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Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that is characterized by synovial hyperplasia and
progressive joint destruction. The activation of RA synovial fibroblasts (SFs), also called fibroblast-like synoviocytes (FLS),
contributes significantly to perpetuation of the disease. Genetic and environmental factors have been reported to be involved
in the etiology of RA but are insufficient to explain it. In recent years, accumulating results have shown the potential role of
epigeneticmechanisms, including histonemodifications, DNAmethylation, andmicroRNAs, in the development of RA. Epigenetic
mechanisms regulate chromatin state and gene transcription without any change in DNA sequence, resulting in the alteration of
phenotypes in several cell types, especially RASFs. Epigenetic changes possibly provide RASFs with an activated phenotype. In this
paper, we review the roles of epigenetic mechanisms relevant for the progression of RA.

1. Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune inflam-
matory disease that results in progressive destruction of
articular cartilage and bone and is hard to treat effectively
[1]. RA is two- to fourfold more common in women than in
men and affects approximately 1% of the world’s population
[2]. The pathogenesis of this disease is not yet completely
understood as it likely has a complex, multifactorial etiology.
Anticitrullinated peptide/protein antibodies (ACPA) were
found to be autoantibodies specific for RA [3]. Citrullina-
tion is the posttranslational modification of arginine into
citrulline by peptidylarginine deiminases (PAD) [4]. Variable
citrullinated autoantigens that are recognized by ACPA,
such as keratin, filaggrin, fibrin/fibrinogen, vimentin, type
II collagen, cartilage oligomeric matrix protein (COMP),
and 𝛼-enolase, have been identified in RA [5–11]. However,
each of these autoantigens is present only in a particular
subset of RA patients, suggesting that RA is a syndrome,
not a disease. Because citrulline is a nonstandard amino

acid, the citrullination of specific antigens could promote the
generation of neoepitopes that are recognized byCD4+ Tcells
in RApatients. AutoreactiveCD4+ T cells have been observed
in certain animal models, such as adjuvant arthritis in rats
[12]. Since CD4+ T cells in RA synovial fluid are oligoclonal,
the CD4+ T cell activation process is thought to be antigen
driven [13, 14]. However, the oligoclonality of CD4+ T cells
has actually been demonstrated in only a few RA patients.
Therefore, the role of autoreactive CD4+ T cells in the
pathogenesis of RA is not yet entirely convincing.The degree
of macrophage infiltration into the synovium is correlated
with the degree of bone erosion in the affected joints in
RA [15]. CD5+ B cells in the synovium produce nonspecific
antibodies, such as IgM/IgG/IgA rheumatoid factors (RF)
[16, 17].This production is induced by interleukin- (IL-) 10 in
RA [18]. On the other hand, the production of ACPA requires
the help of CD4+ T cells.Thus, it is obvious that macrophages
and B cells play an important role in the pathogenesis of RA,
but the contribution of CD4+ T cells to their activation is still
controversial.The proinflammatory cytokines, such as tumor
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Figure 1: Epigenetic disorders induce the activation of rheumatoid
arthritis synovial fibroblasts (RASFs). Normal SFs are differentiated
frommesenchymal stromal or stem cells (MSCs) under normal epi-
genetic regulation in noninflammatory joints of healthy individuals.
The activation of SFs is caused by aberrant epigenetic changes in
inflammatory joints of RA.

necrosis factor 𝛼 (TNF𝛼), IL-1𝛽, and IL-6, are produced by
activated macrophages and stimulate the synovial fibroblasts
(SFs), also called fibroblast-like synoviocytes (FLS), that play
a critical role in the joint destruction that occurs in RA
[19].

In the present paradigm, it is presumed that RA is trig-
gered in genetically predisposed individuals by exposure to
environmental factors. Furthermore, environmental factors
are associated with epigenetic changes. Epigenetic regulation
has been the current focus of many studies because it is a
novel and attractive area. In this review, we summarize the
recent progress that has been made in the understanding of
diverse epigenetic mechanisms involved in the pathogenesis
of RA, with an emphasis on RASFs.

