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Abstract

Motivation: In silico approaches often fail to utilize bioactivity data available for orthologous tar-

gets due to insufficient evidence highlighting the benefit for such an approach. Deeper investiga-

tion into orthologue chemical space and its influence toward expanding compound and target

coverage is necessary to improve the confidence in this practice.

Results: Here we present analysis of the orthologue chemical space in ChEMBL and PubChem and

its impact on target prediction. We highlight the number of conflicting bioactivities between human

and orthologues is low and annotations are overall compatible. Chemical space analysis shows

orthologues are chemically dissimilar to human with high intra-group similarity, suggesting they

could effectively extend the chemical space modelled. Based on these observations, we show the

benefit of orthologue inclusion in terms of novel target coverage. We also benchmarked predictive

models using a time-series split and also using bioactivities from Chemistry Connect and HTS data

available at AstraZeneca, showing that orthologue bioactivity inclusion statistically improved

performance.

Availability and implementation: Orthologue-based bioactivity prediction and the compound train-

ing set are available at www.github.com/lhm30/PIDGINv2.

Contact: ab454@cam.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In silico deconvolution is a well-established computational tech-

nique capable of inferring compound activity using similarity rela-

tionships between orphan compounds and identified ligands (Wang

et al., 2013). In this technique, target prediction models can be de-

ployed to produce knowledge-based predictions for new, untested

ligands across a spread of proteins, as shown in Figure 1.

Consequently, it is possible to explore the full bioactivity spectra

across all targets available, to identify patterns present in predicted

space to generate a mode-of-action hypothesis for a previously un-

seen molecular structure (Lavecchia and Cerchia, 2016).

Previous approaches often focus within one species, where bio-

activity information for a single organism is extracted from bioactiv-

ity repositories (Cereto-Massagué et al., 2015; Ivanov et al., 2016).

In this situation, annotations for orthologous protein relationships,

the closest relative of a given gene in a different species, are disre-

garded. Since orthologues share functional similarity and are likely

to share similar bioactivity profiles, the mapping between species
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offers an attractive approach to integrate bioactivity between related

proteins, to improve the chemical space covered (Dimova et al.,

2015). Mapping activity information to other organisms is also

valuable since small molecules of therapeutic interest are frequently

tested in model organisms before in man.

There are relatively few cheminformatics analyses exploring the

impact of incorporating small molecules binding orthologous pro-

teins in a target prediction context (Koutsoukas et al., 2013). One

study illustrated the mapping of compound interactions across

orthologues improves target prediction accuracy, whilst inclusion of

paralogue data was found to worsen the accuracy in some cases

(Gfeller and Zoete, 2015). These findings outline the potential

advantages of integrating orthologue results across species, but out-

line limitations for such approaches and the need for deeper

investigation.

Various Proteochemometric Modeling (PCM) studies incorpor-

ate orthologues to increase the data available for training. One study

combined bioactivities from Rattus norvegicus with human data

points during PCM training, for the identification of novel adeno-

sine receptor ligands (van Westen et al., 2012). Significant amounts

of rat data were available due to the historical role of this species in

adenosine bioactivity experiments. Protein domain annotations

were extrapolated across species for PCM and in silico target decon-

volution during the retrospective discovery of DHFR inhibitors in

Plasmodium falciparum (Paricharak et al., 2015). Models per-

formed with recall and precision values of 79 and 100%, respect-

ively. HomoloGene (Coordinators, 2013) has also been employed to

improve the coverage of target prediction training data, providing 9

565 534 active and 598 923 798 inactive data points for modelling,

spanning 2 882 targets (Mervin et al., 2016).

Other studies conducted analyses into bioactivity space outside

of a target prediction context, analyzing compound-ligand annota-

tions between related targets in distinct organisms (Klabunde,

2007). A systematic search for bioactive small molecules shared by

orthologous targets identified compound-orthologue pairs, covering

938 orthologues, 358 unique targets and 98 organisms (Dimova

et al., 2015). The authors introduced an orthologue compound-

target classification system comprising “organism cliffs” and “po-

tency-retaining” pairs. An analysis of ChEMBL data demonstrated a

highly significant relationship between bioactivities in human and

rat targets (R¼0.71, p<2e-16), although outliers were identified for

targets such as the Histamine H3 receptor (Kruger and Overington,

2012). Other work mined Homo sapiens bioactivity data together

with structural and historical assay space searches, to propose cross-

species targets alongside respective hit compounds for the treatment

of M.tuberculosis (Martı́nez-Jiménez et al., 2013). One study com-

prised generation of phylogenetic and bioactivity tree representa-

tions of kinases, highlighting clustering targets in protein structure

space makes incorrect assumptions about interactions in bioactivity

space (Paricharak et al., 2013). In fact, many factors need to be con-

sidered when performing homology-based bioactivity inference

between kinase targets, illustrating the potential pitfalls of extrapo-

lating ligand interactions between species. Recent advances in the

cheminformatics field have also analyzed the influence of other dis-

parate sources of experimental data, showing that even the inclusion

of data from random assays can improve the performance of models

(Ramsundar et al., 2015).

