A. & Rinaldo, A. Size and form in efficient transportation
networks. Nature 399, 130–132 (1999).

5. Faloutsos, M., Faloutsos, P. & Faloutsos, C. On power-law relationships of the
internet topology. Comput. Commun. Rev. 29, 251–262 (1999).

6. Garas, A., Argyrakis, P., Rozenblat, C., Tomassini, M. & Havlin, S. Worldwide
spreading of economic crisis. New J. Phys. 12, 113043 (2010).

7. Liben-Nowell, D. & Kleinberg, J. The link-prediction problem for social networks.
J. Am. Soc. Inf. Sci. Tec. 58, 1019–1031 (2007).
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30. Chen, D.-B., Gao, H., Lü, L. & Zhou, T. Identifying influential nodes in large-scale
directed networks: the role of clustering. PLoS ONE 8, e77455 (2013).

31. Vojnovic, M. & Proutiere, A. Hop limited flooding over dynamic networks. Proc.
IEEE INFOCOM, 685–693 (2011).

32. Wu, Y., Deng, S. & Huang, H. Hop limited epidemic-like information spreading in
mobile social networks with selfish nodes. J. Phys. A: Math. Theor. 46,
26510(2013).

33. Keeling, M. J., Brooks, S. P. & Gilligan, C. A. Using conservation of pattern to
estimate spatial parameters from a single snapshot. Proc. Natl. Acad. Sci. USA 101,
9155C9160 (2004).

34. Dorogovtsev, S. N., Goltsev, A. V. & Mendes, J. F. F. Critical phenomena in
complex networks. Rev. Mod. Phys. 80, 1275 (2008).

35. Pinto, P. C., Thiran, P. & Vetterli, M. Locating the Source of Diffusion in Large-
Scale Networks. Phys. Rev. Lett. 109, 068702 (2012).

36. Brockmann, D. & Helbing, D. The hidden geometry of complex, network-driven
contagion phenomena. Science 342, 1337 (2013).

37. Anderson, R. M., May, R. M. & Anderson, B. Infectious diseases of humans:
dynamics and control (Oxford Univ. Press, Boston, 1992).

38. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks.
Nature 393, 440–442 (1998).

39. Barabási, A. L. & Albert, R. Emergence of scaling in random networks. Science 286,
509–512 (1999).

40. Albert, R. & Barabási, A. L. Statistical mechanics of complex networks. Rev. Mod.
Phys. 74, 47–97 (2002).

41. Dorogovtsev, S. N. & Mendes, J. F. F. Evolution of networks. Adv. Phys. 51,
1079–1187 (2002).

42. Newman, M. E. J. The structure of scientific collaboration networks. Proc. Natl.
Acad. Sci. USA 98, 404–409 (2001).

43. Yang, J. & Leskovec, J. Defining and evaluating network communities based on
ground-truth. IEEE 12th International Conference on Data Mining, Brussels,
Belgium Belgium, pp. 745–754 (2012).

44. Leskovec, J., Kleinberg, J. & Faloutsos, C. Graph evolution: densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data 1, 2 (2007).
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networks with arbitrary k-core structure. Phys. Rev. E 88, 062820 (2013).

Acknowledgments
This work is supported by the National Natural Science Foundation of China with Grant
Nos. 61103109, 61003231 and 11105025, and by the Swiss National Science Foundation
(Grant No. 200020-143272). D.B.C. acknowledges the Tsinghua-Tencent Joint Laboratory
for Internet Innovation Technology.

Author contributions
D.-B.C. and A.Z. designed the research. D.-B.C. and R. X. performed the experiments, A.Z.
and D.-B.C. analyzed the data, A.Z., D.-B.C. and R.X. wrote the manuscript.

Additional information
Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Chen, D.-B., Xiao, R. & Zeng, A. Predicting the evolution of
spreading on complex networks. Sci. Rep. 4, 6108; DOI:10.1038/srep06108 (2014).

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International License. The images or other third party material in
this article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative
Commons license, users will need to obtain permission from the license holder
in order to reproduce the material. To view a copy of this license, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6108 | DOI: 10.1038/srep06108 6

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Title
	Figure 1 A snapshot of the spreading result in a toy network.
	Figure 2 
	Figure 3 
	Figure 4 
	Table 1 Basic structural properties (network size N, edge number E) and the mean error rate &lang;d&rang; of the benchmark, IAIP0 and IAIP methods in real networks
	References
	Figure 5 The predicted and real evolution of NI + NR in (a) WS and (b) BA networks.