2. The Pathogenesis of RA

2.1. RASFs. The synovial lining layer of joints is two to three
cells thick and consists of SFs and synovial macrophages.
In RA, the lining layer undergoes dramatic hyperplasia and
increases to a density of 10 to 15 cells thick [20, 21]. At the

articular borders, the lining layer forms a pannus that invades
the adjacent articular cartilage and subchondral bone. The
sublining layer has fewer SFs and synovial macrophages in
a loose tissue matrix. The sublining layer also undergoes
dramatic hyperplasia and is infiltrated with immune cells
[22]. Synovial tissues were found to be enrichedwithmemory
CD45RO+ T cells, most of which were not activated T cells
but rathermaturememory T cells that exhibited an enhanced
capacity for transendothelial migration [23]. The expression
of chemokine receptor C-X-C motif chemokine receptor
4 (CXCR4) was highly expressed in synovial memory T
cells [24]. Synovial T cells are thought to be attracted
by chemokines and receive survival signals such as IL-7
and IL-15 [25, 26]. Since SFs maintain an activated and
aggressive phenotype with a tumor-like behavior in RA,
they play a central role in joint destruction and persistent
inflammation in RA [27]. RASFs show an increased capacity
to migrate and produce matrix-degrading enzymes, such as
matrix metalloproteinases (MMPs) and cathepsins, which
contribute to cartilage destruction. Their increased prolifer-
ation and resistance to apoptosis are controversial [20]. The
pannus formation is composed of infiltrating cells, such as
monocytes/macrophages, as well as RASFs. RASFs secrete
proinflammatory cytokines and chemokines that perpetuate
inflammation. In addition, RASFs produce receptor acti-
vator of nuclear factor-kappa B ligand (RANKL) and pro-
mote osteoclast differentiation, resulting in bone destruction
[28].

Understanding themechanisms underlying the activation
of RASFs may lead to the development of the most suit-
able RA therapy. Recent advances have suggested that not
only genetic and environmental factors, but also epigenetic
changes, are implicated in the pathogenesis of RA [29, 30].
Mesenchymal stromal or stem cells (MSCs) differentiate into
normal SFs under normal epigenetic regulation. The activa-
tion of SFs can be caused by altered profiles of gene expression
that result from epigenetic dysregulation in RA (Figure 1).

2.2. Genetic Factors in RA. Multiple lines of evidence have
revealed that genetic factors participate in the etiology of
RA. The pairwise concordance rate for RA was 12.3% in
monozygotic (MZ) twins and 3.5% in dizygotic (DZ) twins
in a Finnish population [31]. Another group showed that
the concordance rate for RA was 15.4% in MZ twins and
3.6% in DZ twins in a United Kingdom (UK) population
[32]. According to these twin studies, the concordance of
MZ twins was higher than that of DZ twins in RA. Analysis
of these studies showed that the heritability of RA was
65% in the Finnish group and 53% in the UK group [33].
The genetic contribution was not affected by sex, age, age
at onset, or disease severity. A family study demonstrated
that the standardized incidence ratio (relative risk [RR]) for
RA was 3.02 in the offspring of affected parents, 4.64 in
siblings, 9.31 in multiplex families, 6.48 in twins, and 1.17 in
spouses [34]. Serological studies reported that susceptibility
to RA was associated with certain human leukocyte antigen-
(HLA-) DRB1 alleles that contain conserved five-amino-acid-
sequence motifs QKRAA/QRRAA/RRRAA, termed shared
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epitope (SE) [35]. SE-codingHLA-DRB1 alleles includeHLA-
DRB1∗0401, ∗0404, and ∗0101 and are associated with RA
severity [36]. In addition, SE alleles are strongly associated
with the production of ACPA in RA [37]. Candidate gene
approaches, genome-wide association studies (GWAS), and
trans-ethnic GWAS meta-analyses have identified a number
of RA risk genes, such as HLA-DRB1, PTPN22, STAT4,
CCR6, TNFAIP3, PADI4, CD40, and FCRL3, many of which
are involved in the functions of immune cells, including T
cells, B cells, and macrophages [38, 39].