In this study, we verify the advantages and limitations of leverag-

ing the wealth of orthologue bioactivity data for model generation in

a target prediction setting. We address if it is valid to combine ortho-

logue data over the range of targets with available bioactivities in the

first instance, by extracting bioactivity data from ChEMBL (Bento

et al., 2014) and PubChem (Wang et al., 2009) and explore conflict-

ing annotations between human and orthologue bioactivities. We

analyze the concordance of activity values between binding and func-

tional assays in human and orthologue, to test generalizability across

bioactivity data. Chemical space analysis is conducted to explore the

chemical data added to models. For example, if additional bioactivity

data is too similar to existing training data, these compounds are of

lower value since no new information is gained. If training data is too

dissimilar, singleton bioactivity data points could interfere with the

model by diluting the weight of important features.

Finally, we assess the effect of orthologue-based bioactivity infer-

ence on model performance and translatability, using a time-series

split validation of Random Forest, Naı̈ve Bayes and SVM models,

with a range of hyper-parameters in Scikit-learn (Pedregosa et al.,

2011), before and after the inclusion of bioactive orthologue data.

External validation was performed using compounds from

Chemistry Connect (Muresan et al., 2011) and HTS data available

at AstraZeneca. The realized models and training set are available at

www.github.com/lhm30/PIDGINv2.

2 Materials and methods

2.1 Compound bioactivity data and pre-processing
Bioactive molecules were extracted from ChEMBL_21 for

pChEMBL activity values -Log(Ki/Kd/IC50/EC50) greater than or

equal to ‘5’ (10mm) in binding and functional assays for confidence

scores greater than ‘5’ (to ensure protein complexes are included) as

cut-off for active bioactivity. Percentage activation and inhibition

data was also extracted when the ‘Activity Comment’ was declared

‘active’. The dataset contains 766 515 active data points, spanning

1 651 human targets.

Orthologue data from HomoloGene was extracted for non-

human data points spanning 3 231 targets. Bioactivity data for ortho-

logues were integrated with human bioactivity data with the removal

of duplicate SMILES. A total of 114 960 orthologue compounds are

added to 927 different models (�56% of the targets modeled).

Targets were filtered for a minimum of 10 training compounds before

mapping, to retain proteins encapsulating sufficient chemical space.

Novel models are available after orthologue inclusion due to surpass-

ing this threshold, which are discussed in Section 3.

Fig. 1. Model evaluation and target deconvolution. Bioactivity data is repre-

sented within a matrix of compounds (rows) and targets (columns). Typically,

target prediction models are trained and evaluated per target or column-wise

(blue), i.e. calculate the performance of a target model given the compounds

retrieved. When the models are deployed for target deconvolution (red), the

models are interpreted per compound (row), i.e. to identify the targets pre-

dicted for a compound. In this work, the evaluation of predictive models is

based on the column-wise assessment of predictions for each new com-

pound (shown)
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PubChem was mined for inactive compounds in the same pro-

cedure to (Mervin et al., 2015) resulting in the extraction of 3 630

485 inactives spanning 1 440 targets. A sphere exclusion algorithm

was applied to sample putative inactive compounds for targets with

insufficient numbers of inactives (1: 100 active versus inactive ratio)

using the protocol in (Mervin et al., 2016). 1 491 615 compounds

were sampled in this way for 711 (�43%) targets, producing an in-

active dataset of 5 122 100 molecules.

RDKit (Landrum, 2006) was employed to filter structures with-

out carbon and for atomic numbers between 21 and 32, 36 and 52

and greater than 53, with a molecular weight between 100 and

1 000 Da. Compounds were standardized with ChemAxon

Standardizer (ChemAxon, 2015), with options set to ‘Remove

Fragment’ (keep largest), ‘Neutralize’, ‘RemoveExplicitH’,

‘Clean2d’, ‘Mesomerize’ and ‘Tautomerize’. ChEMBL target-

compound pairs were retained when conflicting inactive bioactiv-

ities arose, since this data is manually curated.

