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Abstract: Nuclei identification is a fundamental task in many areas of biomedical image analysis
related to computational pathology applications. Nowadays, deep learning is the primary approach
by which to segment the nuclei, but accuracy is closely linked to the amount of histological ground
truth data for training. In addition, it is known that most of the hematoxylin and eosin (H&E)-
stained microscopy nuclei images contain complex and irregular visual characteristics. Moreover,
conventional semantic segmentation architectures grounded on convolutional neural networks
(CNNs) are unable to recognize distinct overlapping and clustered nuclei. To overcome these
problems, we present an innovative method based on gradient-weighted class activation mapping
(Grad-CAM) saliency maps for image segmentation. The proposed solution is comprised of two steps.
The first is the semantic segmentation obtained by the use of a CNN; then, the detection step is based
on the calculation of local maxima of the Grad-CAM analysis evaluated on the nucleus class, allowing
us to determine the positions of the nuclei centroids. This approach, which we denote as NDG-CAM,
has performance in line with state-of-the-art methods, especially in isolating the different nuclei
instances, and can be generalized for different organs and tissues. Experimental results demonstrated
a precision of 0.833, recall of 0.815 and a Dice coefficient of 0.824 on the publicly available validation
set. When used in combined mode with instance segmentation architectures such as Mask R-CNN,
the method manages to surpass state-of-the-art approaches, with precision of 0.838, recall of 0.934
and a Dice coefficient of 0.884. Furthermore, performance on the external, locally collected validation
set, with a Dice coefficient of 0.914 for the combined model, shows the generalization capability of
the implemented pipeline, which has the ability to detect nuclei not only related to tumor or normal
epithelium but also to other cytotypes.

Keywords: nuclei segmentation; histopathology; deep learning; Grad-CAM; semantic segmentation;
instance segmentation; nuclei detection

1. Introduction

In the healthcare scenario, artificial intelligence is exploited in medical imaging as a
powerful tool with which to characterize objects of interest and lesions in anatomical regions
under consideration. Traditionally, pathologists manually analyze numerous biopsies or
tissue samples to diagnose complex pathologies, such as cancer. Even though it is tedious
and time-consuming, this approach remains the gold standard [1,2].
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Computational pathology attempts to overcome the main challenges arising from
manual histological image evaluation, such as inter- and intraobserver variability or the
inability to evaluate the smallest visual features and the time required to examine whole
slide images (WSIs) [1,3,4].

The nuclei of cells provide a great deal of information for the analysis of histopatho-
logical tissue. For instance, immunohistochemistry-marked nuclei can be exploited for the
estimation of cellular proliferation in cancer (e.g., Ki-67). Hence, nuclei segmentation is a
fundamental first step toward the automated analysis of WSIs [5]. However, the difficulties
associated with variable coloring arising from hematoxylin and eosin (H&E)-stained im-
ages, overlapped nuclei, the presence of artifacts, and differences in cell morphology and
texture, represent obstacles for computer-based segmentation algorithms [2,3]. Moreover,
WSIs have very high resolutions and contain an enormous number of nuclei, adding pecu-
liarity to the task [6]. A critical aspect in several computational pathology pipelines is to
achieve accurate segmentation of nuclei both for subsequent extraction and classification of
nucleus features, but also for analyzing cellular distribution, useful for classifying tissue
subtypes and identifying abnormalities [3].

Several studies focused on nuclei detection because of its importance in the pathologic
diagnostic pipeline, in particular in the field of oncology. As an example, nuclei detection
could be helpful to distinguish nuclei undergoing changes, indicating a progression of
squamous epithelium cervical intraepithelial neoplasia [7]. Moreover, the estimation of
tumor cellularity is very important, particularly in the era of precision medicine. Indeed,
bioinformatic pipelines for copy number variation analysis require tumor cellularity as
input and for a correct evaluation of variant allelic frequency [8].

Machine learning-based nuclear segmentation methods are typically the most efficient,
as they can learn to identify variations in the shape and coloration of nuclei. In the semantic
segmentation [9,10] approach, all image pixels are labeled as nuclear or background through
a deep learning model. Nevertheless, these methods often fail to distinguish the different
instances of objects of interest, i.e., nuclei, which then need to be addressed with ad hoc
post-processing techniques, such as clustering [11].

The detection task can be approached by exploiting morphological features. CRIm-
age [12] profits from thresholding as the first step for nuclei detection. Centroids of
segmented nuclei are used as the point of detection. Then, a list of statistics for each
segmented nucleus is utilized as a feature vector, and classification involves a support
vector machine with radial basis kernel. Finally, spatial density smoothing is used to correct
false detections.

LIPSyM [13] introduces the local isotropic phase symmetry measurement, designed to
give high values to cell centers and nearby pixels; on the other hand, it cannot precisely
detect spindle-like and other irregularly shaped nuclei such as fibroblasts and malignant
epithelial nuclei.