2.3. Environmental Factors in RA. It is undeniable that
genetic factors play an important role in the pathogene-
sis of RA; however, environmental factors also trigger the
development of this disease. For example, cigarette smoking
influences both the incidence and severity of RA in a dose-
dependent fashion and also increases the risk of ACPA
production [40]. The RR of RA by cigarette smoking is
about 1.8 [41]. However, smokers are subject to the develop-
ment of periodontitis. Porphyromonas gingivalis is a major
causative pathogen of periodontitis and expresses its own
unique enzyme, Porphyromonas gingivalis peptidylarginine
deiminase (PPAD), which has PAD activity and catalyzes
citrullination [42]. The periodontitis-induced citrullination
generates autoantigens that drive autoimmunity and induce
the production of ACPA in RA [43]. It is possible that
smoking-related periodontitis, but not smoking itself, is a
direct environmental trigger of the development of RA. On
the other hand, smoking has been reported to promote
citrullination in the lungs, mediated by PAD enzymes from
smoking-activated phagocytes [44, 45]. Smoking associated
inflammatory events in the lung are potential environmen-
tal triggers for both ACPA production and RA develop-
ment. Although the precise pathogenic effect of smoking
in RA remains unknown, several mechanisms, including
periodontitis-induced or lung inflammation-induced citrul-
lination, have been proposed to explain how smoking plays
an important role in RA pathogenesis. Molecular mimicry
as a result of Epstein-Barr virus (EBV), a ubiquitous virus,
may trigger RA [46], as antibodies against the EBV-encoded
proteins cross-react with RA-specific proteins [47, 48]. In
addition, EBV DNA loads in peripheral blood mononuclear
cells, saliva, and synovium increased in RA [49–51]. High
numbers of circulating EBV-infected B cells have been
observed in RA [52], and EBV-specific T cell function
was impaired in this disease [53]. Although several reports
have shown aberrant immune responses to EBV in RA, it
remains unknown whether these abnormalities are causative.
Estrogen enhances the immune response, whereas androgen
and progesterone suppress it [54]. Low androgen levels, high
estrogen levels, and a reduced ratio of androgen/estrogen
have been observed in male and female RA patients, and
androgen replacement therapy was shown to improve disease
activity in male RA patients [55]. Since vitamin D represses
the development of autoimmunity in experimental animal
models, it is expected to have immunomodulatory effects
[56]. A greater intake of vitamin D reduced the incidence
of RA in older woman [57]. Exposure to silica through the
respiratory tract increased the risk of developing RA [58].

3. Epigenetic Mechanisms

3.1. Chromatin and Epigenetic Mechanisms. In 1942, the
British developmental biologist ConradHalWaddington first
used the term “epigenetics” derived from the Greek word
“epigenesis” in his Principles of Embryology textbook. The
epigenetic landscape theory that he proposed described a
process in which gene regulation (e.g., mutations) modulates
development. Recently epigenetics has been defined as “a sta-
bly heritable phenotype resulting from changes in a chromo-
some without alterations in the DNA sequence” [59]. Epi-
genetic information is transmitted through either mitosis or
meiosis.

DNA is highly packaged into chromatin in the nucleus
of eukaryotic cells [60]. The basic subunits of the chromatin
are nucleosomes consisting of two copies each of the core
histone proteins H2A, H2B, H3, and H4; the DNA wrapped
around the core contains 146-147 base pairs. There are two
basic forms of chromatin structures: (1) euchromatin is an
open chromatin structure in which DNA-binding proteins,
such as transcription factors (TFs), are accessible to DNA,
resulting in active transcription; and (2) heterochromatin is a
condensed chromatin structure that lacks accessibility to the
transcriptional machinery, resulting in gene silencing.

