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Abstract

Introduction Ischemia/reperfusion occurs in myocardial infarction, cardiac dysfunction during sepsis,
cardiac transplantation and coronary artery bypass grafting, and results in injury to the myocardium.
Although reperfusion injury is related to the nature and duration of ischemia, it is also a separate entity
that may jeopardize viable cells and ultimately may impair cardiac performance once ischemia is
resolved and the organ heals.
Method The present study was conducted in an ex vivo murine model of myocardial
ischemia/reperfusion injury. After 20 min of ischemia, isolated hearts were perfused for up to 2 hours
with solution (modified Kreb’s) only, solution plus insulin-like growth factor (IGF)-1, or solution plus
tumor necrosis factor (TNF)-α. Cardiac contractility was monitored continuously during this period of
reperfusion.
Results On the basis of histologic evidence, IGF-1 prevented reperfusion injury as compared with
TNF-α; TNF-α increased perivascular interstitial edema and disrupted tissue lattice integrity, whereas
IGF-1 maintained myocardial cellular integrity and did not increase edema. Also, there was a significant
reduction in detectable creatine phosphokinase in the perfusate from IGF-1 treated hearts. By
recording transduced pressures generated during the cardiac cycle, reperfusion with IGF-1 was
accompanied by markedly improved cardiac performance as compared with reperfusion with TNF-α or
modified Kreb’s solution only. The histologic and functional improvement generated by IGF-1 was
characterized by maintenance of the ratio of mitochondrial to nuclear DNA within heart tissue.
Conclusion We conclude that IGF-1 protects ischemic myocardium from further reperfusion injury,
and that this may involve mitochondria-dependent mechanisms.
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Introduction
Cardiovascular diseases are among the leading causes of
death in North America. The most important presentation of
cardiovascular disease is ischemia, which leads to tissue
hypoxia, cellular necrosis, apoptosis and, in severe situations,
organ dysfunction. The main treatment for acute ischemic
heart disease is early vascular reperfusion to restore balance
to cardiac metabolic demands. Although reperfusion is the
foundation of therapy, it may actually initiate further injury to
the myocardium. Although the phenomenon of reperfusion
injury is related to the duration of ischemia, it is a separate
entity and may be more severe than ischemic injury alone
[1,2]. Ischemia/reperfusion injury can be generated in various
cardiovascular diseases/events or therapies, including
myocardial infarction, cardiopulmonary bypass, coronary
bypass grafting, heart transplantation, and coronary throm-
bolytic therapy. It has also been speculated that the mecha-
nism of myocardial dysfunction during septic shock is related
to segmental ischemia and reperfusion in the left ventricular
wall, because the involvement of persistent global ischemia
has been disproved [3,4].

Ischemia results from the absence of or sluggish blood flow
in coronary vessels. This leads to a mismatch between
cardiac metabolic supply and demand. Ischemia of short
duration may contribute to ‘stunned myocardium’ without
tissue injury, but prolonged ischemia results in a deficiency in
energy supplies and waste removal, with eventual initiation of
cellular necrosis and ‘priming’ of the myocytes for apoptosis
[5]. Early restoration of blood flow or reperfusion reduces the
extent of myocardium at risk for death from necrosis.
However, in the presence of prolonged ischemia, reperfusion
itself initiates mechanisms of injury that are fundamentally dif-
ferent and potentially more severe than those of ischemia.

Reperfusion injury is mediated by inflammation and character-
ized by the production of reactive oxygen species (ROS).
Production of ROS may be initiated during the ischemic
phase, generating ‘primed’ myocardium. ROS activate tran-
scription factors, such as nuclear factor-κB, both in cardiac
myocytes and the endothelium; in turn, this initiates transcrip-
tion of genes including those encoding adhesion molecules,
cytokines, coagulation mediators, and proteolytic enzymes
[6]. In coordination with the complement cascade, ROS can
disrupt the integrity of both cardiac myocyte and endothelial
cell membranes [7]. These events can change intracellular
ion homeostasis, resulting in the accumulation of calcium and
metabolic byproducts. These changes increase the activation
of enzymes that are utilized in the processes of necrosis and
apoptosis, and that alter mitochondrial function [8]. At the
tissue level, this is manifested by interstitial edema and dis-
ruption of the tissue lattice. Concomitantly, neutrophils and
other inflammatory cells migrate into the injured zone using
adhesion molecules such as intercellular adhesion
molecule-1 under the stimulation of secreted cytokines and
chemotactic factors. Recruitment and infiltration of neu-

trophils into the injured tissue is accompanied by neutrophil
degranulation and further injury to the border zone of viable
cells. These late cellular events in the myocardium only occur
after reperfusion [2,5,9,10].