In the last several years, convolutional neural networks (CNN) are emerging as the
most effective way to tackle the nuclei detection task. In particular, the spatially constrained
convolutional neural network (SC-CNN) [14] uses spatial regression for localizing the nuclei
centers; the regression in SC-CNN is model-based, which explicitly constrains the output
form of the network.

Xu et al. [6] used a stacked sparse autoencoder (SSAE) to learn a high-level representa-
tion of nuclear and non-nuclear objects by means of a softmax classifier.

Finally, the R2U-Net-based regression model named “UD-Net” [4] is proposed for end-
to-end nuclei detection from pathological images. The recurrent convolutional operations
help the model learn and represent features better than the feed-forward convolutional
operations, and the robustness of the R2U-Net model has been demonstrated previously in
several studies [15].

Methodologies prior to the advent of deep learning demonstrate worse performance
on the nuclei detection task. Moreover, handcrafted feature extraction is a tedious and
complex process, which can lead to different results depending on the experience of the
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feature engineers and domain experts. It is worth noting that CNN-based approaches
require datasets with a distinct label for every nucleus, based on observations made in the
last several years. Simple existing semantic segmentation methods, trained without the
knowledge of different instances, cannot be reliably adopted for nuclei detection.

Many cell nuclei detection methods share a basic approach that includes generating
an intermediate map through a CNN that indicates the presence of a nucleus, called the
probability or proximity map (P-Map) [3,16], or have specialized architectures that are
trained to individuate the centers of the nuclei, such as SC-CNN [14]. Indeed, the P-Map
represents proximities as a monochromatic image: the intensities have high values near the
centroid of the nucleus, and gradually lower going toward the boundaries.

By following the idea of determining a structure similar to a P-Map, we propose a novel
method for nuclei detection, without the need for specialized architectures or handcrafted
feature extraction; rather, only semantic segmentation networks and explainable artificial
intelligence (XAI) techniques are used. The proposed method is quick to train, and is
extensible because it can be plugged on top of existing semantic segmentation networks.

The presence of clustered or overlapped nuclei with semantic segmentation models
can be spotted on visual inspection of the images. In order to overcome this issue, we
exploited the potentialities of the gradient-weighted class activation mapping (Grad-CAM)
for segmentation, which made it possible to highlight the activation of the nucleus class
(compared to the background class), thus obtaining a saliency map with properties similar
to the classic P-Map. The locations of the nuclei are subsequently determined by looking
for local maxima in the activation map. Starting from the identified centroids, it is possible
to associate all the pixels belonging to the considered nucleus, with a proximity criterion.
This model alone, which we denote as nuclei detection with Grad-CAM (NDG-CAM),
was capable of achieving performance in line with state-of-the-art methods. Because the
Mask R-CNN [17] instance segmentation architecture is widely employed and constitutes a
standard baseline for these tasks, we also realized a combined model for further enhancing
the results, surpassing the state of the art.

To summarize, our contributions can be considered as follows: (i) we introduce a
novel detection method for nuclei—NDG-CAM—which exploits Grad-CAM for semantic
segmentation; (ii) we collected and annotated a local dataset of patients diagnosed with
colorectal cancer to show the applicability of the proposed method in a local hospital;
(iii) we examined and compared different state-of-the-art techniques to show the effective-
ness of the proposed approach; (iv) we trained and evaluated an instance segmentation
architecture as the baseline; and (v) we proposed a combined model which, exploiting both
NDG-CAM and Mask R-CNN, can surpass the current literature performance concerning
nuclei detection.

The remainder of the manuscript is organized as follows. Section 2 first describes
the datasets adopted for the analysis. Then, semantic segmentation configurations and
architectures are presented. The NDG-CAM is proposed, and its workflow is delineated.
An instance segmentation is also considered as the baseline. Lastly, implementation details,
the combined model, and the evaluation metrics employed for the analysis are presented.
Results are portrayed in Section 3 and discussed in Section 4. A comparison with other
state-of-the-art approaches is considered here. Lastly, final remarks, conclusions, and ideas
for future works are drawn in Section 5.

2. Materials and Methods
2.1. Datasets

For the tasks of nuclei segmentation and detection, different datasets were considered
in order to find the best-performing model. In particular, we considered the latest and
largest publicly available datasets for nuclei detection and segmentation. Moreover, a local
dataset has been collected, to prove the feasibility of the proposed system on new data
from a local hospital.
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• MoNuSeg [1,18,19]. The cell nucleus segmentation dataset used in this work is pub-
licly accessible from the 2018 Data Science Bowl challenge [20]. The dataset contains
a large number of segmented nuclei images and includes different cell types; there
are 30 training H&E images containing 21,623 hand-annotated nuclear boundaries
from the breast, kidney, prostate, liver, colon, bladder, and stomach. Moreover, there
are also 14 H&E test images containing 7000 nuclear boundary annotations from the
breast, kidney, prostate, colon, bladder, lung, and brain. All images, each of size
1000 × 1000 , were captured at 40× magnification. The nuclear contour annotations
are provided through XML files.