Several epigenetic mechanisms, including posttransla-
tional histonemodifications, DNAmethylation, andmicroR-
NAs (miRNAs), determine the specific chromatin structure,
consequently influencing gene transcription without altering
the DNA sequence itself [61]. Chromatin structure in DNA-
regulating regions, such as promoters and enhancers, regu-
lates gene transcription by altering the accessibility for TFs.

3.2. Histone Modifications. Covalent posttranslational mod-
ifications in histone N-terminal tails, including acetylation,
methylation, ubiquitination, and phosphorylation, control
the chromatin state and gene transcription [62]. Eachmodifi-
cation has specific functions [63, 64]. Active histone markers
that are associated with euchromatin and gene activation
include acetylation ofH2A,H2B,H3 lysine 9 (H3K9), H3K14,
H4K5, and H4K16; methylation of H2BK5, H3K4, H3K36,
and H3K79; phosphorylation of H3 threonine 3 (H3T3), H3
serine 10 (H3S10), H3S28, and H4S1; and ubiquitination of
H2BK120. On the other hand, repressive histone markers
that are correlated with heterochromatin and gene repression
include methylation of H3K9, H3K27, and H4K20; ubiquiti-
nation of H2AK119; and sumoylation of H2AK126, H2BK6,
and H2BK7.

Among these modifications, acetylation and methylation
have been intensively studied. Histone acetyltransferases
(HATs) transfer acetyl groups to lysine residues, resulting
in gene activation, whereas histone deacetylases (HDACs)
remove acetyl groups, resulting in gene silencing [65].
Histone methyltransferases (HMTs) transfer methyl groups,
whereas histone demethylases (HDMs) remove methyl
groups [66]. HMTs andHDMs specifically catalyze particular
residues.The functions of histonemethylation are affected by
both the position of the residue and the number of methyl
groups. According to the histone code hypothesis, multiple
histonemodifications, acting in a combinatorial or sequential
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fashion on one or multiple histone tails, specify unique
downstream functions [67]. A complex combination of these
histone modifications is thought to regulate chromatin struc-
ture and gene transcription.

3.3. DNA Methylation. DNA methylation is a biochemical
process in which a methyl group is added to a carbon 5
position of a CpG dinucleotide and 5-methylcytosine (5mC)
is generated [68]. This process occurs in regions of clustered
CpG dinucleotides, known as CpG islands, which are typi-
cally located in the promoters of genes [69]. Approximately
70% of annotated gene promoters are correlated with CpG
islands [70]. A high level of DNAmethylation at CpG islands
inhibits binding of TFs and represses gene transcription,
whereas a low level is associated with an open chromatin
structure and active gene transcription [71]. Although some
CpG islands are located at a distance from promoters, they
can also affect gene transcription [72].

The process of DNA methylation is catalyzed by DNA
methyltransferases (DNMTs), including DNMT1, DNMT3a,
and DNMT3b, which use S-adenosylmethionine (SAM) as
the methyl donor [73]. DNMT1 maintains the DNA methy-
lation patterns through cell replication [74]. Specifically, it is
upregulated during the S phase of the cell cycle, is recruited to
DNA replication forks, andmethylates CpG sites on daughter
strands. On the other hand, DNMT3a and DNMT3b are de
novo methyltransferases and establish methylation patterns
in both unmethylated and hemimethylated CpG sites with
equal efficiencies [75].

Recent advances have revealed the process of active
DNA demethylation by the ten-eleven translocation (TET)
family of enzymes, including TET1, TET2, and TET3, which
are 𝛼-ketoglutarate- and Fe(II)-dependent dioxygenases and
catalyze the conversion of 5mC to 5-hydroxymethylcytosine
(5hmC) [76]. It has been demonstrated that TET pro-
teins contribute to the additional oxidation of 5hmC to 5-
formylcytosine (5fC) and 5-carboxylcytosine (5caC) [77].
An unmodified C is generated either through a replication-
dependent dilution of 5hmC or through the removal of 5fC
or 5caC by thymine DNA glycosylate- (TDG-) mediated base
excision repair [78].

