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Abstract: The aim of the present study was to compare the efficiency of targeted and untargeted
breath analysis in the discrimination of lung cancer (Ca+) patients from healthy people (HC) and pa-
tients with benign pulmonary diseases (Ca−). Exhaled breath samples from 49 Ca+ patients, 36 Ca−
patients and 52 healthy controls (HC) were analyzed by an SPME–GC–MS method. Untargeted
treatment of the acquired data was performed with the use of the web-based platform XCMS Online
combined with manual reprocessing of raw chromatographic data. Machine learning methods were
applied to estimate the efficiency of breath analysis in the classification of the participants. Results:
Untargeted analysis revealed 29 informative VOCs, from which 17 were identified by mass spectra
and retention time/retention index evaluation. The untargeted analysis yielded slightly better results
in discriminating Ca+ patients from HC (accuracy: 91.0%, AUC: 0.96 and accuracy 89.1%, AUC:
0.97 for untargeted and targeted analysis, respectively) but significantly improved the efficiency of
discrimination between Ca+ and Ca− patients, increasing the accuracy of the classification from
52.9 to 75.3% and the AUC from 0.55 to 0.82. Conclusions: The untargeted breath analysis through
the inclusion and utilization of newly identified compounds that were not considered in targeted
analysis allowed the discrimination of the Ca+ from Ca− patients, which was not achieved by the
targeted approach.

Keywords: lung cancer; exhaled breath; volatile organic compounds; untargeted analysis; breath
analysis; cancer biomarkers; volatolomics

1. Introduction

Human breath contains volatile organic compounds (VOCs) either originating from
endogenous biochemical processes and thus distinguished as endogenous VOCs or envi-
ronmental exposures (inhalation, ingestion, dermal absorption) and therefore pertaining to
exogeneous VOCs. In case of disease, the biochemical pathways can be dysregulated or
altered [1], and this will change the composition of exhaled breath in endogenous VOCs.
Moreover, disease can also affect the absorption, distribution metabolism and excretion
of the exogenous compounds. These alterations can be detected and used for disease
detection and diagnosis. The analysis of exhaled breath is currently an area of intensive
research aiming at the development of new non-invasive tests for preliminary screening
and diagnosis of various pathological conditions. Particular attention is given to cancer,
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where early diagnosis is critical for successful disease treatment and which today is of-
ten diagnosed at late stages, and diagnosis procedures are invasive, time consuming or
costly. Mass spectrometry (MS)-based breath analysis for disease diagnosis research is
currently the mainstream choice that can be accomplished using two strategies, which are
classified as targeted or non-targeted (also referred to as untargeted). The former is based
on quantification of an a priori defined set of VOCs known or hypothesized as disease
biomarkers and is thus a hypothesis-driven approach. In contrast, the non-targeted strategy
is a (qualitative) hypothesis-generating approach that investigates the whole VOC profile
in a breath sample without any a priori information about the chemical composition of the
sample and aims to identify a maximum number of VOCs. By non-targeted breath analysis,
novel biomarkers and disturbed metabolic pathways can be discovered or characteristic
breath VOC profile of the disease can be defined and further used for disease detection
and diagnosis. However, the non-targeted approach yields a huge amount of complex
data and its application would be impossible without the development of bioinformatics
software designed for the treatment and statistical analysis of raw chromatography–mass
spectrometry data, and identification of detected unknown compounds. This has been
done mostly in the last decade and currently there is a variety of commercial or open
source software for the treatment and analysis of chromatography–mass spectrometry data
and extraction of the relative biological information [2]. That has given great impetus for
the development of non-targeted analysis in metabolomics in general [3] and opens new
perspectives in breath research in particular [4]. One of the most widely used metabolomic
software is XCMS Online, which is freely available [5].

However, the non-targeted approach has long-standing reproducibility issues [6,7] and
is never truly unbiased since the acquired data are significantly affected by experimental
design and instrumental parameters. In contrast to the targeted strategy, the lack of
absolute quantification makes it difficult to assess variations in metabolite levels between
groups, to normalize the acquired data and even to make interlaboratory comparisons of
the results [7,8]. These weaknesses of the non-targeted approach are, at the same time, the
strengths of the targeted approach and, recently, hybrid approaches bridging them have
been developed [8,9]. In this study, we make a retrospective non-targeted analysis of full
scan data previously acquired [10] in targeted analysis of the breath samples from lung
cancer (Ca+) and benign pulmonary disease (Ca−) patients and healthy controls (HC). The
targeted analysis was based on the quantitation of 19 pre-determined VOCs [10]. While
Ca+ patients were satisfactorily discriminated from healthy controls, the analysis failed to
discriminate Ca+ patients from Ca− patients (without LC but with pathological computed
tomography findings). The aim of the present study is to compare the efficiency of the
targeted and untargeted approaches in lung cancer discrimination with healthy people
and patients with other pulmonary diseases and record the strengths and limitations of
each approach on the same raw GC–MS data pool. Additionally, by merging (combining)
targeted and untargeted approaches, we sought to improve the discrimination ability of
the breath analysis.

2. Results
2.1. Characteristics of Study Participants

From the 85 patients with pathological computed tomography (CT) findings who un-
derwent bronchoscopy, lung cancer was diagnosed in 49 patients (43 males/6 females). The
mean age of Ca+ patients was 71.1 years (SD: 8.2). The majority of LC patients (n = 40) were
diagnosed with non-small cell lung carcinoma, while 8 were diagnosed with small cell lung
carcinoma (for one patient, the type was not available). Thirty-six patients (30 males/6 fe-
males, mean age 66.8 (SD: 10.8)) were not diagnosed with LC by histological/cytological
examination. The possible pathological origins for this group include sarcoidosis, hypersen-
sitivity pneumonitis, interstitial lung diseases or pulmonary infections such as tuberculosis.
The control group consisted of 52 persons (35 males/17 females) with a mean age of 66.8
(SD: 10.8).
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In regard to smoking habit, most of the LC patients (81.6%) were former smokers
with a mean time from cessation of 9.4 years, while 12.2% were active smokers and 6.1%
reported that they had never smoked. Patients that were not diagnosed with LC had
slightly different frequencies of smoking habit, with 55.6% being former smokers (mean
time from cessation: 10.6 years), 27.7% being active smokers and 16.7% never smokers. In
the HC group, the percentage of active smokers was significantly higher (38.4%), as was
the percentage of individuals that had never smoked (28.9%). The percentage of former
smokers was 32.7%, with mean time from cessation of 20.1 years. Mean pack/years were
69.43 (SD: 48.47) for the Ca+ group, 48.70 (SD: 35.41) for the Ca− group and 32.74 (SD:
33.39) for the HC group.