• CRCHistoPhenotypes: Labeled Cell Nuclei Data [14,21]. This publicly available
dataset contains 100 H&E-stained histology images of colon cell nuclei obtained from
WSI of 10 patients with a magnification factor of 20×. Tiles have a size of 500 × 500.
Nuclear annotations are provided through the coordinates of the centroids in .mat
format, resulting in a total of 29,756 annotated nuclei for detection purposes.

• NuCLS [22]. The dataset contains over 220,000 labeled nuclei from breast cancer
images from TCGA, obtained from 125 patients with breast cancer (1 slide per patient)
and captured with a magnification factor of 40×. These nuclei were annotated through
the collaborative effort of pathologists, pathology residents, and medical students.
Data from both single-rater and multi-rater studies are provided. For single-rater data,
there are both pathologist-reviewed and uncorrected annotations. For multi-rater
datasets, there are annotations generated with and without suggestions from weak
segmentation and classification algorithms. We used only the single-rater dataset,
which is already split into train and test sets. The annotations for the single-rater
dataset include 59,485 nuclei and 19,680 boundaries, extracted from 1744 H&E image
tiles of variable dimensions between 200 and 400 pixels.

• Local dataset from Pathology Department of IRCCS Istituto Tumori Giovanni Paolo
II [23]. This consists of 19 H&E image tiles which overall contain more than 6378 nuclei
from patients with colorectal cancer. Images have a size of 512 × 512 and were captured
at 40× magnification. Annotations have been provided by a biologist with experience
in analyzing histopathological data.

Hereafter, we will denote with T1 and V1 the training and test sets of MoNuSeg (D1),
and with D2 the overall dataset of CRCHistoPhenotypes. The Mask R-CNN model has
been trained on the NuCLS (D3) dataset, being the largest publicly available dataset with
annotations formatted for instance segmentation. Because D1 already includes a validation
set, we have used that one for the first validation stage. As an independent external
validation set, we collected other image tiles from the Pathology Department of IRCCS
Istituto Tumori Giovanni Paolo II [23], which will be denoted as V4, in order to assess
the generalization capability of the best semantic segmentation network configuration
individuated with the D1 and D2 datasets, and the Mask R-CNN model trained on the
D3 dataset. Figure 1 summarizes the pipeline implemented for training and validating
the models.

A summary of the details for the employed datasets is reported in Table 1, whereas
sample images are depicted in Figure 2.
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Figure 1. Pipeline adopted for training and validation. D1 and D2 datasets have been used to train
and select the best semantic segmentation network. D3 dataset has been exploited to train the Mask
R-CNN instance segmentation architecture. Finally, external validation has been conducted on the
local validation dataset V4.

Figure 2. Sample images of datasets for nuclei detection. (First column) D1—MoNuSeg [18]; (second
column) D2—CRCHistoPhenotypes [21]; (third column) D3—NuCLS [22]; (fourth column) V4—local
dataset [23].
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Table 1. Summary of datasets for nuclei.

Dataset Publication
Year Organs Resolution Number of

H&E images
Number of

Nuclei
Size

(pixels)
Annotations

Format

MoNuSeg—Train (T1) [1]

2017

breast, kidney, prostate,
liver, colon,

bladder, stomach
40×

30 21,623

1000 × 1000 Nuclei Contours

MoNuSeg—Test (V1) [1]
breast, kidney, prostate,

colon, bladder,
lung, brain

14 7000

CRCHistoPhenotypes (D2) [14] 2016 colon 20× 100 29,756 500 × 500 Nuclei Centroids

NuCLS (D3) [22] 2019 breast 40× 1744 59,485 200–400
per side

Nuclei Contours or
Bounding Boxes

Local (V4) 2022 colon 40× 19 6378 512 × 512 Nuclei Centroids

2.2. NDG-CAM

In this section, we introduce the methodology adopted for NDG-CAM. Several steps
have been carried out. As the first step, a semantic segmentation architecture trained for
nuclear segmentation is required. Different experimental configurations of the datasets
and network architectures have been compared in order to find the most suitable model,
with details reported in Sections 2.2.1 and 2.2.2. Then, the Grad-CAM technique for seman-
tic segmentation, which is still underexplored if compared to Grad-CAM for classification,
has been employed to obtain saliency maps of the nuclei, with higher values of intensity
corresponding to positions nearest to the centroids. Subsequently, a search for local maxima,
combined with post-processing and clustering, allowed for the detection and eventually
instance segmentation of the nuclei. This process is presented in Section 2.2.3. Compared to
specialized architectures, such as those used for instance segmentation, semantic segmen-
tation networks are simpler and faster to train. In addition, our system can be trained if
labels do not distinguish between different nuclear instances, which would not be possible
for instance segmentation models.

2.2.1. Semantic Segmentation Workflow

Starting from the datasets described in the previous sections, the following experi-
ments were carried out, all with images at a size of 512 × 512:

a Train on D2 and validation on V1 at 20× resolution.
b Train on T1 and validation on V1 at 20× resolution.
c Train on T1 and validation on V1 at 40× resolution.