2.2 Target prediction methodology
2 048-bit ECFP_4 binary Morgan fingerprints, radius of 2 atoms,

were generated in RDkit for pre-processed molecules. Scikit-learn

Random Forest (RF) classifiers of ‘5, ‘50’ and ‘500’ trees, with ‘n_

features’ and ‘max_depth’ set to ‘auto’ and ‘class_weight’ set to ‘bal-

anced’, were trained on the fingerprints of active and inactive com-

pounds on a per target basis, whilst supplying the ‘fit’ method the

‘sample_weight’ of the active versus inactive compound ratio.

Bernoulli Naı̈ve Bayes (BNB) models were trained in Scikit-learn

with ‘alpha’ values of ‘1.0’ and ‘0.1’. Lineaer SVM classification

models (SVC) were also trained using Scikit-learn with the kernel set

to ‘linear’ and ‘C’ penalty parameters of ‘1.00e-02’, ‘1.00eþ0’,

‘1.00eþ2’. Platt scaling was performed using the Scikit-learn class

‘CalibratedClassifierCV’ with n_folds set to ‘2’ whilst supplying the

‘sigmoid’ method parameter (Platt, 1999). Platt scaling ensures the

outputs of target models are calibrated to reflect a degree of confi-

dence of the predicted label. This aims to address the applicability

domain, since probabilities from well calibrated classifiers can be in-

terpreted at a confidence level with predictions specified at an ac-

ceptable error rate (Pedregosa et al., 2011).

2.3 Time series split and external performance

evaluation
The Scikit-learn class ‘TimeSeriesSplit’ with ‘n_splits’ set to ‘5’ was used

to perform five-fold time series split cross validation (CV). Chemistry

Connect (Muresan et al., 2011) at AstraZeneca was employed as an ex-

ternal source of bioactivity testing data for activity values (Ki/Kd/IC50/

EC50) less than or equal to 10lM. Duplicate bioactivities to training

data were removed, giving 3061 461 active compounds, covering 572

proteins. 183 099 194 inactive compound-target pairs (distinct from

PubChem) were extracted from 420 AstraZeneca target-based screens,

spanning 88 GPCRs, 77 kinases and 31 proteases. Sphere exclusion

sampled 3 479 469 putative inactive compounds at AstraZeneca, for

targets with insufficient in-house inactivity data. PR-AUC, BEDROC

(‘alpha’¼ ‘20’) (Truchon and Bayly, 2007) and precision, recall and F1-

Scores (at a p(activity) greater than 0.5) were calculated across all folds

per target during internal or external validation.

3 Results

3.1 Exploratory analysis of orthologue bioactivity data
The distribution of orthologue compounds incorporated into models

separated by organism and target class is shown in Supplementary

Table S1, indicating the frequency and distribution of bioactivities

differ between organism and target class. Rattus norvegicus (rat)

and Mus musculus (mouse) contribute the largest number of com-

pounds among the orthologues with 77 156 and 29 119 data points

(�67 and �25%), respectively. Although popular for in vivo studies,

Canis lupus familiaris (dog) comprises fewer orthologue target-

compound pairs (433), due to the smaller number of biochemical

assays conducted in vitro for this species. Rat, mouse and Bos taurus

(bovine) contribute 30 814, 3 485 and 1 563 compounds to GPCRs

(across 185 targets), making it the largest target class in terms of

orthologue compounds included. Ion channels are ranked second,

comprising 22 223 bioactive compounds from orthologues, although

they represent a class where the bulk of mapped data points (20 713

compounds for 116 targets) are derived from rat. The Lyase target

class is dominated by bovine data, which contributes 1 179 of the

1 314 bioactivities from orthologues. 1 101 of these are annotated

for ‘Carbonic anhydrase 4’ (CA4), which originate from the popular

purification method of CA4 extraction from bovine lung tissue

(Scozzafava et al., 2012). NHRs, ranked third, are dominated by

‘Nuclear receptor ROR-gamma receptors’ (RORC), due to a

human-orthologue pair between ‘P51449’ and ‘P51450’, with data

from two PubChem qHTS assays (CHEMBL1614441 and

CHEMBL1614087) comprising 11 781 and 7 452 actives, respect-

ively. For contrast, a ROR training set comprising only human data

would only include 418 active compounds.