Concerning self-reported co-morbidities derived from personal interviews with the
use of questionnaires, the most common were hypertension (Ca+ group: 44.9%, Ca−
group 47.22%, HC group: 42.31%), diabetes (Ca+ group: 24.49%, Ca− group 27.78%, HC
group: 22.45%) and hypercholesterolemia (Ca+ group: 38.78%, Ca− group 30.56%, HC
group: 26.53%).

2.2. Data Pre-Processing, Selection and Identification of Candidate Features

The processing of raw files with the use of the XCMS Online platform identified
358 informative features (ions) meeting the criteria defined in the Materials and Methods
(Section 4.3) after peak identification, alignment, retention time correction and preliminary
online statistical analysis. Figure 1 presents the metabolomic cloud plots obtained from
XCMS Online, concerning the pairwise analysis of Ca+ vs. HC and Ca+ vs. Ca− groups.
Features identified as differentiated between subgroups by XCMS Online were automati-
cally grouped into 110 corresponding chromatographic peaks. These peaks were manually
evaluated and verified in the acquired chromatograms. This process resulted in the exclu-
sion of 28 peaks from further analysis due to unacceptable chromatographic characteristics
such as low signal to noise ratio and co-elution with other substances. The mass spectra
corresponding to the 82 remaining peaks were compared with those stored in the NIST
library after subtracting mass spectra corresponding to noise. These procedures lead to the
exclusion of additional peaks with spectra indicating silanes and silicon compounds that
were considered interferences from SPME fiber, the chromatography column or septum
materials. In addition, peaks with mass spectra corresponding to known contaminants
from Tedlar® bag materials (phenol, N,N-dimethylacetamide) were also excluded [11]. In
total, 53 compounds were not considered for further analysis. Thus, the remaining 29 peaks
were considered for further investigation. For these, comparisons of mass spectra with
those contained in the NIST library identified 12 compounds with a probability higher than
75%. Four monoaromatic compounds (benzene, styrene, ethylbenzene and toluene) were
also verified with analytical standards. In addition, seven compounds were verified by
retention time (RT) by comparing actual RTs with simulated RTs determined with the use
of the Pro EZGC Chromatogram Modeler (Restek Corporation, Bellefonte, PA, USA). For
5 peaks, the NIST probability was 50–75%, indicating a considerable degree of uncertainty
in compound identification, while 12 compounds (probability < 50%) were designated as
unknowns. Moreover, experimentally determined retention indices (RIs) were compared
with those stored in the NIST library. Small deviations were observed (<10%) for most
compounds, while the RI values were in agreement with the order of elution of identified
VOCs, with the exceptions of propionic acid and methylacetamide. Figure 2 presents the
flow chart of the process applied for selecting and identifying informative compounds.
In Table 1, the compounds are presented along with NIST probability and spectra match
scores, actual and simulated retention times, experimentally determined RIs and RIs de-
rived from the NIST workbook. The 17 identified compounds were further investigated by
searching for their presence in the KEGG pathway database [12] and in the scientific litera-
ture to determine their putative origins and the involved metabolic pathways. For twelve
compounds, no evidence of endogenous origin was found. These include monoaromatic
hydrocarbons and furans, which are carcinogens contained in tobacco smoke, and pro-
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duced by industrial sources and commercial uses, sulfur-containing compounds (methyl
propyl sulfide, 1-methylthio-(E)-1-propene) used as flavor agents and contained in garlic
and onion and eucalyptol, which is used as an asthma/COPD drug. Eight substances could
be of both endogenous and exogenous origin. Most of the identified metabolic pathways
concerned the degradation/metabolism of xenobiotic substances such as ethylbenzene,
benzene and dimethyacetamide. Propionic acid is involved in multiple pathways of lipid
biosynthesis, propanoate metabolism and vitamin K metabolism. P-benzoquinone can be
formed from benzene metabolism [13], but also participates in other pathways, and acetic
acid is involved in the formation of glycogen, cholesterol synthesis, fatty acid degradation
and acetylation of amines [14].

Table 1. Identification of compounds based on spectra comparison with NIST library and retention time criteria.

Candidate
Compound

Probability
(NIST), %

Match
Score

(NIST)
Retention
Time, min

Retention
Time

Simulated 1,
min

Deviations in
Retention
Time, %

Experimentally
Determined
Retention

Index

NIST
Retention

Index 2

Deviations
in Retention

Index, %

3-methyl-furane 86 892 5.03 NA 615 602 2.16
acetaldoxime 53 753 5.38 NA 625 606 3.14

Benzene * 72 923 7.17 7.73 −7.81 677 647 4.64
acetic acid 59 912 7.86 NA 698 650 7.38

1-methoxy-2-propanol 69 891 8.27 7.83 5.32 711 658 8.05
dimethyl furane 78 852 8.33 8.66 −3.96 714 694 2.88

methyl propyl sulfide 89 840 8.79 NA 729 714 2.10
1-methylthio-(E)-

1-propene ** 90 877 9.57 NA 756 722 4.71

Toluene * 34 868 10.31 10.95 −6.21 782 750 4.27
propionic acid 78 702 10.59 NA 792 712 11.24

p- xylene ** 81 845 12.00 12.1 −0.83 859 833 3.12
ethyl benzene * 61 877 12.10 12.38 −2.31 890 858 3.73

Styrene * 37 869 12.3 12.79 −3.98 906 876 3.42
methylacetamide 78 831 12.79 NA 959 825 16.24
p-benzoquinone 90 817 13.00 NA 982 888 10.59
N-2-Aminoethyl

acetamide 62 800 13.2 NA 1005 NA

eucalyptol 52 848 13.51 NA 1060 1017 4.23

* Verified by analytical standard. ** NIST probability is given for all isomer compounds. Mass spectra were very similar for isomers of these
compounds, compounds were identified based on RI similarities. 1 Retention time was simulated with Pro EZGC Chromatogram Modeler,
Restek Corporation. 2 Retention indices were derived from NIST database related to a fully non-polar column (100% polydimethylsiloxane).
NA: not available with equivalent column.
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Figure 1. Cloud plots with results of pairwise XCMS analysis between (a) Ca+ vs. HC. Detection settings: p-value < 0.01, fold
change > 2, m/z range: 0–140, retention range: 0–14 min, max intensity > 10,000 and (b) Ca+ vs. Ca− characteristics (ion).
Detection settings: p-value < 0.05, fold change > 1.1, m/z range: 0–140, retention range: 0–14 min, max intensity > 10,000.
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2.3. Reprocessing of Raw Chromatographs and Statistical Analysis of Identified/Verified
Associations