Sustainable functioning of the myocardium is the central
objective of therapeutic intervention in myocardial infarction.
Cardiac function and contractility are closely related to
cardiac metabolism and energy production. In cardiomyo-
cytes energy production is related to the number of mitochon-
dria, with these organelles occupying up to 40% of the
cardiomyocyte cytoplasm. Hence, the total number of mito-
chondria in the myocardial tissue can be used as a measure
of cardiomyocyte activity and health [11,12]. In HIV-infected
patients with symptomatic hyperlactatemia receiving anti-
retroviral therapy, Cote and coworkers [13] showed that the
ratio of mitchondrial DNA (mtDNA) to nuclear DNA (nDNA)
can be used as a marker of drug-induced mitochondrial toxic-
ity. During the past century, there have been major improve-
ments in the strategies used to protect myocardial tissue from
ischemia/reperfusion injury [14–18]. However, the mecha-
nism of ischemia/reperfusion injury remains unknown, and our
abilities to treat and prevent it are therefore limited. Using
methods similar to those used by Cote and coworkers [13],
we investigated changes in heart mtDNA : nDNA ratio during
myocardial ischemia and reperfusion phases, and compared
these levels with additional measures of tissue injury.

New markers of myocardial injury may provide mechanistic
insights and reveal therapeutic possibilities in reperfusion
injury. Here, we propose a new method, using insulin-like
growth factor (IGF)-1, of protecting cardiac tissue against
ischemia/reperfusion injury in an ex vivo murine model. The
mechanism underlying this protective effect remains unclear.
However, the integrity of the myocardial tissue lattice was pre-
served and the development of interstitial edema in myocardial
tissue was inhibited. These effects were correlated with
improved perfusion pressure and left ventricular compliance.
We also demonstrated that this IGF-1 mediated protection
was accompanied by preservation of mtDNA content. The rel-
evance of this finding to tissue function is discussed.

Methods
Ischemia/reperfusion model
C57B6 mice (Jackson Laboratories, Bar Harbor, ME, USA),
weighing 25–30 g, were anesthetized using 3% isoflurane
(Baxter, Toronto, Ontario, Canada) for 1 min and maintained
with 1% isoflurane for 3–5 min during cardiac excision. To
prevent coagulation in coronary vessels, 500 U
heparin–sodium (Organon Teknika Inc., Toronto, Ontario,
Canada) was injected intraperitoneally 10 min before induc-
tion of anesthesia. The heart was excised and assembled on
a Langendorff apparatus and perfused with oxygenated (95%
oxygen, 5% carbon dioxide), modified Kreb’s Henseleit
working solution (MK) at 37°C for 3–5 min [19–21] until mon-
itoring revealed that the organ was stable. Transduced left
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ventricular and aortic pressures, and heart rate were moni-
tored continuously using Power lab/8sp detectors (AD Instru-
ments Pty Ltd., Castle Hill, Australia). Retrograde perfusion
was then stopped for 20 min to model global ischemia (a
period of 20 min of ischemia was found to be optimal for the
ischemic phase in this model). The ischemic hearts were then
reperfused with MK solution alone, MK solution plus IGF-1
(10 ng/ml), or MK solution plus tumor necrosis factor (TNF)-α
(10 ng/ml) for 1 or 2 hours. After completion of the reperfu-
sion period, the hearts were divided into halves. One half was
frozen using 2-methylbutane (Isopentane; MERK KgaA,
Darmstadt, Germany) in liquid nitrogen for 80 s for eventual
sectioning and/or DNA isolation. Paraffin embedding of the
other half followed fixation of the sample in 10% formalin.