3.4. miRNAs. miRNAs are short noncoding RNAs that are
19–25 nucleotides long and cause posttranscriptional and
posttranslational gene silencing [79].ThemiRNA sequence is
transcribed to long primary miRNA (pri-miRNA) of several
kb in length that are capped and polyadenylated by RNA
polymerase II and then processed by Drosha to form an
approximately 70-nucleotide hairpin precursor miRNA (pre-
miRNA) in the nucleus. The pre-miRNA is processed in
the cytosol by RNase III-type enzyme Dicer to a mature
miRNA duplex of approximately 22 nucleotides. The double-
stranded miRNA complex is associated with the RNA-
induced silencing complex (RISC), which is composed of
the transactivation-responsive RNA-binding protein (TRBP)
and Argonaute (Ago2). After the complementary strand is
removed from the RISC, functional miRNA binds to the 3-
untranslated region (UTR) of the messenger RNA (mRNA)
of a target gene and causes mRNA cleavage or translational

repression [80, 81]. Perfect binding between miRNA and the
mRNA target results in the Ago-catalyzed cleavage of the
mRNA strand, whereas imperfect binding leads to the repres-
sion of mRNA translation. Although to date approximately
1900 human miRNAs have been identified, most of their
target genes remain unknown.

3.5. Chromatin Structure-Based Regulation of Gene Transcrip-
tion. Epigenetic mechanisms regulate chromatin structure
and the sustained and distinct patterns of gene expression
through cell differentiation. Complex is the association
between chromatin structure and gene transcription. Analy-
ses of genome-wide profiles of histone methylation and gene
expression have demonstrated a general correlation between
histone methylation patterns and gene expression [82]. The
levels of trimethylation at H3K4 (H3K4me3) and at H3K27
(H3K27me3) are positively and negatively correlated with
gene expression, respectively.These correlations demonstrate
four distinct states: repressed, active, poised, and bivalent
[83, 84]. In the repressed state, the gene locus has a condensed
chromatin structure and gene transcription is repressed.
In the active state, the gene locus has an open chromatin
structure and gene transcription is active. In the poised state,
the gene locus has an open chromatin structure, similar to
the active state, but there is no active gene transcription
at resting. However, following activation, gene transcription
can be rapidly activated. Genes in the bivalent state contain
high levels of both active and repressive histone markers.The
chromatin structure can change to an open or condensed
state both through cell differentiation and upon activation.
The specific epigenetic landscape provides the chromatin
basis for distinct gene transcription.

4. Epigenetic Abnormalities in RASFs

4.1. Histone Modifications in RASFs. Aberrant histone modi-
fications have been shown to be involved in the activation of
RASFs (Table 1). An H3K27-specific HMT, enhancer of zeste
homologue 2 (EZH2), was highly expressed in RASFs and
induced by TNF𝛼 through nuclear factor-kappa B (NF-𝜅B)
and Jun kinase pathways [85]. Secreted fizzled-related protein
1 (SFRP1), an inhibitor of Wnt signaling, was identified as the
target gene and was associated with the activation of RASFs.
In addition, its expression was found to be associated with
specific histone markers in the promoter, such as H3K4me3
andH3K27me3. T-box transcription factor 5 (TBX5) is highly
expressed in RASFs [86]. Correspondingly, active histone
markers, including H3K4me3 and histone acetylation, were
increased in the TBX5 promoter of RASFs. Overexpression
of TBX5 altered expression of 790 genes, including IL-8,
C-X-C motif ligand 12 (CXCL12), and C-C motif ligand
20 (CCL20). It has been suggested that TBX5 is newly
identified as an inducer of important chemokines in RASFs.
MMP-1, MMP-3, MMP-9, and MMP-13, which have pivotal
roles in the pathogenesis of RA, are highly expressed in
RASFs [87]. Accordingly, the levels of H3K4me3 increased,
whereas those of H3K27me3 decreased in the MMP promot-
ers in RASFs. WD (tryptophan-aspartate) repeat domain 5
(WDR5) is a core subunit of complex proteins associatedwith
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Table 1: Abnormality of histone modifications in RASFs.