Following the identification of the compounds, all raw files were reprocessed with
Thermo Xcalibur™ software to obtain more valid data. This procedure allowed manual
retention time correction, more accurate integration of chromatographic peaks and exclu-
sion of false (noise) peaks. The areas of the chromatographic peaks were determined for
each compound in exhaled breath samples but also in ambient air samples. Chromato-
graphic peak areas were normalized with the use of an external standard mixture (see
Section 4.4). Regarding ambient air levels, for six out of 29 compounds, the relative levels
of ambient air were considered insignificant, for 5 compounds low, for 14 compounds
moderate and for 4 compounds high (Table 2). Comparative statistical analysis confirmed
the significant difference in breath levels between Ca+ patients and healthy controls for
18 out 29 compounds, while two were found to differ between Ca+ and Ca− patients.
Lung cancer patients had significantly elevated levels of ethylbenzene, styrene, toluene,
xylene, eucalyptol and four unknown compounds compared to healthy controls. Lower
levels were observed for acetaldoxime, methyl propyl sulfide, 1-methylthio-(E)-1-propene,
propionic acid, methylacetamide and three unknown compounds. Results concerning
the comparative analysis of areas of chromatographic peaks between patient groups are
summarized in Table 2.
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Table 2. Comparative analysis of the areas of the 29 chromatographic peaks between patient groups and relative presence
in ambient air.

Compound Relative Presence
in Ambient Air 1

Ca+/HC Ca+/Ca−
Trend in LC

Patients Significance * Trend in LC
Patients Significance *

unknown insignificant ↑ 0.052 ↑ 0.311
unknown moderate ↓ 0.071 ↓ 0.056

3-methyl-furan * low ↓ 0.514 ↓ 0.482
acetaldoxime high ↓↓↓ <0.001 ↓ 0.341

unknown moderate ↓↓↓ <0.001 ↓ 0.689
unknown low ↑↑ 0.01 ↓↓ 0.013
benzene moderate ↓↓↓ <0.001 ↓ 0.089

unknown moderate ↓↓↓ <0.001 ↓ 0.756
acetic acid low ↓↓↓ <0.001 ↓ 0.979

1-methoxy-2-propanol high ↓↓↓ <0.001 ↓ 0.272
dimethyl furan low ↓ 0.125 ↓ 0.286

unknown moderate ↑↑↑ 0.002 ↓ 0.396
unknown moderate ↓ 0.902 ↓ 0.082

methyl propyl sulfide insignificant ↓↓↓ <0.001 ↓↓ 0.035
1-methylthio-(E)-1-propene insignificant ↓↓↓ <0.001 ↓ 0.239

unknown insignificant ↓↓↓ <0.001 ↓ 0.185
toluene moderate ↑↑↑ 0.001 ↑ 0.986

propionic acid insignificant ↓↓↓ <0.001 ↑ 0.384
unknown high ↑ 0.053 ↑ 0.752
unknown moderate ↓ 0.124 ↓ 0.175

ethylbenzene moderate ↑↑↑ <0.001 ↑ 0.618
xylene(p,o,m) moderate ↑↑↑ <0.001 ↑ 0.434

styrene moderate ↑↑↑ <0.001 ↑ 0.423
methylacetamide high ↓ 0.178 ↑ 0.539
p-benzoquinone insignificant ↓ 0.076 ↓ 0.388

N-2-Aminoethyl acetamide moderate ↓↓↓ <0.001 ↓ 0.824
unknown moderate ↓↓↓ <0.001 ↓ 0.104
eucalyptol low ↑ 0.066 ↑ 0.511
unknown moderate ↑ 0.092 ↑ 0.463

1 Determined from mean breath/mean air ratio. Insignificant: >20, low: 5–20, moderate: 0.5–5, high: <0.5. * Significance determined by
Mann–Whitney test. ↑, ↓: p > 0.05, ↑↑, ↓↓: p = 0.01–0.05, ↓↓↓, ↑↑↑: p < 0.01.

2.4. Application of Machine Learning Methods to Estimate the Diagnostic Efficiency of the Breath
Analysis

In our previous work, based on 19 selected VOCs, we identified subsets of features
(VOCs) that were capable of efficiently discriminating healthy individuals from cancer
patients, but not Ca+ from Ca− patients. In this section, we present the results of machine
learning methods based on combinations of the 29 features, identified as differentiated
between population subgroups by the untargeted approach. When all 29 features were
included, correct classification of Ca+ and HC was 86% (AUC: 0.94) (Table 3, Analysis
no. 9). After the two steps of feature selection, using a subset of eight features, the correct
classification improved to 91% (AUC: 0.96) (Table 3, Analysis no. 10), which was higher
than that of targeted analysis. Similarly, discrimination between Ca− patients and HC
was also very efficient. The correct classification of datapoints ranged from 90% (AUC:
0.94), when using all 29 features (Table 3, Analysis no. 11), to 94% (AUC: 0.97) after the two
steps of feature selection, using a subset of seven compounds (Table 3, Analysis no. 12).
Not surprisingly, discrimination between pooled cancer-positive and non-cancer patients
(Ca+ and Ca−) and HC was again very efficient. Overall, machine learning models based
on compounds identified as differentiated by the untargeted approach achieved a very
comparable if not marginally better accuracy than the targeted approach, when trying to
discriminate healthy individuals from any of the three types of patients (cancer, non-cancer,
pooled).
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Table 3. Results of machine learning methods (random forest) to estimate the discrimination efficiency of the breath analysis.