Histologic evaluation of different groups

Slides of paraffin embedded tissues from the apex to the
basal portion of the hearts were prepared and stained with
hematoxylin and eosin. Serial 400× magnified images were
captured using a Nikon E600 microscope and Spot
Advanced software (version 3.4.2; S. Leffler & Silicon Graph-
ics Inc., Mountain View, CA, USA). Image Pro-Plus software
(MediaCybernetics, Carlsbad, CA, USA) was used to evalu-
ate the severity of interstitial edema around the perivascular
spaces of coronary arteries and veins. Measures were taken
in 10 sections from each of four hearts for all conditions and
time points. The extent of interstitial edema was measured by
selecting a circular area with a radius two times greater than
the vascular space contained within the drawn circle. The
total vascular and perivascular areas were measured. ‘Nontis-
sue’ area was determined by color segmentation images con-
structed by Image Pro-Plus. Total interstitial edema was
determined by subtracting the vascular area from the nontis-
sue area and expressing this as a percentage of total perivas-
cular area: percentage edema = ([nontissue area – total
vascular area]/total perivascular area) × 100%.

Ventricular function assessment

Pressure generated during the cardiac cycle was obtained by
transduction of the aortic cannula and recorded continuously
during ischemia and reperfusion using a Power lab/8sp
detector. Using Powerlab software, the difference between
ex vivo systolic and diastolic pressure (∆Psys/dia) at different
time points was calculated to assess ventricular performance.
Pressure measured during systole reflected contractility, and
diastolic pressure drops reflected relaxation of the ventricle.
Thus, greater ∆Psys/dia values indicate better overall perfor-
mance of the left ventricle.

Detection of creatine phosphokinase

A 1 ml sample of myocardial perfusate was collected every
15 min during the reperfusion phase. The samples were
frozen in a mixture of ethanol and dry ice [22,23]. The level of
creatine phosphokinase (CPK) was measured using Vitros
CK slides (Ortho-Clinical Diagnostics, Rochester, NY, USA).
Briefly, 11 µl perfusate was deposited on the slide and evenly

distributed. Samples were incubated for 5 min at 37°C. After
final interaction, leuco-dye is oxidized by hydrogen peroxide in
the presence of peroxidase to form an insoluble dye. Reflec-
tion densities are monitored during incubation, and the rate of
change in reflection density is then converted to enzyme
activity by using 670 nm wavelength in the Vitros Chemistry
250 System.

Mitochondrial/nuclear DNA assay

Frozen hearts embedded in opaque tissue fixation material
were thawed, cut into small pieces (approximately 3 mg), and
then placed into lysis buffer. DNA was extracted using the
Qiagen DNA isolation kit (Qiagen Canada, Qiagen Inc., Mis-
sissauga, Ontario, Canada), in accordance with the manufac-
turer’s protocol. Extracts were then diluted 1:80 with buffer
AE before performing the mtDNA assay, as reported previ-
ously [11,13,24] but modified for application in murine
tissues as described below.

For each DNA extract, one murine nuclear gene (accessory
subunit of the murine mitochondrial DNA polymerase γ
[ASPG]; Genbank accession number AF177202) and one
murine mitochondrial gene (cytochrome oxidase subunit 1
[COX], Genbank accession number AB042432) were quan-
tified separately with real-time, quantitative PCR, using the
Roche LightCycler (Roche Diagnostics, Indianapolis, IN,
USA). For the mitochondrial (COX) gene, the forward primer
mCOX1F (5′-TCGTTGATTATTCTCAACCAATCA-3′) and the
reverse primer mCOX2R (5′-GCCTCCAATTATTATTGGTAT-
TACTATGA-3′) were used. The oligonucleotides 3′-fluores-
cein-mCOXPR1 (5′-AACCAGGTGCACTTTTAGGAGATGACC-
F3′) and 5′-LC Red 640 3′-phosphate-blocked-mCOXPR2
(5′L-AATTTACAATGTTATCGTAACTGCCCATGC-P3′) were
used as hybridization probes. For the nuclear (ASPG) gene,
the forward primer mASPG1F (5′-GGAGGAGGCACTTTC-
TCAGC-3′) and the reverse primer mASPG2R (5′-GAAGAC-
CTGCTCCCTGAACAC-3′) were used. The oligonucleotides
5′-flourescein-mASPGPR1 (GCGCTTTGGACCTTTGGG-
TGTAG-F3′) and mASPGPR2 (5′L-GTTACGAAAGAACCT-
AGCCTCACAGTGGT-P3′) were used as hybridization
probes. PCR reactions and amplification cycles were per-
formed as described elsewhere [13].