Although CA4 and RORC dominate their respective target clas-

sifications with �84 and �96% of orthologue compounds, this

should not de-emphasize the impact of minor amounts of bioactiv-

ity data incorporated into under-represented targets. Indeed, one

important aspect to consider when generating in silico target pre-

dictions are biases towards certain protein classifications due to

the irregular distribution of data points in validated bioactivity

space, which are projected forward into predicted bioactivity

space. For example, GPCRs and kinases are examples of well-

studied target classifications where the abundance of data leads to

their significant representation in the targets modeled. One case for

orthologue inclusion is the potential to relax such biases in pre-

dicted bioactivity space by increasing the numbers of targets sur-

passing the minimum threshold for training data. Supplementary

Table S2 shows there are 51 target models which would otherwise

contain too few actives without bioactivity data from orthologues.

The inclusion of these models alleviates the previous biases of tar-

get classes to some extent via improving the representation of mi-

nority classes, with better representation for hydrolases (þ9.17%),

transporters (þ8.05%) and ion channels (þ7.21%). There are

lower (or no) increases for many previously dominating classes,

such as kinases (þ0.00%), proteases (þ2.14%) and GPCRs

(þ2.49%).

Another application of target prediction is the extension of pre-

dicted bioactivity profiles with gene-pathway and gene-disease asso-

ciations, to better rationalize the mode-of-action of compounds

(Mohamad Zobir et al., 2016). On this topic, we analyzed the im-

pact of the new 51 models, in terms of the improved pathway cover-

age from BioSystems (Coordinators, 2013) and diseases from

DisGeNET (Pi~nero et al., 2017). Results show 62 newly accessible

pathways are available when deploying models, with enhanced

coverage for 1 861 pathways. There are 95 novel diseases with im-

proved coverage for 1 388 annotations (Supplementary Table S3).

Many diseases are well-studied, such as ‘Breast Carcinoma’,

‘Schizophrenia’ and ‘Colorectal Cancer’, highlighting the real-world

significance for using orthologue bioactivity space to expand

coverage.
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This section highlights the potential benefits for including bio-

active orthologues in terms of the proportion of data points avail-

able for modelling and the effect this has on the number of targets,

pathways and diseases encapsulated by the realized models.

3.2 Chemical space of the orthologue data
We next analyzed the ECFP_4 Tanimoto coefficient (Tc) nearest

neighbor (NN) similarity between active compounds in orthologue

and human, since the intention of the orthologue mapping is to also

extend the chemical space modeled. Results of the analysis are

shown in Figure 2a, indicating the inclusion of bioactive orthologues

improves the diversity of training data by incorporating dissimilar

areas of chemical space. Almost half (49.6%) of the compounds

have a Tc NN similarity to human compounds less than 0.4. This is

a surprising degree of dissimilarity, considering one study showed

95% of the actives from ChEMBL have a NN Tc similarity greater

than 0.424 for human targets (Mervin et al., 2015). Results indicate

similarity differs by target classification where the disparate chemis-

try for NHRs, a median Tc of 0.22, can be contrasted with the rela-

tively similar bioactive compounds tested for proteases with a Tc of

0.59. The dissimilar chemistry tested between species may arise

from the varying organism specific ADMET properties dependent

on the specific use of compounds at a given target. We also exam-

ined the similarity of compounds within the groups of orthologues

available for each target, to elucidate intra-group chemical diversity.

Figure 2a shows orthologues are more similar to each other than

when compared to their human neighbor counterparts in Figure 2b,

indicating they may be useful for training since they do not comprise

many singleton compounds.

Here we have shown the chemical space contributed by ortho-

logue data is diverse and novel to existing human training data. We

hence expect that integration of both datasets will add value to the

compound training set to be modeled.

3.3 Conflict analysis of orthologue data
One important question when employing orthologue-based bio-

activity inference is the accuracy of assuming shared bioactivity be-

tween orthologues and human targets. To address this question, we

explored the number of cases when a compound is active in

ChEMBL but represented as inactive in PubChem screens in

orthologue and vice-versa. The two sets of results from the compari-

son between conflicting orthologue active and inactive bioactivities

are shown in Supplementary Table S4.

In total, 1 363 of the 124 540 orthologue bioactivities (spanning

206 HomoloGene protein mappings) have conflicting annotation

with the respective compounds inactive in human, indicating con-

flicting bioactivities in 1.2% of cases according to the analysis pre-

sented here. At the target-mapping level, 650 of the 856 human-

orthologue HomoloGene target pairs (75.9%) do not comprise con-

flicting annotations with inactive compounds.