Analysis no. Approach Variable Comparison
Groups

Smoking
Habit Features Used Accuracy AUC

1 targeted Br Ca+ vs. HC All t1–t19 85.14 0.95
2 targeted Br Ca+ vs. HC All t4, t5, t7–t11,t13–t15,t18 89.10 0.97
3 targeted Br Ca− vs. HC All t1–t19 86.36 0.91
4 targeted Br Ca− vs. HC All t4,t5, t7–t17 88.63 0.94
5 targeted Br Ca+ & Ca− vs. HC All t1–t19 86.70 0.96
6 targeted Br Ca+ & Ca− vs. HC All t1, t4,t5,t7–t15,t17 90.50 0.96
7 targeted Br Ca+ vs. Ca− All t1–t19 43.50 0.39
8 targeted Br Ca+ vs. Ca− All t4,t9, t17 52.90 0.55
9 untargeted Br Ca+ vs. HC All u1–u29 86.14 0.94

10 untargeted Br Ca+ vs. HC All u4,u8,u12,u14,u16,u19,u28,u29 91.08 0.96
11 untargeted Br Ca− vs. HC All u1–u29 89.77 0.94
12 untargeted Br Ca− vs. HC All u4,u6, u8, u12,u26,u27,u29 94.3 0.97
13 untargeted Br Ca+ & Ca− vs. HC All u1–u29 86.9 0.95
14 untargeted Br Ca+ & Ca− vs. HC All u4, u8, u11,u12,u19,u22,u26,u27, u29 92 0.97
15 untargeted Br Ca+ vs. Ca− All u1–u29 52.9 0.54
16 untargeted Br Ca+ vs. Ca− All u4, u20,u26 75.3 0.82
17 untargeted Sbtr Ca+ vs. Ca− All t1–t19, u1–u29 57.6 0.54
18 untargeted Sbtr Ca+ vs. Ca− All u2, u4,u6, u11,u14, u25, u28,u29 71.76 0.78
19 merged Br Ca+ vs. Ca− All u1–u29, t1–t19 44.7 0.44
20 merged Br Ca+ vs. Ca− All t9, u4, u26 72.9 0.72
21 untargeted Br Ca+ vs. Ca− Non-smokers u1–u29 59.4 0.57
22 untargeted Br Ca+ vs. Ca− Non-smokers u4, u20,u 26 72.5 0.68
23 untargeted Br Ca+ vs. Ca− Non-smokers u4, u11, u13,u20,u26 76.8 0.85

Br: corresponds to breath compound levels, Sbtr: corresponds to breath subtract levels, Ca+: patients diagnosed with lung cancer, Ca−:
patients with pathological CT findings not diagnosed with lung cancer by histological/cytological examination, HC: healthy controls.
Features from targeted analysis: t1: isoprene, t2: acetone, t3: 2-propanol, t4: hexane, t5: 1-propanol, t6: 2-butanone, t7: cyclohexane,
t8: benzene, t9: thiophene, t10: 1-butanol, t11: toluene, t12: octane, t13: ethyl butyrate, t14: hexanal, t15: ethyl benzene, t16: styrene,
t17: cyclohexanone, t18: octanal, t19: nonanal. Features from untargeted analysis: u1: unknown, u2: unknown, u3: 3-methyl-furan, u4:
acetaldoxime, u5: unknown, u6: unknown, u7: benzene, u8: unknown, u9: acetic acid, u10: 1-methoxy-2-propanol, u11: dimethyl furan,
u12: unknown, u13: unknown, u14: 1-methylthio-(E)-1-propene, u15: allyl methyl sulfide, u16: unknown, u17: toluene, u18: propionic
acid, u19: unknown, u20: unknown, u21: ethylbenzene, u22: p-xylene, u23: styrene, u24: methylacetamide, u25: p-benzoquinone, u26:
N-2-aminoacetyl acetamide, u27: unknown, u28: eucalyptol, u29: unknown.

Subsequently, we tested the potential for discrimination between Ca+ and Ca− pa-
tients, with the three machine learning algorithms, by using normalized peak areas of
compounds from breath. The set of 29 VOCs was not capable of efficiently discriminating
between cancer and non-cancer patients, irrespective of the machine learning algorithm
applied. The best-performing algorithm (random forest) correctly predicted only 53%
of datapoints (AUC: 0.54) (Table 3, Analysis no. 15) when using all 29 VOCs. However,
when two successive steps of feature selection were implemented, the random forest’s
accuracy significantly increased to 75% (AUC: 0.82), by using a set of only three metabolites
(Table 3, Analysis no. 16). We repeated the analysis to discriminate Ca+ from Ca− patients,
by incorporating normalized levels after subtracting ambient air levels, in the hope that
removal of any noise from the air would increase the discriminatory power of the random
forests. However, the performance did not increase as much as it did when we used only
normalized concentrations of breath. More specifically, by using all 29 VOCs, random
forests achieved an accuracy of 58% (AUC: 0.54) (Table 3, Analysis no. 17), whereas, after
two steps of feature selection, the performance was increased to an accuracy of 72% (AUC:
0.78) by using eight features (Table 3, Analysis no. 18).

We also examined whether the combination of the 19 VOCs measured by the targeted
approach together with the 29 VOCs identified as differentiated by the untargeted approach
would increase the discriminatory power of the machine learning models in Ca+ vs. Ca−
patients. In this set, the concentrations of 19 VOCs in breath were used together with
29 VOCs selected as informative by the untargeted approach. By using all 48 variables,
random forests achieved an accuracy of 45% (AUC: 0.44) (Table 3, Analysis no. 19), whereas,
after two steps of feature selection, the performance was increased to an accuracy of 73%
(AUC: 0.72) (Table 3, Analysis no. 20), using three features (thiophene from the targeted
approach and acetaldoxime and N-methyl acetamide from the untargeted approach). Thus,
the inclusion of the 19 targeted metabolites did not increase the discriminatory performance
of random forests that were based only on targeted metabolites.
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Finally, we tested if smoking was a confounding factor for the discrimination (with
random forests) of cancer vs. non-cancer patients, using normalized breath measurements
of VOCs selected as informative by the untargeted approach. In these analyses, we retained
43 cancer patients and 26 non-cancer patients that never smoked or had quit smoking.
The best-performing algorithm (random forest) correctly predicted only 59% of datapoints
(AUC: 0.57) when using all 29 untargeted VOCs (Table 3, Analysis no. 21). When we used
the three untargeted VOCs that had yielded the best performance in the previous cancer vs.
non-cancer patients analysis, random forests of the non-smokers achieved an accuracy of
72.5%, but with a significantly lower AUC of 0.68 (Table 3, Analysis no. 22). Thus, we also
performed two rounds of feature selection specifically for the non-smokers and, this time,
random forests achieved an accuracy of 77%, with an AUC of 0.85, by using five VOCs
(Table 3, Analysis no. 23).