In the first two experiments, images were padded from 500 × 500 to 512 × 512 exploit-
ing the mirror padding. Instead, in the last experiment, the images were padded from
1000 × 1000 to 1024 × 1024 with mirror padding and subsequently divided into 4 tiles of
512 × 512. For each experiment, different deep network architectures were trained and
compared: U-Net [24], SegNet [25], and DeepLab v3+ [26] in three different backbone con-
figurations, namely ResNet18, ResNet50 [27], and MobileNet-v2 [28]. The aforementioned
experiments were carried out in MATLAB R2021a.

2.2.2. Network Architectures

The segmentation phase is a milestone for the detection phase; this step aims to
discriminate between cell nuclei and the background. semantic segmentation architectures
play a role of pivotal importance in deep learning-based medical image analysis [9,29–31].
It is a process that associates a label or a category to each pixel of an input image, thus
allowing the pixelwise spatial localization of each object category appearing in the scene.

In the specific case under analysis, the goal was to segment the cell nuclei in a robust
way, so as to provide satisfactory results even when the algorithm would have been applied
to different images of the same type. For this reason, it was decided to carry out the same
experiments with several convolutional architectures.
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The considered architectures include:

• U-Net [24]. It is a fully convolutional network to perform the semantic segmentation
task. The U-Net architecture consists of a series of encoding layers and contractions
that are used to extract the context of the image, followed by a sequence of symmetrical
decoding layers and expansions to recover the spatial information. In our MATLAB
setting, the network is characterized by 58 convolutional layers; the first layer deals
with a z-score normalization of the inputs, whereas the last one presents the Dice
function as a loss function.

• SegNet [25]. This is another encoder–decoder architecture. In this case, the decoding
blocks exploit max pooling indices received from the corresponding contraction block
to perform the oversampling, instead of using trainable upsampling layers as trans-
posed convolutions. In our MATLAB setting, this CNN consists of 31 layers with a
cross-entropy loss function.

• DeepLab v3+ [26]. This architecture features atrous spatial pyramid pooling (ASPP)
and the encoder–decoder paradigm. The first aspect concerns a particular way of
combining layers of atrous and depthwise convolution, with which the model cap-
tures and concatenates features at different scales. For this network, the backbone is
customizable. Three different basic CNN encoders were used: ResNet18, ResNet50,
and MobileNet-v2. The DeepLab v3+ has 100 layers, of which the last is a softmax
layer that is used to obtain the probabilities that each pixel belongs to the nucleus or
background class; in this case, the chosen loss function is the Dice loss.

An example of semantic segmentation prediction from DeepLab v3+ with backbone
ResNet18 is shown in Figure 3.

Figure 3. Semantic segmentation output for nuclei images. (Left) Original image. (Middle) Ground
truth. (Right) Prediction of experiment (b) with DeepLab v3+ and backbone ResNet18.

2.2.3. Nuclei Detection with Grad-CAM

After the best performing network has been identified, the output returned by the
semantic segmentation was a mask in which the pixels of the input image were classified
into pixels belonging to the foreground, i.e., nucleus, or background class. As mentioned
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previously, this did not allow us to distinguish multiple instances of the same object and
therefore to distinguish multiple nuclei adjacent to each other.

In this scenario, the detection phase begins. In fact, after the semantic segmentation,
post-processing was carried out in order to solve this problem. The first step was to calculate
the Grad-CAM of the input image according to the chosen network. A CNN is often seen
as a black box, or rather, as a model with parameters W that, given an image of input X,
through a function f (X, W), is able to map to the related output y. XAI techniques have
been designed in order to unveil the underlying mechanisms involved in the processing
stages of deep neural networks, and are recently gaining a lot of attention in medical
imaging and clinical decision support systems [32–35].

During the training phase, even if we are capable of achieving high performance
according to the considered metrics, we do not know which image features are more
determinant for the network to make its choices. One of the ways to visually solve this
problem is Grad-CAM [35].

Grad-CAM is typically used in image-classification scenarios [36], but it can also be
extended to semantic segmentation problems [37]. In general, the heatmap Lc for class
c is generated by using ak

c (as defined in Equation (1)) to sum the feature maps Ak, as in
Equation (2).

ak
c =

1
N ∑

u,v

∂yc

∂Ak
uv

(1)

Lc = ReLU

(
∑
k

ak
c Ak

)
(2)

N is the number of pixels and (u, v) are the indices. ReLU is applied pixelwise to clip
negative values at zero, to only highlight areas that positively contribute to the decision
for class c. The difference with the classification task is that for semantic segmentation yc,
the scalar class score, is obtained by reducing the pixelwise class scores for the class of
interest to a scalar [37], as in Equation (3).

yc = ∑
(u,v)∈P

Yc
(u,v) (3)

P is a set of pixel indices of interest in the output layer: in our case, the softmax layer
before the pixel classification layer. Higher values of Lc map indicate which areas of the
image are important for the decision to classify pixels.