The top 10 conflicting orthologue active and inactive human bio-

activities are shown on the left of Supplementary Table S4, indicat-

ing the top targets comprise GPCRs (4), NHRs (2) and Ion Channels

(2). The proportion of conflicting bioactivities vary widely between

the top-ranking targets, and absolute numbers of disagreements are

sensitive to the size of existing human data. For example, ‘P35372’

to ‘P33535’, ranked first, comprises 85 conflicting bioactivities,

which is proportionately low compared to the 2 291 orthologues

mapped (�4% conflict). In comparison, ‘Q00613’ to ‘P38532’,

ranked sixth, comprises 38 conflicting bioactivities and a larger pro-

portion of the 46 orthologue actives mapped (�83% conflict).

Multiple sequence alignment was conducted using CLUSTAL

Omega (Version 1.2.4) for the most frequently conflicted targets,

since this is one possible reason for differential activity. The

‘CLUSTAL Sequence Similarity %’ column in Supplementary Table

S4 comprises results from this analysis, indicating high numbers of

conflicting bioactivities are not necessarily correlated with low se-

quence similarity. This observation is likely influenced by the nature

of the alignment, since the active site is unannotated for many top

ranking Uniprot accessions and alignments are forced to reflect

amino acid changes outside ligand binding domains. Our results are

further affected by the requirement for compounds to be tested in

both organisms and for these measurements to show differential ac-

tivity, which is subject to separate testing biases.

The most conflicted target between the human actives and ortho-

logue inactives is the GPCR, ‘Mu-type opioid receptor’ (OPRM1),

comprising HomoloGene mapping between human ‘P35372’ and

rat ‘P33535’. Alignment identifies these two targets as 93.75% simi-

lar, with 7 substitutions within the 400 and 398 amino acid

sequences in the binding domain of both targets. Although these

changes may be responsible for the differential activity and conflict-

ing bioactivity data, this stipulation requires follow-up testing to

corroborate, and the reason for conflicts may also result from

various other factors. One example is annotation error, since

chemogenomic repositories are known to be plagued by both

supplier-specific and repository-specific annotation error rates

(Tiikkainen et al., 2013). Additionally, inactivity mining uses the

‘activity_outcome’ bioactivity flag in PubChem, which has been

shown to comprise conflicting bioactivities with ChEMBL actives

within the same organism (Mervin et al., 2015).

Androgen Receptor (AR) ‘P10275’ to ‘P15207’ is the only

orthologue-target pair within Supplementary Table S4 comprising

X-ray crystal structures for both proteins, affording an opportunity

to superimpose structures between human and orthologue binding

sites to visualize changes responsible for differential activity

(Supplementary Fig. S1). We ascertain the sequences of residues

670–920 within the ligand binding domain are identical in both or-

ganisms, with high structural overlap. Thus, we stipulate AR con-

flicts are due either to flexibility in more distant regions of the

protein, a set of allosteric binding compounds with affinity at the

protein domain not part of the crystal structure (full alignment simi-

larity of 84.44%), or misannotation of compound activity.

Fig. 2. Nearest neighbor analysis. Tanimoto coefficient of ECFP_4 fingerprints

were used to define similarity. (a) Human and orthologue nearest neighbor

similarity indicates the chemical spaces covered by both datasets are dissimi-

lar. This suggests that orthologue data could effectively extend the chemical

space of models. (b) Nearest neighbor analysis indicates orthologues are fre-

quently similar to each other. High intra-group similarity is suited to model-

ling, since this enables models to better identify key features

Orthologue chemical space and its influence on target prediction 75

Deleted Text: S
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx525#supplementary-data
Deleted Text: ,
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx525#supplementary-data
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D;, 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D;, 
Deleted Text: &hx201C;
Deleted Text: &hx0025;&hx201D; 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx525#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx525#supplementary-data
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D;. 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: &hx201C;
Deleted Text: &hx201D; 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx525#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btx525#supplementary-data
Deleted Text: -


In a complementary analysis, we validated the reversed mapping

of orthologue activities, where inactive orthologues from PubChem

are compared to activities from ChEMBL. Overall, 860 of the 3 629

661 inactive compound mappings overlap with actives from

ChEMBL, for 134 of the 420 orthologue target pairs. The top 10

targets from this analysis are shown on the right of Supplementary

Table S4. Nuclear receptor coactivator 3 (NCOA-3) ‘Q9Y6Q9’ is

ranked first, where 138 of the 290 700 mapped inactives have con-

flicting bioactivities with actives (�75.4% overlap).