In summary, based on all the above analyses, we conclude that the best-performing
algorithm is again random forests, whereas the normalized breath data from the untargeted
approach are sufficient to help the algorithm achieve a very high performance, in all
comparisons. Furthermore, the two successive rounds of feature selection significantly
improved the performance of the random forests, especially in the case of Ca + vs. Ca−
patients. This was not possible in a previous study that had used a limited set of 19 selected
VOCs. Furthermore, smoking was not a confounding factor for the untargeted analysis, an
observation that is in agreement with the results of targeted analysis. It is very clear that the
given untargeted approach, in combination with machine learning algorithms and feature
selection, identified sets of compounds with sufficient discriminatory power (accuracy
of 91–94%) to help us understand if a sample comes from a healthy person or from a
person with a pulmonary disease. This was achievable with only seven to nine metabolites.
Furthermore, it is also possible to discriminate, with satisfactory accuracy (75–77%), cancer
from non-cancer patients, by using only three to five untargeted metabolites.

3. Discussion

In this study, we performed analyses based on non-targeted screening of the raw
chromatographic data obtained from breath analysis, for three population groups (Ca+,
Ca− and HC) and compared the discriminatory power of this approach to that achieved
by targeted analysis. In the targeted analysis, 19 pre-selected compounds were measured,
which were selected based on literature indicating that they might be potential biomarkers
of lung cancer. Seven of these pre-selected compounds were found to differ significantly
between Ca+ and HC, and between pooled patient (Ca+ and Ca−) and HC groups, and
none differed significantly between Ca+ and Ca− groups [10].

The non-targeted analysis was performed with the use of the XCMS Online data
processing platform combined with manual processing of the raw chromatograms to select
the informative compounds and develop a dataset containing the areas of chromatographic
peaks of differentiated compounds. Processing of the raw files with XCMS Online was
conducted to determine the subset of chromatographic peaks and corresponding ions (m/z)
to focus on, and narrow the investigated peaks to those only identified as significantly
differentiated between population subgroups (Figure 2: Step 1). Next, we manually cross-
checked (Figure 2: Step 2) and reprocessed (Figure 2: Step 5) the identified peaks in the
raw data, by integrating extracted ion chromatograms (EICs). This task was performed
to confirm and, when necessary, correct the results obtained from automated online data
processing, and increase the reliability of the developed dataset, before proceeding to
statistical analyses and the application of machine learning methods. We considered this
stage necessary since peak misalignment or identification of “false peaks” by preprocessing
software has been reported as a potential limitation of this approach due to the variance
and complexity of raw chromatograms [15–17]. Indeed, a number of peaks identified by
XCMS as informative could not be satisfactorily processed in the raw chromatograms and
had to be excluded from the analysis, due to noise interferences or co-elution issues. It was
interesting that two compounds (1-propanol and 2-propanol) identified as differentiated
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between population groups by the targeted approach were filtered out by the selection
criteria applied in the untargeted workflow. By searching for 2-propanol and 1-propanol in
the XCMS results, we observed that the corresponding peaks were correctly identified and
their levels were found to differ between Ca+ and HC, while fold changes in LC patients
were in agreement with those observed when concentrations determined by calibration
curves (targeted analysis) were compared. However, the level of statistical significance of
non-normalized values (determined by a t-test) was 0.0185 for 2-propanol and 0.0198 for
1 propanol, which was marginally higher than the selection criterion (p < 0.01) set for Ca+
vs. Ca− pairwise (online automated) analysis. It should also be mentioned that the t-test is
not the appropriate significance criterion for non-normally distributed data.

It is also noteworthy that 53 compounds identified as informative by the analysis
with XCMS Online were at a later stage excluded as they corresponded to silicon-based
compounds and presumably derived from the SPME fiber and chromatographic column
bleed (Figure 2: Step 3). The vast majority of these compounds were selected based
on the Ca+ vs. HC pairwise analysis and the associations can be attributed to different
experimental conditions during the time periods of the collection and analysis of the
population subgroups. It is therefore assumed that these compounds were selected due
to systematic variations in experimental conditions. This effect is often corrected through
normalization processes where signal intensity is adjusted by the total intensity, the highest
value or by an external or internal standard [18]. In untargeted metabolomics, the use
of pooled samples as external standards is often applied [19] but this practice would be
extremely complicated in exhaled air samples. In the present study, external standard
normalization was conducted by incorporating spiked standard mixtures with known
concentrations that were used in targeted analysis (Figure 2: Step 6). Moreover, after
manual processing of the detected peaks and external standard normalization, a few
associations that were determined as significant from XCMS Online analysis were not
confirmed by offline statistical analysis of reprocessed data.

Some of the identified compounds have been reported previously to differ in the
breath of LC patients and other pulmonary diseases. In particular, monoaromatics are
reported by numerous publications. A very recent review by Ratiu identified 21 aromatic
hydrocarbons differentiated in lung cancer [20]. Furans, such as 3-methylfuran and 2,5-
dimethylfuran, have also been identified by previous studies but these compounds are
considered biomarkers of both active and passive exposure to tobacco smoke [21]. Al-
lyl methyl sulfide and methyl propyl sulfide (an isomer of 1-methylthio-(E)-1-propene),
which were found in lower levels in LC patients, are known to suppress the proliferation
of human lung tumor cells and possess anti-carcinogenic properties [22,23]. Moreover,
similar structures, such as dimethyl sulfide and methionol, are involved in the metabolism
of methionine [24]. Differences in the exhaled breath levels of acetic acid and propionic
acid have also been reported by previous studies, albeit less frequently [25,26]. Exhaled
p-benzoquinone has been proposed as a marker of malignant pleural mesothelioma [27].
For other identified substances (N-2-Aminoethyl acetamide, 1 methoxy propanol, methylac-
etamide, acetaldoxime, eucalyptol), we did not find any references in the scientific literature
concerning the potential association of the exhaled breath concentrations with lung cancer.
It should be noted that for some compounds (e.g., propionic acid, acetic acid), we report
lower levels in the exhaled breath of LC patients, a finding which apparently contradicts
existing evidence. The lack of reproducibility between independent research groups is a
known obstacle in breath research. It should also be mentioned that for a few compounds,
the identification is questionable. This statement is based on the observation that deviations
in RTs and RIs (Figure 2: Step 4) for these compounds do not follow the trend established
by known compounds. These include propionic acid, methylacetamide, acetaldoxime
and 1-methxy-propanol. The utilization of retention indices in compound identification
confirmation through the comparison with available retention data can be of great im-
portance, especially when mass spectral matches are derived from multiple candidate
compounds with similar spectra (e.g., isomer compounds) [28]. In our investigation, the
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use of RIs assisted in the confirmation of mass spectra matches and in distinguishing which
isomer compound corresponds to the chromatographic peak (1-methylthio-(E)-1-propene,
p-xylene). The small deviations between calculated and library-derived RIs were expected
since RIs were experimentally determined with a DB-624 column (6% cyanopropyl/phenyl,
94% polydimethylsiloxane (PDMS)) and retrieved RIs were related to a 100% PDMS col-
umn. Naturally, the RI is dependent on the kind of stationary phase and different stationary
phases give rise to different RIs of the same compound. However, the same trend in the
abovementioned deviation was observed in the vast majority of the identified compounds.
The combination of mass spectra and RI data has been proposed in both targeted and
untargeted GC–MS data processing protocols [29].