A standard curve consisting of serially diluted mouse DNA
(30 000, 6000, 1200, 240 and 48 nuclear genome equiva-
lents) were included in each run. The same standard curve
was used to quantify both the nuclear (ASPG) and the mito-
chondrial (COX) genes. mtDNA and nDNA genes were
assayed in duplicate. Results of the quantitative PCR assay
were expressed as the ratio of the mean value of the dupli-
cate mtDNA measurements to the mean value of duplicate
nDNA measurements. As a further quality control, a mouse
DNA extract with a mtDNA : nDNA ratio known to be high,
and an extract with a mtDNA : nDNA ratio known to be low
were included in every run. Repeat sample and intrasample
variations were under 5%.
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Statistical analysis

Values are expressed as mean ± standard error. P < 0.05 was
considered statistically significant.

Results
Perivasular interstitial edema and tissue lattice
integrity
The cellular integrity of the myocardium was well preserved in
the tissue of hearts reperfused with IGF-1 (Fig. 1). The area of
interstitial edema in hearts treated with IGF-1 plus MK was
21 ± 4%, as compared with 34 ± 6% and 49 ± 5% for reper-
fusions with MK only and MK plus TNF-α, respectively. Rep-
resentative tissue histology images are presented in Fig. 1
and were similar throughout the four hearts and in all condi-
tions. Additional histology observations included an increased
number of shrunken, contracted myocytes with dense pyc-
notic nuclei with MK plus TNF-α reperfusion as compared
with perfusate containing IGF-1. Using single factor analysis
of variance (ANOVA), the differences in percentage edema
between groups were statistically significant (P < 0.05).

Insulin-like growth factor-1: improvement in
myocardial performance during reperfusion

Cardiac performance was determined by calculating the
pressure difference between systole and diastole (i.e.
∆Psys/dia) at set time points. The systolic and diastolic pres-
sures were determined by taking the average values from a
window around the respective time points. Performance is
then a measure of both contractility (stroke volume and
force of left ventricular contraction, manifesting as systolic
pressure) and diastolic function, or relaxation of the left ven-
tricle (a reduction in diastolic pressures). Improved perfor-
mance is manifested by a widening in ∆Psys/dia. Pressure
monitoring demonstrated that cardiac performance
increased from 0 to 40 min of reperfusion for all conditions
(Fig. 2). After 40 min of reperfusion, cardiac performance
arrived at a plateau and became negative for the remaining
minutes for the MK alone and the MK plus TNF-α reperfu-
sions. With reperfusion with MK plus TNF-α the difference
between systolic and diastolic pressure (∆Psys/dia) initially
increased to 6.8 ± 0.7 mmHg as compared with reperfusion
with MK alone (5.1 ± 0.6 mmHg). However, reperfusion with
IGF-1 generated a ∆Psys/dia that was significantly greater
(13.8 ± 1.2 mmHg) than that with TNF-α (6.8 ± 0.7 mmHg)
by 20 min. This gain in cardiac performance was maintained
up to 120 min of reperfusion with IGF-1. The enhanced per-
formance was reflected in improvements in both systolic
and diastolic pressures. The late descent in slope at
120 min of reperfusion with IGF-1 was similar to that occur-
ring with reperfusion with MK alone and with MK plus TNF-
α, but may relate to ex vivo conditions other than the
ischemia time and the reperfusion solution. A paired, two
sample t-test for means between groups demonstrated a
statistically significant difference between IGF-1 and MK
alone and MK plus TNF-α (P < 0.005).