To test how often differential affinity of ligands between ortho-

logues exists in experimentally confirmed results and the validity of

the orthologue-based bioactivity hypothesis in general, we analyzed

the concordance between human and orthologue pChEMBL values

grouped by the ‘standard_units’, ‘standard_type’ and ‘assay_type’

ChEMBL fields. The results, shown in Figure 3, indicate an overall

R2 of 0.455 between bioactivities observed in human and in ortho-

logues. Overall there is a median pChEMBL discordance of 0.51 be-

tween human and orthologue, which is comparable with the median

discordance of 0.48 observed between laboratory measurements for

proteins within the same organism, and 0.42 after discriminating be-

tween assay type (analysis shown in Supplementary Fig. S2).

Overall, 20 608 of the 21 446 compounds (96%) would be con-

sidered active in both human and orthologue using an activity cut-

off of greater than five. A global pChEMBL concordance analysis

separated by orthologue species, shown in Supplementary Figure S3,

also highlighted that highly concordant affinities in species such as

Gallus and Macaca mulatta can be contrasted with more divergent

affinities such as Arabidopsis thaliana, suggesting which organisms

should be prioritized into target prediction models in the future.

Eight of the ten most discordant pChEMBL values, shown in

Supplementary Table S5, exhibit different ChEMBL confidence

scores between the compared experiments, indicating discordant

measurements may be exaggerated due to comparisons between af-

finity values obtained at protein complexes and isolated proteins. A

docking case study analysis (provided in Supplementary Fig. S4) was

conducted for the Nitric oxide synthase orthologue-target pair

ranked third, since ‘P29475’ and ‘P29476’ comprise X-ray crystal

PDB structures and both activities are annotated for the isolated

protein (ChEMBL confidence scores ‘8’ or ‘9’). CHEMBL526688 is

predicted to bind to different amino acid residues in the human and

rat binding sites, thus we stipulate differential activity is due to dif-

ferent observable amino acid changes and binding dynamics within

the orthologous protein.

On this topic, we sought to analyze the influence of the ‘Stats-

prot-change’ field in the HomoloGene repository, measuring the

ratio of amino acid differences (which is only one possible reason

for differences in bioactivity), and the magnitude of disagreement

between human and orthologue pChEMBL values. Supplementary

Figure S5 shows a binned box plot of ‘Stats-prot-change’ between

the human and orthologue targets and the magnitude of difference

between pChEMBL values. We find no trend (R2 of 0.047) between

the magnitude of pChEMBL discordance and the ratio of amino

acid differences, although there is an increase in median pChEMBL

discordance from 0.490 to 0.550, 0.705 and 1.19 within the ‘Stats-

prot-change’ bins of 0.1, 0.2, 0.3 and 0.4, respectively. One import-

ant aspect to consider when interpreting this analysis is that the

‘Stats-prot-change’ field does not specifically consider the active site

of targets, and a signal responsible for divergence or overlap be-

tween orthologues may not be encapsulated in this metric.

This section indicates the frequencies of bioactivity conflicts are

comparatively low between human and orthologue, and that anno-

tations are overall compatible. We suggest conflicts may also origin-

ate from the method of extraction and annotation error, in addition

to differential affinity between proteins. We also indicate the choice

of species and the ‘Stats-prot-change’ metric could help prioritize

higher confidence bioactive orthologues in the future.

3.4 Time series cross validation split of the models
The CV performance of the RF, BNB and SVC algorithms before

and after the inclusion of orthologue training data are shown in scat-

ter plot Figure 4, distribution shown in Supplementary Figure S6

and in tabular form in Supplementary Table S6. Overall, the results

show that the influence of orthologue inclusion differs both between

and within algorithms due to different hyper-parameter settings. For

example, the SVM (C¼1.0Eþ02) showed the largest improvement

upon orthologue inclusion, with �64% of the models showing sta-

ble or improved predictions with median F1-Score increased from

0.61 6 0.35 to 0.67 6 0.34. Conversely, only �40% of the SVM

(C¼1.0) target prediction models showed improved or stable per-

formance, with a decreased median F1-Score from 0.84 6 0.25 to

0.81 6 0.25 (which is particularly influenced by decreased median

recall from 0.78 6 0.26 to 0.72 6 0.25), highlighting the extent that

the hyper-parameter selection influences the benefit of orthologue

Fig. 3. Correlation of human and orthologue pChEMBL values. Bioactivity cor-

relation varies between units of measurement and the type of assay. 21 446

compounds are tested in human and orthologue binding (blue) and func-

tional assays (green). The linear regression line is shown with a 95% confi-

dence interval. R2 reflects correlation per Unit

Fig. 4. Five-fold time split cross validation (CV) performance. The influence of

orthologue inclusion varies between algorithms and hyper-parameter

settings
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inclusion and model performance even within the same machine

learning algorithm. In comparison, the RFC showed steady perform-

ance after addition of orthologues across all tested hyper-

parameters, where F1-Score performed within two decimal places

across all 5, 50 and 500 tree hyper-parameter settings. Thus, the

RFC has the highest capacity for maintaining the highest perform-

ance across multiple hyper-parameters despite increasing the num-

ber of data points comprising diverse chemistry from disparate

species.