Epigenetic alterations Function References
Increase of H3K27me3 by upregulated EZH2 Decrease of SFRP1 involved in Wnt signaling inhibition [85]
Increase of H3K4me3, decrease of H3K27me3, and
increase of H3ac Increase of TBX5 involved in chemokine production [86]

Increase of H3K4me3 and decrease of H3K27me3 Increase of MMP-1, MMP-3, MMP-9, and MMP-13
involved in extracellular matrix degradation [87]

Increase of H3ac Increase of IL-6 involved in inflammation [88]
Decrease of HDAC activity and expression Histone hyperacetylation [89]
Increase of HDAC activity and expression Histone hypoacetylation [90]

Table 2: Abnormality of DNA methylation in RASFs.

Epigenetic alterations Function References
Global genomic hypomethylation and decrease of
DNMT1 protein expression Increase of 186 gene expressions [93]

Normal DNMT1 gene expression Decrease of DNMT1 gene expression after IL-1
stimulation [94]

Hypermethylation Decrease of DR3 involved in resistance to apoptosis [95]
Hypomethylation Increase of TBX5 involved in chemokine production [86]
Hypomethylation Increase of CXCL12 involved in inflammation [96]
Genome-wide differential methylation 1859 differentially methylated loci [97]
Genome-wide differential methylation 2375 differentially methylated loci [98]

SET1 (COMPASS) or COMPASS-like complexes that catalyze
H3K4 methylation, which is necessary for the generation of
H3K4me3. WDR5 knockdown reduced H3K4me3 as well as
the expression of MMP-1, MMP-3, MMP-9, and MMP-13 in
RASFs. IL-6 and soluble IL-6 receptor 𝛼 (sIL-6R𝛼) increased
the expression of MMP-1, MMP-3, and MMP-13, but not
MMP-9. IL-6-induced transcription factor signal transducer
and activator of transcription 3 (STAT3) were found to bind
to the MMP-1, MMP-3, and MMP-13 promoters, but not the
MMP-9 promoter. High expression of IL-6 was associated
with high levels of acetylation at H3 (H3ac) in the IL-
6 promoter in RASFs [88]. Curcumin, a HAT inhibitor,
decreased IL-6 expression and the level of H3ac in the IL-6
promoter in RASFs. Huber et al. reported that nuclear HDAC
activity was low in RA synovial tissues, whereas nuclear
HAT activity was similar in RA and osteoarthritis (OA)
synovial tissues [89]. Expression of HDAC1 and HDAC2 was
repressed in RA synovial tissues. It is suggested that the
balance betweenHAT andHDAC activities shifted to histone
hyperacetylation in RA. On the other hand, Kawabata et al.
showed that nuclear HDAC activity increased in RA synovial
tissues and was associated with the amount of cytoplasmic
TNF𝛼 [90]. HDAC1 is highly expressed in RA synovial
tissues, and its activity and expression are upregulated after
TNF𝛼 stimulation. In view of conflicting data on the roles
of histone acetylation-catalyzing enzymes in RA, additional
studies are thought to be needed. IL-6 and IL-8 expression
was reduced in RA synovial tissues by HDAC inhibitors
(HDACi), including trichostatin A (TSA), sodium phenyl-
butyrate, and nicotinamide [91]. In addition, HDACi, such
as TSA and givinostat, repressed IL-6 production that was

induced by IL-1𝛽, TNF𝛼, and Toll-like receptor (TLR) ligands
and also decreased the stability of IL-6 mRNA in RASFs [92].