Low creatine phosphokinase level in insulin-like
growth factor-1 treated hearts

Collected perfusate from hearts treated with IGF-1, at all
reperfusion time points, contained significantly lower quanti-
ties of detectable CPK (34.6U/l) than did perfusate from TNF-
α treated hearts (113.6U/l). This is shown as an average for
all time points in Fig.3. Single factor ANOVA revealed a statis-
tically significant difference between groups (P<0.005).

Ratio of mitochondrial to nuclear DNA

IGF-1 maintained or improved the mtDNA : nDNA ratio during
reperfusion of ischemic myocardium as compared with
control reperfusion with MK alone. There was a significant dif-
ference between all test groups (baseline, ischemia, reperfu-
sion with MK alone, and reperfusion with MK plus IGF-1) in
the determined mtDNA : nDNA ratio (P < 0.05, by ANOVA).
Based on previous work, it was thought useful to test the
utility of mtDNA : nDNA ratio to assess the ‘cellular health’ of
ischemic and reperfused myocardial tissues [11,12]. How
IGF-1 preserves mtDNA : nDNA ratio and if this also means
intact oxidative mitochondrial function that promotes cellular
viability remains to be investigated.

We found that IGF-1 appeared to protect heart tissue against
a reduction in the mtDNA : nDNA ratio, which was accompa-
nied by improved histologic grading and improved organ
function in terms of contractility. A reduction in this ratio may
represent either necrosis of at-risk tissue or a reduction in
mitochondrial number (mitoptosis) after the initial stimulus

Available online http://ccforum.com/content/7/6/R176

Figure 1

Representative images of hematoxylin and eosin stained sections from
murine hearts subjected to ischemia/reperfusion. Images are of control,
ischemia without reperfusion, and reperfusion with modified Kreb’s
Henseleit working solution (MK) alone, MK plus tumour necrosis factor
(TNF)-α, and MK plus insulin-like growth factor (IGF)-1, both at 1 and
2 hours. Note the preservation of cellular and structural elements and
the lack of interstitial edema in the IGF-1 reperfused heart.
Magnification for all images: 400×.
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(ischemia) followed by subsequent reperfusion (Fig. 4). Such
a reduction was noted with reperfusion with MK alone after
the initial increase in mtDNA : nDNA ratio that occurred after
ischemia alone without reperfusion. Because this model uti-

lized a cell-free perfusate, the mtDNA : nDNA ratio is not con-
founded by potential contributions from immune cells – a
point that has been raised as a possible explanation for
changes in mtDNA : nDNA ratio.

Discussion
Despite a range of clinical interventions, our ability to prevent
reperfusion injury after disruption of blood flow to vascular

Figure 2

Determination of cardiac performance. (a) Tracings from continuous monitor recordings obtained during ischemia and reperfusion. Each tracing
demonstrates the aortic and left ventricular transduced pressure over time. The mid-point in the tracing is at 20 min of reperfusion. The conditions
are modified modified Kreb’s Henseleit working solution (MK) alone, MK plus tumour necrosis factor (TNF)-α, and MK plus insulin-like growth factor
(IGF)-1. (b) Determination of cardiac performance is as described in the Methods section (see text) and includes calculation of the pressure
gradient between the systolic and diastolic pressure transductions from the aorta and left ventricle. As demonstrated, reperfusion with IGF-1
generates a significant improvement in cardiac performance at all time points. Analysis demonstrated a significant difference between reperfusion
with IGF-1 plus MK as compared with MK alone and MK plus TNF-α (P < 0.005).
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Figure 3

Measured creatine phosphokinase in perfusate from reperfused murine
hearts. Hearts were prepared for Langendorf ex vivo reperfusion and
perfused until the monitored heart rate and pressure were stable
(approximately 3–5 min); then they were subjected to 20 min of
ischemia followed by reperfusion. Perfusate solution was collected
(approximately 1 ml/4 min) around each time point for determination of
CPK activity. For all time points, tumour necrosis factor (TNF)-α
reperfusion generated a significant elevation in the detectable amount
of CPK activity relative to that detected with insulin-like growth factor
(IGF)-1 reperfusion (P < 0.005, by analysis of variance).
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Determination of mitochondrial DNA (mtDNA) : nuclear DNA (nDNA)
ratio. The mtDNA : nDNA ratio was determined for the following
conditions: control; ischemia without reperfusion; modified Kreb’s
Henseleit working solution (MK) alone for 1 hour; MK alone for 2 hours;
MK plus insulin-like growth factor (IGF)-1 for 1 hour; and MK with
insulin-like growth factor (IGF)-1 for 2 hours. The number within each
histogram represents the number of hearts processed for that
condition. The values for mtDNA : nDNA ratio in the controls, ischemic
myocardial tissue, and either reperfusion group (MK or IGF-1) were
significantly different from each other (P < 0.05).
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beds remains disappointing. An appreciation of the mecha-
nism of ischemia/reperfusion injury is central to development
of better treatments. In the present study we demonstrated
that IGF-1 can lessen reperfusion injury following an initial
ischemic insult.