The distribution of BEDROC performance shows a different be-

havior to the one obtained for F1-Score, since this metric is affected

by orthologue bioactivity to a lesser extent. For example, all eight of

the tested algorithms and hyper-parameter settings demonstrated

similar performance with and without bioactive orthologues within

two percent (three of the eight are identical). This reveals that ortho-

logue inclusion mainly improves models by increasing precision and

recall (and hence F1-Score), but influences the early recognition of

the models to a minor degree. This finding is likely influenced by the

Platt scaling procedure which aims to better calibrate the probability

output by the algorithms, thus models may produce well-adjusted

probabilities with good early recognition (BEDROC) performance

both before and after orthologue inclusion.

Supplementary Figure S7 illustrates internal CV model F1-Score

split by target classification, which enabled us to examine the NHR

target class, since chemical space analysis previously highlighted

that bioactive compounds in orthologue NHRs are both dissimilar

from compounds tested in human and diverse from one another.

Our analysis outlines this protein classification comprises the largest

decrease in F1-Score between all algorithms, with only 25% of mod-

els showing increased or stable performance across all hyper-

parameters (40 out of 160 models tested). Additionally, we have

outlined the number of conflicting bioactivities for the NHR class is

low, with low discordance of pChEMBL values. Based on this

knowledge, we stipulate the observed CV decrease for NHRs is

likely due to the limited number of novel structures with dissimilar

chemistry from actives at each sampling round (rather than the add-

ition of noise from erroneous data points), thus the implemented al-

gorithms are unable to efficiently distinguish orthologue actives

from human inactive training points.

Although some target models are negatively affected by ortho-

logues, this is not automatically a concern for the external applica-

tion of the models since the compounds responsible for performance

decrease will be incorporated into complete training sets, to poten-

tially improve the chemical space of deployed models. We will dis-

sect the performance of these models when extrapolating

predictions to the novel chemistry in the AstraZeneca bioactivity

data, to assess whether orthologues add value to realized models or

form singleton data points confounding the models.

Overall, we show that orthologues incorporate novel chemical

diversity into the training set without a significant negative impact

to performance overall. Results support the view that compounds

active in orthologous targets could enable future predictions to cap-

italize on extended chemical space, to produce superior predictions

with better extrapolation to novel chemistry.

3.5 External validation using AstraZeneca bioactivity

data
We analyzed the performance of the models for AstraZeneca com-

pounds unrepresented in the training data using bioactive com-

pounds from Chemistry Connect and inactive compounds from HTS

screens. The performance from this analysis is shown in the scatter

plot Figure 5, distributions in Supplementary Figure S8 and in tabu-

lar form in Table 1 and Supplementary Table S7. Our findings high-

light decreased performance both before and after orthologue

inclusion compared to CV results (markers towards the bottom left

of the plots), which arises from difficult classification instances

when external testing compounds are distinct from the training set.

Compared to CV, the overall distribution of median F1-Score ex-

ternal validation performance shows stable or improved scores

across all eight of the benchmarked algorithms and hyper-

parameters after incorporation of orthologue bioactivities. In cor-

roboration with CV findings, the scatter plot highlights that the

choice of algorithm and hyper-parameter influences the effect of

orthologue inclusion on model performance to different extents.

The SVM (C¼1.0Eþ02), which was the highest improved algo-

rithm and hyper-parameter for the CV findings, also comprises the

largest F1-Score increase from 0.35 6 0.28 to 0.43 6 0.28 after

including orthologue bioactivity (which is due to increased recall

scores from 0.42 6 0.29 to 0.47 6 0.27). The RFC (Trees¼500)

comprises the second largest improvement in F1-Score performance

from 0.35 6 0.28 to 0.41 6 0.28, which is also the highest perform-

ing class during external validation.