4.2. DNA Methylation in RASFs. Several reports have sug-
gested the contribution of DNA methylation to the patho-
genesis of RA, and a variety of altered DNA methylation
patterns have been described in RASFs (Table 2). Global
genomic DNA hypomethylation was seen in RA synovial
tissues [93]. Proliferating RASFs were deficient in DNMT1
and 5-azacytidine (5-azaC), an inhibitor of DNMTs, pro-
vided normal SFs with the activated phenotype of RASFs.
DNA hypomethylation upregulated expression of 186 genes,
including growth factors/receptors, extracellular matrix pro-
teins, adhesionmolecules, andmatrix-degrading enzymes. In
spite of similar levels of DNMT1 transcripts between RASFs
and OASFs [94], DNMT1 protein expression is reduced in
RASFs, in particular upon stimulation with cytokines or
growth factors [93]. In addition, IL-1 stimulation decreases
DNMT1 transcription. Death receptor 3 (DR3) is a mem-
ber of the apoptosis-inducing Fas gene family. Enforced
hypermethylation of the CpG island repressed DR3 gene
expression,which resulted in resistance to apoptosis inRASFs
[95]. Differentially methylated genes between RASFs and
OASFs were examined by methylated DNA immunopre-
cipitation and promoter tiling assays, which showed that
TBX5 is less methylated in RASFs than in OASFs [86].
TBX5 induces the production of chemokines, such as IL-
8, CXCL12, and CCL20. Basal expression of CXCL12 was
high in RASFs and low CpG methylation was found in the
CXCL12 promoter of RASFs [96]. 5-azaC increased CXCL12
expression anddecreased themethylation ofCpGnucleotides
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Table 3: Abnormality of miRNAs in RASFs.

miRNA Expression change Function References
miR-34∗ Downregulation Increase of XIAP involved in resistance to apoptosis [99]

miR-203 Upregulation Increase of MMP-1 involved in extracellular matrix degradation
Increase of IL-6 involved in inflammation [100]

miR-155 Upregulation Decrease of MMP-3 involved in extracellular matrix degradation [101]
miR-155 Upregulation Decrease of IKBKE involved in inflammation [102]

miR-22 Downregulation Increase of CYR61 involved in cell proliferation andTh17 cell
differentiation [103]

miR-20a Downregulation Increase of ASK1 involved in TLR4 pathway [104]
miR-19b Downregulation Increase of TLR2 involved in innate immunity [105]

in the CXCL12 promoter of RASFs. Furthermore, genome-
wide analyses of DNA methylation loci in RASFs were per-
formed. Nakano et al. reported 1859 differentially methylated
loci [97]. Some of hypomethylated loci were key genes in
the pathogenesis of RA, including CHI3L1, CASP1, STAT3,
MAP3K5, MEFV, and WISP3. TGFBR2 and FOXO1 were
identified as hypermethylated loci. Pathway analysis showed
that hypomethylated genes were related to cell migration,
cell adhesion, transendothelial migration, and extracellular
matrix interactions. Whitaker et al. determined whether
DNA methylation signatures change in long-term cultured
RASFs [98]. The genome-wide patterns of differential DNA
methylation of RASFs were examined at passages 3, 5, and
7 and were quite similar regardless of passage number. By
analyses of pathway and ontology databases, differentially
methylated genes were associated with innate immunity, cell
adhesion, and cytokines.