By searching for the identified compounds in metabolic pathway databases and in
the scientific literature, we found no direct evidence linking these VOCs to biochemical
alterations that occur in cancer and therefore the biochemical interpretation of the results is
not straightforward. While instrumental techniques, sampling methods and informatics
approaches for studying diseases through the analysis of exhaled breath are constantly
evolving [30–32], it is critical for future research to advance the knowledge concerning the
understanding of underlying mechanisms that result in alteration of VOC breath composi-
tion. Current scientific knowledge provides some evidence and hypotheses concerning
the biochemical background of endogenous VOCs [33], but the origin of the majority of
these compounds is largely uncertain. Further research on endogenous products is of great
importance not only for diagnostic purposes but also for targeting treatment [34].

It is evident that most of the compounds identified as differentiated in population
groups in the present study are of exogenous origin or are produced endogenously during
the metabolism of exogenous compounds. This observation enhances the findings of our
previous publication, where it was hypothesized that alterations in pulmonary function
and in the metabolism and excretion of exogenous compounds in disease can have an
effect on the concentrations measured in exhaled breath. This hypothesis is also supported
by several clinical tests and recent research that use exogenous VOCs (EVOCs) as probes
to “measure the activity of metabolic enzymes in vivo, as well as the function of organs,
through breath analysis” [35]. Future research should further elucidate the potential of the
administration of harmless exogenous compounds as probes to study diseases.

In accordance with acquired data, the discrimination of LC patients from patients
with abnormal CT findings was substantially increased by the untargeted approach and
subsequent feature selection/machine learning in comparison to a previously conducted
targeted approach. The correct classification was 75–77% for Ca+ vs. Ca− in the untar-
geted analysis compared to approximately 50% in the targeted analysis. Additionally, we
report 91% accuracy for the discrimination of LC patients from healthy controls based on
the investigation of 29 VOCs selected as informative by a non-targeted approach. The
discriminatory power was slightly increased compared to the targeted analysis focusing
on the quantification of a set 19 pre-determined VOCs. Although the targeted approach
has the advantage of the absolute determination of VOC levels and is less prone to bi-
ases, untargeted screening allowed us to detect new distinctive features and incorporate a
larger compound set into the classification analysis, thus resulting in better discrimination.
Previous studies investigating VOC profiles by gas chromatography–mass spectrometry
also reported high discriminatory power in distinguishing LC patients from healthy con-
trols [36–47]. However, the major concerns are the limited reproducibility regarding the
compounds identified by different research groups and the uncertainties regarding the
origins of VOCs that differentiate lung cancer. The lower discriminant power between
Ca+ and Ca− patients underlines the importance of evaluating the interference of other
pulmonary diseases in the identification of LC biomarkers [46,47]. The combination of
the datasets developed by the targeted and untargeted approaches did not significantly
improve the discrimination, an observation that underlines that the information provided
by targeted analysis is contained to a large extent in the data obtained by the untargeted ap-
proach. Untargeted VOC screening detected four (toluene, benzene, styrene, ethylbenzene)
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out of seven compounds that were found to differ significantly in targeted analysis, and
exploited numerous features that could not be identified by the targeted approach. In agree-
ment with targeted analysis, incorporating breath subtracts (ambient air was subtracted
from breath measurements) slightly decreased the discriminatory power of the analysis.
This can be explained by the fact that for some VOCs with high concentrations in ambient
air, the information contained in breath measurements was not exploited. Including breath
substrate (also referred to as alveolar gradient) in the analysis is a double-edged decision.
On the one hand, not considering the ambient air chemical composition may introduce
environmental interferences, while, in parallel, subtracting air levels from breath may result
in the exclusion of valuable information.

Some further issues should be considered when interpreting the results of the present
study. Although SPME has many advantages as a solvent-free and versatile pre-concentration
method, it is not without limitations. During SPME, VOCs compete for the active sites of
the fiber, and molecules with higher molecular weight may displace smaller ones. Thus,
varying the composition of samples may influence the amounts of VOC extracted [48].
Moreover, different fiber coatings are suitable for different classes of analytes [49]. The
fiber used in this study (CAR/PDMS) is suitable for VOCs with low molecular weight
and a Kovats index of less than 980 [50]. According to a study conducted to evaluate
the performance of different fiber coatings in the isolation of VOCs from feces, the par-
ticular fiber used isolated 60% of the total examined VOCs [51]. Concerning sampling,
pre-concentration and instrumental procedures, we adopted a mixed expiratory breath
sampling/SPME/GC–MS approach, but a variety of alternative methods are available. In
brief, sampling can also focus on later or end-tidal expiratory breath, pre-concentration
can be achieved with thermal desorption (TD) and needle trap devices (NTDs) [52] and
instrumental analysis can also be performed with proton transfer reaction MS (PTR-MS)
and selective ion flow tube MS (SIFT-MS) [18]. Cross-reactive sensors have also been
developed and tested by numerous research groups [53].

Another limitation of this study is that the participants who formed the HC group did
not undergo clinical examination or diagnostic tests to exclude the possibility of having
undiagnosed cancer or serious pulmonary diseases, instead they were recruited based on
personal interviews. Thus, the possibility that a few individuals were falsely classified as
controls cannot be entirely excluded.

In summary, untargeted VOC profiling captured, to a large extent, the information
provided by targeted analysis and performed more efficiently in discriminating lung cancer
patients from patients with benign pulmonary diseases, through the utilization of new
compounds that were not previously considered. However, uncertainties in compound
identification and automated processing of raw data should be carefully addressed. Subse-
quence steps for the verification and manual correction of automatically identified peaks in
the raw chromatographic files can increase the reliability of the acquired datasets.