In the proposed approach, the activation of the network for the nucleus class was
analyzed, obtaining a probability map with values that we denote as CAM-Map. Therefore,
activations greater in correspondence with the centroids of the nuclei (even when adjacent
to each other) are visible from Figure 4C.

From CAM-Map, we applied a morphological grayscale dilation operator with a
spherical shape factor of radius 7. The result is depicted in Figure 4D. This step allowed
the enlargement of the activation areas so that no false nuclei were identified in the nearby
regions where activations were not high enough compared to the maximum point.

Then, as portrayed in Figure 4E, we proceeded with the calculation of the local
maximum of the regions and the localization of all the connected components, with the
related geometric centroids, which correspond to the identified nuclei.

Once the centroids were found, K-means clustering, with K equal to the number of
connected components, has been exploited to associate the adjacent pixels to each nucleus,
so as to have the overall predicted mask of the original starting image. The final mask is
reported in Figure 4F.
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Figure 4. NDG-CAM Detection workflow. (A) Zone with multiple neighboring instances of nuclei.
(B) Failure to recognize adjacent nuclei. (C) Grad-CAM for semantic segmentation. (D) Dilated image.
(E) Connected components. (F) Detection prediction.

2.3. Instance Segmentation

Object detection involves the detection, with a bounding box, of all the different objects
of interest present in a scene. Instance segmentation further extends this task, by also
considering the problem of delineating a precise mask around each object. Architectures
for object detection are usually divided into one-stage and two-stage models, with the
first being faster and the former being more accurate. Inside the realm of methods for
two-stage object detectors, a pivotal role has been played by architectures from the R-CNN
family [38].

Mask R-CNN evolves the R-CNN family by adding a semantic segmentation branch,
making the model capable of performing instance segmentation [17]. The overall Mask
R-CNN architecture is composed of two parts: the backbone architecture, which performs
feature extraction, and the head architecture, which performs classification, bounding box
regression, and mask prediction.

We employed the Detectron2 [39], a platform powered by the Pytorch framework, that
provides state-of-the-art detection and segmentation algorithms. It includes high-quality
implementations of the most popular object detection algorithms, comprising different
variants of the pioneering Mask R-CNN model. Detectron2 has an extensible design so that
it can be easily employed to implement cutting-edge research projects.

The NuCLS dataset [22] was chosen to train the network, the instance segmentation
model mask_rcnn_R_50_DC5_1x. Annotations were converted into the COCO annotation
format for adoption in the Detectron2 framework.

2.4. Implementation Details

All the semantic segmentation networks have been trained on a laptop with a GeForce
GTX960M. For carrying out the training, the chosen optimizer was SGDM, with a starting
learning rate of 0.05. The learning rate schedule was piecewise with a drop factor of 0.94
and a drop period of 2. L2 regularization parameter was set to 0.0005. With a batch size
of 2, 15 epochs lasted roughly 105 min for the best performing architecture, DeepLab v3+
with ResNet18 as the backbone.
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The Mask R-CNN model, being heavier, has been trained on a Google Colab Pro
environment. With a Tesla P100, 20,000 iterations were carried out in roughly 110 min.
The chosen optimizer was SGDM, as set by default in the Detectron2 environment, with a
starting learning rate of 0.00025.

2.5. Combined Model

In order to obtain the advantages of both approaches, a combined model has
been developed.

It exploits a criterion for obtaining merged outputs from NDG-CAM detection and
Mask R-CNN. In detail, a distance criterion was used to check if a nucleus was found by
only one of the approaches. In that case, the nucleus was simply retained. Instead, if more
nuclei centroids are found in proximity, only the ones found by Mask R-CNN are retained.
The combined methodology has the idea to increase the recall, which is very important
because nuclei detection is the first stage for further analyses.

2.6. Evaluation Metrics

Each semantic segmentation architecture described in Section 2.2.1 was tested in all
three experimental configurations mentioned. In order to assess the goodness of pixelwise
classification performed by semantic segmentation networks, the pixelwise precision, recall,
and Dice coefficient were considered as performance indices. Given pixelwise true positives
(TP), false positives (FP) and false negatives (FN), then precision, recall, and Dice coefficient
can be defined as in Equations (4)–(6), respectively:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Dice =
2 · TP

2 · TP + FP + FN
. (6)

For all these metrics, a higher value denotes a better segmentation result; that is,
predicted masks are more similar to ground truth ones.