4.3. miRNAs in RASFs. Several miRNAs are associated with
the pathogenesis of RA (Table 3). For example, the basal
expression level of miR-34a∗ is repressed in RASFs [99]. The
promoter of miR-34a∗ is methylated and the transcription
of miR-34a∗ increases upon treatment with 5-azaC. X-
linked inhibitor of apoptosis protein (XIAP) was identified
as a direct target of miR-34a∗. XIAP blocks apoptosis by
direct binding to caspases. Enforced expression of miR-34a∗
caused Fas ligand- (FasL-) and TNF-related apoptosis-induc-
ing ligand- (TRAIL-) mediated apoptosis in RASFs. Down-
regulation of proapoptoticmiR-34a∗ resulted in upregulation
of XIAP, thereby contributing to the resistance of RASFs
to apoptosis. Alterations in the expression of miRNAs in
RASFs were examined by screening 260 miRNAs [100].
The expression of miR-203 was high in RASFs, and 5-azaC
upregulated miR-203 expression. Enforced expression of
miR-203 increased production ofMMP-1 and IL-6.Upregula-
tion of IL-6 by miR-203 overexpression was repressed by
inhibition of the NF-𝜅B signaling pathway, and basal IL-
6 expression was correlated with basal expression of miR-
203. Microarray analysis of miRNAs that were expressed in
RASFs revealed that the expression of bothmiR-155 andmiR-
146a was constitutively high in RASFs [101]. The expression
of miR-155 was upregulated after stimulation with TNF𝛼,
IL-1𝛽, lipopolysaccharide (LPS), poly(I-C), and bacterial
lipoprotein (BLP). Enforced expression of miR-155 in RASFs

inhibited MMP-3 expression and repressed the induction
of MMP-1 and MMP-3 by TLR ligands and cytokines. In
another study, differentially expressed miRNAs in RASFs
were screened by microarray analysis, which showed that
miR-155 expression was also upregulated and induced by
TNF𝛼 in RASFs [102]. Enforced expression of miR-155
reduced MMP-3 expression and inhibited the proliferation
and invasion of RASFs. Inhibitor of kappa light polypeptide
gene enhancer in B cells, kinase epsilon (IKBKE), is a target
of miR-155, and it has been suggested that miR-155 may
be a protective factor against inflammation by attenuating
expression of IKBKE in RASFs. miR-22 directly targeted
the 3-UTR of Cysteine-rich angiogenic inducer 61 (CYR61)
mRNA and repressed CYR61 expression [103]. CYR61 pro-
motes RASF proliferation and differentiation of T helper 17
(Th17) cells that play an important role in the pathogenesis
of RA. Expression of miR-22 was reduced and was negatively
correlated with CYR61 expression in RASFs. Wild-type p53
induced miR-22 transcription by binding to the promoter of
the miR-22 gene, whereas the mutant forms of p53 that were
frequently observed in RASFs suppressedmiR-22 expression.
Stimulation of RASFs with LPS and BLP decreased miR-20a
expression [104].This decrease was associated with upregula-
tion of apoptosis signal-regulating kinase (ASK) 1 that was a
key component of the TLR4 pathway. ASK1 is a direct target
of miR-20a. Overexpression of miR-20a decreased ASK1
expression in LPS- and BLP-activated RASFs. MicroRNA
microarray analysis demonstrated that miR-19b was down-
regulated in RASFs [105]. miR-19b targets TLR2 mRNA and
overexpression of miR-19b decreases expression of TLR2, IL-
6, andMMP-3. It is thought thatmiR-19b can act as a negative
regulator of inflammation in RA.

5. Conclusion

Increasing evidence has shown that aberrant epigenetic
changes contribute to the development of RA and affect
disease susceptibility and severity in RA. Further study is
needed to reveal the crosstalk among these different epige-
netic mechanisms in different cell types in RA. Synoviocytes
are comprised of fibroblasts and macrophages, and not only
SFs but also synovial macrophages are involved in inflam-
mation of the RA synovium. Therefore, it will be important
to investigate the relationship between SFs and synovial
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macrophages in RA, including how they can influence each
other by epigenetic mechanisms. It is hoped that advances in
the studies of the epigenetic mechanisms in RA will provide
a better understanding of the pathogenesis of RA and help
develop new therapeutic strategies and biomarkers for RA.
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