4. Materials and Methods
4.1. Participant Recruitment and Breath Sampling

A detailed description concerning the procedures followed for participant recruitment
and sampling of exhaled breath can be found in a previous publication [10]. In brief, the
study population consisted of 85 patients from the General University Hospital of Larissa
(Greece) who underwent bronchoscopy due to abnormal CT findings and a control group
of 52 individuals of similar age were recruited from local health centers. Samples were
collected from October 2018 to October 2019. After bronchoscopy, patients were catego-
rized according to the presence of LC, according to results of the cytological/histological
examination. The control group (referred to in the text as healthy controls (HC)) was
selected on the basis of the absence of self-reported pulmonary diseases and cancer. The
absence of these diseases was determined by self-report during the personal interviews
conducted on the day of sampling.
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Breath samples were collected in Tedlar® bags (Sigma-Aldrich, St. Louis, MO, USA).
Participants were asked to inhale deeply and hold their breath for 30 s, then exhale through
a disposable mouthpiece into the 1 L Tedlar® bag until filled. Two breath samples were
collected with approximately two-minute intervals in between. Ambient air samples were
also collected with the use of a portable Laboport® UN 86 KTP (KNF Neuberger GmbH,
Freiburg, Germany) pump.

4.2. Materials, Solid Phase Microextraction and GC–MS Analysis

A detailed description of the materials and methods used in the present study can
be found in our previous publication [10]. In brief, extraction and pre-concentration of
the analytes from breath samples was achieved by solid phase microextraction (SPME)
using a 75 µm carboxen-polydimethylsiloxane (CAR/PDMS)-coated fused silica fiber as-
sembly (Sigma-Aldrich, St. Louis, MO, USA), and desorption of analytes from the fiber
was performed for 5 min at 270 ◦C. Instrumental analysis was performed with a Finnigan
Trace GC Ultra/Polaris Ion Trap GC/MSn system equipped with a DB-624 GC capillary
column (inner diameter: 0.25 mm, length: 30 m, film: 1.4 µm, 6% cyanopropylphenyl/94%
dimethylpolysiloxan, Agilent, Santa Clara, CA, USA). GC–MS chromatograms were ac-
quired in total ion current (TIC) mode of the mass analyzer, and then extracted at one
or two specific m/z values for analyte quantification. Data acquisition and processing
were carried out using Xcalibur™ 3.0 software (ThermoFisher Scientific, San Francisco,
CA, USA). Furthermore, for the determination of RIs, SAK-100-1 and SMA-200-1 (Agilent,
Santa Clara, CA, USA) analytical standards containing C5 to C12 alkanes were used. Gas
samples were prepared, spiked with methanolic solution of C5-C12 alkanes and retention
times of each alkane were determined.

4.3. Data Pre-Processing and Analysis

After GC/MS analysis, all raw data were converted to mzml files using ProteoWizard,
and subsequently the converted files were imported into XCMS Online software (XCMS
Online version 3.7.1) (https://xcmsonline.scripps.edu) for feature detection, alignment
and retention time correction. The raw data processing was carried out using the following
parameters: general: Rt, format: minutes, polarity: positive, feature detection: centWave,
ppm: 900, minimum peak width: 5, maximum peak width: 30, mzdiff: 0.1, signal/noise
threshold: 3, integration method: 1, prefilter peaks: 3, prefilter intensity: 100, noise filter: 0,
Rt. correction: obiwarp, profStep: 1, alignment: bw 1, minfrac: 0.2, mzwid: 0.25, minsamp:
1, max: 500, statistics: statistical test: t-test. All chromatograms were simultaneously
analyzed with identical settings. Selection of the most informative variables (m/z) was
based on statistical criteria (p-value < 0.01, fold change > 2, m/z < 140, Rt < 14.00 min for
Ca+ vs. HC; p-value < 0.05, fold change > 1.1, m/z < 140, Rt < 14.00 min for Ca+ vs. Ca−)
of differentiated peak intensity between patients and controls.

4.4. Identification of Candidate Features and Raw Data Reprocessing

All features identified as differentiated between population groups with the XCMS
analysis were searched for in the raw chromatograms and the corresponding peaks were
identified. The mass spectrum of the identified peaks was studied in comparison with
the National Institute of Standards and Technology (NIST) spectrometric library. Peaks of
compounds corresponding to technical interferences (siloxanes, Tedlar® bag compounds)
were excluded from further analysis. Extracted ion chromatograms were obtained for the
ions identified as significantly differentiated between population subgroups by XCMS anal-
ysis, and were reprocessed by calculation of the areas of the chromatographic peaks in SIM
mode using Thermo Xcalibur™ software. The most discriminatory features were assigned
based on mass spectral similarities to the NIST 2011 mass spectral library. Compounds
were categorized as “probable” (probability > 75%), “possible” (probability 50–75%) and
unknown (probability < 50%). To further confirm the identification of compounds, re-
tention characteristics were examined. Retention times were simulated by using the Pro

https://xcmsonline.scripps.edu
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EZGC Chromatogram Modeler (Restek Corporation, Bellefonte, PA, USA), introducing an
equivalent chromatographic column and an identical temperature program. Simulated
RTs were compared to actual RTs for substances contained in the Restek database. Reten-
tion indices of these compounds were retrieved from the NIST webbook and related to
a fully non-polar column (100% polydimethylsiloxane). Moreover, retention indices for
each compound were experimentally determined. SAK-100-1 and SMA-200-1 (Agilent)
analytical standards with C5 to C12 alkanes were used to calculate the retention indices
from the unknown compounds. Experimental retention indices of these compounds were
calculated according to the following formula:

I = 100 [n + (ti − tn)/(tn+1 − tn)]

I: retention index
n: number of carbons of heading n-alkane peak i
ti: retention time of specific compound i (minutes)
tn, tn+1: retention times of heading and trailing n-alkanes

Normalization of chromatographic peak areas was performed with an external stan-
dard, by dividing instrument response by the geometric mean peak areas of three monoaro-
matic compounds (benzene, toluene and ethyl benzene) of a standard mixture (≈20 ng/L
air each) analyzed on the same day.