Instead, for assessing the detection procedure, we considered two kinds of metrics. The
first is based on the simple calculation of the number of detected nuclei with respect to the
ground truth. The error (ea), defined in Equation (7), is given by the difference in absolute
value between the number of nuclei found and the real number, divided by the latter.
An example of the prediction vs. ground truth result, which is the basis for enumerating
nuclei, is depicted in Figure 5A. Because we were also interested in understanding if our
algorithm was more prone toward overdetection or underdetection, a signed error (es),
defined in Equation (8), was also evaluated:

ea =
|d− g|

g
(7)

es =
d− g

g
. (8)

In these two equations, d denotes the number of detected nuclei, whereas g is the
number of ground truth nuclei.
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Figure 5. Example of calculation of evaluation metrics for object detection. (A) Prediction vs ground
truth. Yellow, ground truth; green, prediction; (B) Differences between prediction and ground truth.
Yellow, detection FN; red, detection FP.

The second category of metrics includes Dice coefficient, precision, and recall for object
detection, which can provide more information about the quality of the detection results.
In this case, we are not simply rewarding our prediction of as many nuclei as are present
in the ground truth, but we also want to ensure that detected nuclei are in the right place.
In order to achieve this result, we need to discover object detection FP and FN, as can be
seen in Figure 5B. In order to determine these quantities, as the first step, we computed the
distance matrix between the centroids of the detected nuclei and the real ones. In order to
decide whether a detection actually corresponds to a nucleus centroid, a distance threshold
ξ was considered, equal to the mean radius of the nuclei of each image [16]. If the distance
between a prediction and a ground truth annotation is less than or equal to ξ, the prediction
is counted as a TP. If more than one detection verifies this condition, the one closest to the
ground truth position is counted as TP and the others as FP. The detections further than ξ
from any ground truth location are counted as FP, and all ground truth annotations without
close detections are marked as FN. Lastly, the following control condition was added. If the
distance between an FP and an FN is less than an ε threshold, set to 6 (a value close to
the nuclear radius), the count of FP and FN will each be decreased by one, whereas TP
will be increased by one. The pseudocode for determining TP, FP, and FN is reported in
Algorithm 1.

In order to assess the statistical significance of the obtained results calculated per case,
we determined the p-value with the two-tailed Wilcoxon signed-rank test. The threshold
for significance has been set to 0.05.
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Algorithm 1: Object Detection TP, FP, FN calculation.
input : gt, the ground truth nuclei centroids, an array of g coordinate pairs

pred, the predicted nuclei centroids, an array of d coordinate pairs
ξ, the mean radius of the ground truth nuclei
ε, the distance threshold // set to 6

output : TP, the true positives
FP, the false positives
FN, the false negatives

g = size(gt)
TP = 0
FP = 0
FN = 0
idxFP = list() // a list of false positive indexes
idxFN = list() // a list of false negative indexes
δ = distance(gt, pred) // the distance matrix
i = 0
while i < g do

v = δ[:, i]
idx = where(v < ξ) // a (possibly empty) array of indexes
if size(idx) == 1 then

TP = TP + 1
else if size(idx) > 1 then

TP = TP + 1
FP = FP + (size(idx)− 1)
idxFP.extend(idx)

else if size(idx) == 0 then
FN = FN + 1
idxFN .append(i)

end
i = i + 1

end
arrFN = f ilter(gt, idxFN) // extract the false negatives
p = 0
while p < size(idxFP) do

a = 0
while a < size(arrFN) do

∆ = distance(pred[p], arrFN [a])
if (∆ ≤ ε) then

FP = FP− 1
FN = FN − 1
TP = TP + 1

end
a = a + 1

end
p = p + 1

end

3. Results

The automatic segmentation of cell nuclei attracted significant interest from the sci-
entific community, as their identification is an important starting point for many medical
analyses based on histopathological images. In this work, for the semantic segmentation
phase, different architectures were elaborated and tested on different datasets, for a total of
15 experiments. For each of them, performance indices were calculated to identify the best
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model with which to proceed for the subsequent phases. From this comparison, it emerged
that the best performance can be obtained by referring to the experimental configuration
(b) defined in Section 2.2.1.

Table 2 reports the results obtained for each network architecture in the seman-
tic segmentation task. For DeepLab v3+, the backbone architecture is included within
square brackets.

Table 2. Performance comparison between considered network architectures for semantic segmentation.

Network Metric Experiment (a) Experiment (b) Experiment (c)