This effect of IGF-1 on the ischemic myocardium was sup-
ported by histologic evidence of improved tissue and cellular
integrity, including markedly less interstitial edema around the
perivascular spaces. In this model, ischemic myocardium
treated with IGF-1 had significantly lesser amounts of
detectable CPK than did myocardium treated with TNF-α,
suggesting reduced cellular injury. This is also consistent with
the cardiac performance and left ventricular contractility of
IGF-1 treated hearts, that exhibited a greater ∆Psys/dia. It
should be noted that the detectable CPK levels would not be
above the normal range as determined for human whole
blood samples. However, there was considerable histologic
evidence of tissue damage in the TNF-α treated hearts, sug-
gesting the relative insensitivity of CPK in detecting lesser
myocardial injuries. A more sensitive marker would be valu-
able not only for studying the mechanism that underlies reper-
fusion injury but also for evaluating the efficacy of therapeutic
interventions. This is particularly true when one considers the
segmental and intermittent ischemic/reperfusion zones that
characterize dysfunctional myocardium in sepsis. The initial
improvement in contractility, observed under all conditions of
reperfusion, was probably the result of a new supply of nutri-
ents after the ischemic period, including oxygen. The addition
of IGF-1 significantly augmented this improvement in left ven-
tricular pressure generation and relaxation (thus increasing
∆Psys/dia). This improvement was maintained throughout the
period of reperfusion.

Myocardial performance at the cellular level is associated
with the number or functional capacity of mitochondria. To
investigate indirectly whether mitochondrial function may rep-
resent a marker of this beneficial effect of IGF-1, we deter-
mined the mtDNA : nDNA ratio in relation to myocardial
function. Although not appreciated clinically, ischemia and
reperfusion are two distinct periods [10,14,16,25,26]. The
ischemic period has been described as ‘priming’ cardiac
myocytes for either necrotic or apoptotic death. A marked
increase in mtDNA : nDNA ratio was detected in the ischemic
myocardium relative to baseline control levels. Apoptosis has
been found to be an event that requires energy [27,28].
Whether this increased mtDNA : nDNA ratio indicates an
increase in the number of mitochondria per cell or an
increase in the genome copy number per mitochondria
remains to be determined.

Myocardial reperfusion injury, as a separate event, can
increase the extent of injury beyond that caused by ischemia
alone. It has been shown that modification of solutions or
other conditions during the reperfusion phase can alter the
extent of cellular and functional damage to the myocardium.

We determined that the nature of the reperfusate can affect
mtDNA : nDNA ratio. Reperfusion with MK alone resulted in a
reduction in mtDNA : nDNA ratio toward baseline values. This
may reflect either mitochondrial mitoptosis in damaged and
‘primed’ tissues, or necrotic loss of similar cells that were
‘primed’, resulting in elevated mtDNA : nDNA ratio after
ischemia. The net effect would be that the remaining tissue is
spared and should reflect baseline tissue. However, a
mtDNA : nDNA ratio that does not differ from baseline does
not indicate that the tissue is working normally. In fact, histol-
ogy and contractility determinations demonstrated that the
heart had sustained significant tissue damage and was dys-
functional after MK reperfusion. With IGF-1 reperfusion this
reduction in mtDNA : nDNA ratio was prevented, suggesting
that the extent of injury is not associated with elevated
mtDNA : nDNA ratio alone. In fact, after ischemia/reperfusion,
it was found that a normal mtDNA : nDNA ratio early after
reperfusion predicted significant tissue injury. The patterns of
mtDNA : nDNA ratio, as seen in this model, may prove useful
in future investigations of possible mitochondria-related
mechanisms of reperfusion injury.