4.5. Machine Learning Methods

The machine learning analyses were performed with Waikato Environment for Knowl-
edge Analysis (Weka). For each comparison, group 1 vs. group 2 or cases vs. controls were
analyzed using naive Bayes, logistic regression and random forest methods, with 10-fold
cross-validation. However, random forests consistently outperformed the other algorithms,
therefore, all results are shown for this specific type of algorithm. Feature selection within
the appropriate Weka module was also performed, in order to detect subsets of informative
metabolites that could more efficiently separate the groups from each other. In particular,
feature selection was performed in two steps with a wrapper that evaluates various subsets
of the features (WrapperSubsetEval), using the Best_First method in order to maximize the
performance of the random forest, based on the metric of the area under the curve (AUC).
In the first step, the wrapper functions in a feature selection mode that performs 10-fold
cross-validation. The output of this first feature selection step assesses how many times a
feature has been selected in the 10-fold cross-validations. The features that are selected in at
least 50% of the cross-validations form another subset that is fed into the second step. Thus,
we repeat (in the second step) the feature selection, by starting with the abovementioned
informative subset, and this time the wrapper runs in a feature selection mode that uses
the full training set and selects only a certain final subset of features.
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45. Ulanowska, A.; Kowalkowski, T.; Trawińska, E.; Buszewski, B. The application of statistical methods using VOCs to identify
patients with lung cancer. J. Breath Res. 2011, 5. [CrossRef] [PubMed]

46. Wang, M.; Sheng, J.; Wu, Q.; Zou, Y.; Hu, Y.; Ying, K.; Wang, P. Confounding effect of benign pulmonary diseases in selecting
volatile organic compounds as markers of lung cancer. J. Breath Res. 2018, 12. [CrossRef] [PubMed]

47. Zou, Y.; Zhang, X.; Chen, X.; Hu, Y.; Ying, K.; Wang, P. Optimization of volatile markers of lung cancer to exclude interferences of
non-malignant diase. Cancer Biomark. 2014, 14, 371–379. [CrossRef] [PubMed]

48. Murray, R.A. Limitations to the Use of Solid-Phase Microextraction for Quantitation of Mixtures of Volatile Organic Sulfur
Compounds. Anal. Chem. 2001, 73, 1646–1649. [CrossRef] [PubMed]

49. Yu, A.-N.; Sun, B.-G.; Tian, D.-T.; Qu, W.-Y. Analysis of volatile compounds in traditional smoke-cured bacon(CSCB) with different
fiber coatings using SPME. Food Chem. 2008, 110, 233–238. [CrossRef]

50. Garcia-Esteban, M.; Ansorena, D.; Astiasarán, I.; Ruiz, J. Study of the effect of different fiber coatings and extraction conditions on
dry cured ham volatile compounds extracted by solid-phase microextraction (SPME). Talanta 2004, 64, 458–466. [CrossRef]

http://doi.org/10.1038/srep07312
http://www.ncbi.nlm.nih.gov/pubmed/25482491
http://doi.org/10.3390/s16111891
http://doi.org/10.3390/cancers12051262
http://doi.org/10.1016/j.trac.2015.04.001
http://doi.org/10.1002/0471142727.mb3004s114
http://doi.org/10.1080/05704928.2020.1848857
http://doi.org/10.1002/jssc.201900769
http://doi.org/10.1088/1752-7155/8/2/027105
http://doi.org/10.1039/C3CS60329F
http://www.ncbi.nlm.nih.gov/pubmed/24305596
http://doi.org/10.1016/j.molmed.2015.08.001
http://doi.org/10.1088/1752-7163/ab1789
http://www.ncbi.nlm.nih.gov/pubmed/30965287
http://doi.org/10.1007/s00216-012-6102-8
http://www.ncbi.nlm.nih.gov/pubmed/22660158
http://doi.org/10.1016/j.cca.2010.06.005
http://doi.org/10.1002/bmc.3385
http://doi.org/10.1016/j.jchromb.2019.01.029
http://doi.org/10.1016/j.lungcan.2019.02.012
http://doi.org/10.1016/j.jchromb.2011.09.001
http://doi.org/10.3390/s17020287
http://doi.org/10.1088/1752-7155/10/4/046007
http://www.ncbi.nlm.nih.gov/pubmed/27732569
http://doi.org/10.1016/j.lungcan.2009.03.029
http://doi.org/10.1088/1752-7155/5/4/046008
http://www.ncbi.nlm.nih.gov/pubmed/22071773
http://doi.org/10.1088/1752-7163/aad9cc
http://www.ncbi.nlm.nih.gov/pubmed/30102249
http://doi.org/10.3233/CBM-140418
http://www.ncbi.nlm.nih.gov/pubmed/25171479
http://doi.org/10.1021/ac001176m
http://www.ncbi.nlm.nih.gov/pubmed/11321322
http://doi.org/10.1016/j.foodchem.2008.01.040
http://doi.org/10.1016/j.talanta.2004.03.007


Molecules 2021, 26, 2609 16 of 16

51. Dixon, E.; Clubb, C.; Pittman, S.; Ammann, L.; Rasheed, Z.; Kazmi, N.; Keshavarzian, A.; Gillevet, P.; Rangwala, H.; Couch, R.D.
Solid-phase microextraction and the human fecal VOC metabolome. PLoS ONE 2011, 6, e18471. [CrossRef]

52. Lawal, O.; Ahmed, W.M.; Nijsen, T.M.E.; Goodacre, R.; Fowler, S.J. Exhaled breath analysis: A review of ‘breath-taking’ methods
for off-line analysis. Metabolomics 2017, 13, 110. [CrossRef]

53. Hashoul, D.; Haick, H. Sensors for detecting pulmonary diseases from exhaled breath. Eur. Respir. Rev. 2019, 28, 190011.
[CrossRef] [PubMed]

http://doi.org/10.1371/journal.pone.0018471
http://doi.org/10.1007/s11306-017-1241-8
http://doi.org/10.1183/16000617.0011-2019
http://www.ncbi.nlm.nih.gov/pubmed/31243097

	Introduction 
	Results 
	Characteristics of Study Participants 
	Data Pre-Processing, Selection and Identification of Candidate Features 
	Reprocessing of Raw Chromatographs and Statistical Analysis of Identified/Verified Associations 
	Application of Machine Learning Methods to Estimate the Diagnostic Efficiency of the Breath Analysis 

	Discussion 
	Materials and Methods 
	Participant Recruitment and Breath Sampling 
	Materials, Solid Phase Microextraction and GC–MS Analysis 
	Data Pre-Processing and Analysis 
	Identification of Candidate Features and Raw Data Reprocessing 
	Machine Learning Methods 

	References