U-Net
DICE

PRECISION
RECALL

66.74 ± 3.44
57.13 ± 8.15
83.56 ± 10.61

65.71 ± 8.57
52.69 ± 11.96
91.65 ± 6.57

60.74 ± 11.65
45.43 ± 11.77
96.46 ± 2.44

SegNet
DICE

PRECISION
RECALL

56.44 ± 9.31
67.09 ± 8.01
52.60 ± 16.20

65.05 ± 6.32
58.93 ± 14.23
81.35 ± 17.69

62.02 ± 12.28
51.67 ± 14.96
85.05 ± 13.24

DeepLab v3+ [ResNet18]
DICE

PRECISION
RECALL

52.21 ± 11.99
76.78 ± 6.60
41.76 ± 13.55

74.23 ± 4.85
76.42 ± 8.69
74.25 ± 11.23

72.17 ± 8.03
62.76 ± 11.78
87.17 ± 5.64

DeepLab v3+ [ResNet50]
DICE

PRECISION
RECALL

57.87 ± 6.88
59.70 ± 6.35
57.10 ± 10.43

61.68 ± 8.75
63.69 ± 7.51
60.71 ± 11.94

65.98 ± 7.84
54.14 ± 13.81
90.95 ± 10.02

DeepLab v3+ [mobilenetv2]
DICE

PRECISION
RECALL

56.64 ± 6.60
66.49 ± 5.56
50.66 ± 10.50

73.01 ± 7.56
73.50 ± 11.76
75.07 ± 10.38

66.31 ± 13.80
57.52 ± 16.31
85.35 ± 9.43

It therefore emerges that the best solution coincides with experiment (b) conducted
with DeepLab v3+ using the ResNet18 network as the backbone. It allowed us to obtain
a pixelwise Dice coefficient of 74.23 ± 4.85%, a precision of 76.42 ± 8.69%, and a recall of
74.25 ± 11.23%.

DeepLab v3+ was hence chosen as the base model to be exploited in the detection
phase. By exploiting the Grad-CAM for semantic segmentation, it was possible to retrieve
nuclei centroids via local maxima of the obtained saliency maps.

On the V1 dataset, the experimental results demonstrated an ea of the identified nuclei
equal to 2.11%, 2.43%, and 11.50% for the NDG-CAM, Mask R-CNN, and combined method,
respectively. When calculated per case, the values for es were 1.84 ± 13.05%, 3.46 ± 6.15%,
and 14.45 ± 11.22%, indicating that the models generally tend to overdetect on this dataset.

In the V4 dataset, the ea had a value of 15.26%, 59.22%, and 14.10% for the NDG-CAM,
Mask R-CNN, and combined method, respectively. When calculated per case, the values for
es were −16.86 ± 13.79%, −60.13 ± 13.88%, and −14.88 ± 12.86%, showing that the models
have a tendency to underdetect on this dataset. In particular, it was noticed that very
small nuclei, such as those of lymphocytes, and elongated ones, such as those of fibrocytes,
were underdetected.

For the detection task, the results are reported in Table 3. In the V1 dataset, NDG-CAM,
Mask R-CNN, and the combined method were capable of achieving a Dice coefficient of
0.824, 0.878, and 0.884, respectively. Thus, the combined method obtained slightly better
results than the other methods. As for the recall, the combined method decisively surpasses
the other approaches, with a value of 0.934.

In the V4 dataset, the combined method proves to be the best, achieving a recall of
0.850 and a Dice coefficient of 0.914. Mask R-CNN performs poorly in this case, with a
recall of 0.403 and a Dice coefficient of 0.573.
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Table 3. Comparison of detection methods, extending the one proposed by Alom et al. [4] and
Sirinukunwattana et al. [14].

Method Precision Recall Dice

CRImage [12] 0.657 0.461 0.542

CNN [12] 0.783 0.804 0.793

SSAE [6] 0.617 0.644 0.630

LIPSyM [13] 0.725 0.517 0.604

SC-CNN (M = 1) [14] 0.758 0.827 0.791

SC-CNN (M = 2) [14] 0.781 0.823 0.802

UD-Net [4] 0.822 0.842 0.828

NDG-CAM (V1) 0.833 0.815 0.824

NDG-CAM (V4) 0.992 0.841 0.910

Mask R-CNN (V1) 0.867 0.888 0.878

Mask R-CNN (V4) 0.989 0.403 0.573

Combined (V1) 0.838 0.934 0.884

Combined (V4) 0.986 0.850 0.914

The violin plots calculated per tile are reported in Figure 6 for the V1 and V4 datasets,
comparing the NDG-CAM detection method, Mask R-CNN, and the combined approach.
It is worth noting that the Mask R-CNN model works very well on the V1 dataset but
performs poorly on the V4 one. On the other hand, the NDG-CAM and the combined
methods maintain high levels of performance in all scenarios.

Figure 6. Violin plots for the detection metrics calculated per case. (Left) V1 dataset. (Right) V4
dataset. In the figure, ns stands for nonsignificant; * denotes p-value < 0.05; ** indicates p-value < 0.01;
and *** means p-value < 0.001.

In the V1 dataset, the combined model does not show a Dice coefficient that is higher
in a statistically significant way than the Mask R-CNN approach, with a p-value of 0.07.
On the other hand, the recall was much higher for the combined method, resulting in a
p-value < 0.001 for both NDG-CAM and Mask R-CNN. In the V4 dataset, both the NDG-
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CAM and the combined method showed much stronger results than Mask R-CNN, with a
p-value less than 0.001 in both cases for Dice coefficient and recall. Moreover, the combined
approach shows a statistically significant advantage over NDG-CAM (p-value = 0.048) for
the Dice coefficient.