The performances of the benchmarked models split by target

classification are visualized in Supplementary Figure S9. In compari-

son to CV, many of the markers lie above the diagonal line, indicat-

ing benefit of orthologue bioactivity space. Ion channels are the

most improved class overall, with large increases across all eight of

the algorithms and hyper-parameters benchmarked, with the largest

Fig. 5. AstraZeneca external validation performance. Decreased performance

towards the bottom left of the plots arises from difficult classification in-

stances in external testing compounds, for compounds that are distinct from

the training set. In accordance with internal CV, the influence of orthologue

inclusion on performance varies between algorithms and hyper-parameter

settings

Table 1. Averaged F1-Score results for AstraZeneca external

validation

Learner Hyper-parameter Without orthologues With orthologues

BNB Alpha ¼ 0.1 0.33 6 0.29 0.34 6 0.29

Alpha ¼ 1.0 0.35 6 0.29 0.36 6 0.29

SVM C¼ 1.0E-02 0.44 6 0.29 0.46 6 0.30

C¼ 1.0E-00 0.38 6 0.28 0.42 6 0.28

C¼ 1.0Eþ02 0.39 6 0.27 0.42 6 0.27

RFC Trees ¼ 5 0.33 6 0.27 0.36 6 0.27

Trees ¼ 50 0.37 6 0.28 0.40 6 0.28

Trees ¼ 500 0.37 6 0.28 0.41 6 0.28
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increase obtained by the SVM (C¼1.0Eþ02) for F1-Scores from

0.18 6 0.19 to 0.35 6 0.22. We next explored the NHR class, which

was previously outlined as problematic across benchmarked algo-

rithms during CV due to the dissimilar orthologue chemistry that

was not successfully combined into models during time series split

validation. In comparison to CV, the external performance of the

NHR is improved for �53% of the models (more than twice the

number obtained during CV). The largest increase for this class was

observed for the BNB (Alpha¼0.1) models with a median F1-Score

increase of 0.18 6 0.19 to 0.35 6 0.22. This result indicates many of

the previously problematic orthologue compounds have been success-

fully incorporated into the realized models to produce superior per-

formance during AstraZeneca bioactivity external dataset validation.

Although the overall distribution and median scores obtained

from this analysis show general improvement across the breadth of

models, there are many models which are negatively affected by

orthologues across the algorithms and hyper-parameters tested,

which emphasizes the need to individually assess orthologue space

when incorporating this type of bioactivity data points into models.

One reason for decreased performance may be due to the uneven

distribution of orthologues in chemical space. The addition of

singleton compound fingerprints may interfere with the machine

learning algorithm by diluting important features as it attempts to

accommodate islands of activity from orthologue space.

Additionally, larger numbers of orthologues can effectively convert

a human target model into an orthologue model containing fewer

human bioactivities than ones originating from related organisms.

Our results show that combination of orthologue data across all

models should not be performed. Instead, the per-target perform-

ance upon orthologue inclusion for each algorithm and hyper-

parameter should be assessed, to ensure an informed decision is

taken regarding the addition of bioactive compounds from ortho-

logue species into the realized predictors.

4 Discussion

Here we present an in-depth analysis of orthologue bioactivity data

and its relevance and applicability towards expanding compound

and target bioactivity space for predictive studies. We compared the

number of conflicting bioactivities between human actives and

orthologue inactives and vice-versa, indicating annotations are com-

patible in 98.90 and 99.97% of cases. pChEMBL concordance ana-

lysis outlines bioactivity agreement varies between species and

indicates which organisms could be prioritized to supplement future

models. The HomoloGene ‘prot-stat-change’ could be used to re-

move discordant target mappings and could also help direct the pri-

oritization of future bioactivity assays, since higher confidence

annotations with concordance may not require subsequent profiling

in human and vice-versa. Chemical space analysis indicated the

chemistry contributed by orthologue data is both diverse and novel

to existing human training data, suggesting integration of both data-

sets could add value to the training set to be modeled.

We explored the impact of orthologous bioactivity information on

target prediction models using the Random Forest (RF), Bernoulli

Naı̈ve Bayes (BNB) and Support Vector Machine Classifier (SVC) al-

gorithms using five-fold time series cross validation (CV). Overall, re-

sults showed bioactive orthologues incorporate novel and diverse

chemistry into the training set without impacting CV performance,

supporting the view that orthologues enable future predictions to cap-

italize on extended chemical space. External AstraZeneca bioactivity

data showed orthologue inclusion significantly increased performance

across all machine learning algorithms and hyper-parameters, by ena-

bling the realized predictors to access new chemical space. We illus-

trate the influence of orthologues on predictivity varies between

organism and protein classification due to the quantity and diversity

of human and orthologue bioactivities. Ideally, the decision whether

to add orthologues could be considered on a per target basis, con-

sidering the chemical diversity of human and orthologue data and the

biology or disease of interest.
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