4. Discussion

In order to show the effectiveness of the proposed method, we compared it with
existing state-of-the-art approaches. It has to be noted that our method allows exploiting
semantic segmentation architectures to realize nuclei detection, whereas other approaches
usually involve networks specialized for this task. Several approaches proposed in the
literature try to localize centers of the nuclei or proximity maps to those centers [3,14,16].
These approaches require instance-level annotations, although the results are promising.
On the other hand, the proposed method exploits an XAI technique, Grad-CAM for seman-
tic segmentation, to reconstruct post hoc saliency maps that are related to the centers of the
nuclei, showing that semantic segmentation networks can perform detection tasks without
specialized modifications.

The most widespread metrics employed for assessing algorithms for object detection
involve precision, recall, and Dice coefficient. Namely, they are the metrics that are also
related to the position of the detected nuclei, and not only on the counts.

A quantitative comparison between considered approaches and existing ones from
the literature is presented in Table 3.

From this comparative analysis, it emerges that the proposed method is perfectly
aligned with the state of the art, without the need to implement specific kinds of specialized
loss functions [24] or architectures for detection [17,40].

Indeed, the NDG-CAM method alone was capable of achieving a Dice coefficient for
object detection of 0.824, whereas the UD-Net [4] method, the top-performing method
among the selected from the literature, had a Dice coefficient of 0.828. When the proposed
NDG-CAM detection method is used in combined usage with Mask R-CNN, the recall
increases to 0.934, and the Dice coefficient to 0.884, surpassing the current state-of-the-art
methods for nuclei detection. On the collected external validation set, metrics are even
higher, with a Dice coefficient of 0.914, showing the generalization capabilities of the
proposed workflow.

Qualitative results for the the object detection pipeline involving semantic segmen-
tation and Grad-CAM on the images of the independent external validation set V4 are
depicted in Figure 7. Instead, Figure 8 shows the final detection results on the validation
datasets V1 and V4 with the NDG-CAM method, the Mask R-CNN architecture, and the
combined adoption of both methods.

It can be seen from the images of Figure 7, taken from the V4 dataset, that precision is
very high. Indeed, virtually all detected nuclei are real. Some small or elongated nuclei,
such as lymphocytic or fibrocytic nuclei, are underdetected. This may be due to a lack of
proper training datasets with a large variety of nuclear shapes.



Bioengineering 2022, 9, 475 16 of 19

Figure 7. Examples of the NDG-CAM method on the data from the Pathology Department of IRCCS
Istituto Tumori Giovanni Paolo II. Results are shown for the best architecture (DeepLab v3+ with
ResNet18 backbone). (First row) Original images. (Second row) Semantic segmentation. (Third row)
Instance segmentation after detection of centroids of the nuclei, with each color denoting a different
nuclear instance.

The two methods show similar performance on the V1 dataset, as can be observed
from Figure 8. Mask R-CNN achieves slightly better performance on this dataset, and
considering that it has been trained on a larger training set, the combined method proved
to be superior. From the same figure, it is possible to observe that, in the V4 dataset, Mask
R-CNN does not properly generalize, resulting in the missing of many nuclei (low recall).
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Figure 8. Examples of centroid detection on the validation sets V1 and V4. (Top row) Green, NDG-
CAM method detections; red, Mask R-CNN detections. (Bottom row) Blue, combined method
detections. First and second columns show data from V4, whereas the third and fourth columns
depict data from V1.

5. Conclusions and Future Works

In this work, a novel method was presented with the aim of nuclei identification from
histological H&E images. In our multi-stage pipeline, the first phase involved semantic
segmentation. After various experiments, DeepLab v3+ (ResNet18 backbone) emerged
as the best-performing architecture. Subsequently, because this analysis did not allow
the distinction of multiple instances of the same object, we proposed a novel detection
algorithm, NDG-CAM, which exploited Grad-CAM to solve the problem of separating
the instances. Even without the need to use specialized loss functions or architectures, it
allowed us to achieve satisfactory results in the detection task, comparable to or even better
than more sophisticated training setups [3,6,12,16]. When the method is combined with
the Mask R-CNN instance segmentation architecture, results exceed the state-of-the-art
methods for nuclei detection.

Even though the local validation set includes only colorectal cancer H&E slides, it
has to be considered that in each slide there are several tissue types present (e.g., stroma,
immune infiltration) and the proposed method has the ability to detect nuclei not only
related to the tumor or normal epithelium of colon but also to other cytotypes.

Indeed, we noticed underdetection of lymphocytic or fibrocytic nuclei, and this could
be explained by a lack of datasets enriched in these nuclei subtypes. For such a reason,
a direction for future works includes the collection of a dataset with multiple and balanced
nuclei annotations.

On the clinical side, the proposed workflow could be a valid tool to support patholo-
gists in the detection and reporting of histological samples, thus allowing a considerable
saving of time and resources, besides providing an objective tool that is more reliable than
manual assessment. Future works will concern the classification of the detected nuclei, in or-
der to estimate how many are malignant or subjected to specific lesions, so that important
clinical parameters, such as neoplastic cellularity, can be determined quantitatively.
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