IGF-1 can affect cardiomyocyte contractility through its
receptor – a heterotetrameric protein with intracellular tyro-
sine kinase activity [29]. Downstream signals after receptor
activation include Shc, Crk and phospholipase C, and activa-
tion of phosphatidylinositol-3 (PI3) kinase. Guse and cowork-
ers [30] demonstrated that IGF-1 can increase PI3 levels in
rat cardiomyocytes. Through its action on PI3 kinase, IGF-1
can affect both contractility [31] and apoptosis [32]. The
action of IGF-1, as demonstrated in our myocardial
ischemia/reperfusion model, may occur via PI3 kinase and/or
effects on mitochondria. Increases in cardiomyocyte calcium
levels and cardiomyocyte sensitivity to calcium [33] have
been demonstrated to effect cardiac performance. Alteration
in calcium metabolism may interfere with the action of
calcium because the filamentous network of cardiomyocytes
and their contractile properties are extremely sensitive to
even small fluctuations in calcium ion concentration [34].

A similar result to that presented here for IGF-1 in myocardial
ischemia/reperfusion has been demonstrated for vascular
endothelial growth factor (VEGF), suggesting that a final
common ‘protective’ pathway may exist [35]. Anwar and
coworkers [36] showed that TNF-α decreased IGF-1 mRNA
and increased IGF-1 binding protein-3 mRNA expression in
vascular smooth muscle cells. These actions of TNF-α effec-
tively reduced free IGF-1 levels and activity, and promoted
endothelial instability. Infusion of a modified IGF-1 reduced
the TNF-α induced apoptosis. An interaction between VEGF
and IGF-1 was characterized in retinal neovascularization in
diabetic patients [37]. The authors of that report described
common mitogen-activated protein kinase 44/42 pathways
that may be related to the mitogenic effect of those two mole-
cules. However, the short time to effect for both IGF-1 and
VEGF in myocardial ischemia/reperfusion models is most
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probable through the Akt pathway [38,39]. Akt activation can
improve contractility through PI3 kinase signaling, and is also
an initiator of protein kinase C activation upstream. Protein
kinase C plays an important role in cardiac function, calcium
metabolism, and contractility. Michell and coworkers [38]
showed that IGF-1 and VEGF both stimulate nitric oxide pro-
duction from endothelial cells and that inhibition of PI3 kinase
by wortmannin and LY29004 decreases nitric oxide produc-
tion and reduces cardiac function. Akt signaling has also
been demonstrated to prevent apoptosis. Whether this
pathway alters the expression of Bcl-2 family members by
IGF-1 exposure remains unknown.

It has been shown that IGF-1 can protect myocardium and
other tissues against apoptosis in various animal models
[40–42]. IGF-1 may also improve cardiac function in diabetic
patients [41–45] and rat models of myocardial infarction and
reperfusion [26]. It has been shown that IGF-1 can protect
myocardium by regulating changes in proapoptotic and/or
antiapoptotic molecules such as Bcl-2, Bcl-XL and Bax.
These are all related to the mitochondrial apoptotic pathway
and mitochondrial energetics [26]. This may explain, in part,
how IGF-1 protects myocardium even in the later phase of
reperfusion injury.

In an ex vivo model of myocardial ischemia and reperfusion
we demonstrated that IGF-1 protects against reperfusion
associated injury. We found this protective effect of IGF-1 to
be correlated with elevated mtDNA : nDNA relative to base-
line, and this may represent a marker of preservation of mito-
chondrial function. This study provides new insights into
ischemia/reperfusion, and suggests possible mechanisms
and treatments for the tissue injury and organ dysfunction
associated with this process. The eventual benefit of this to
our understanding of myocardial dysfunction in sepsis awaits
further study.

Competing interests
None declared.

Acknowledgements
Grant support for this project was provided by the Heart & Stroke
Foundation of British Columbia and Yukon. DRD is a recipient of a
Parker B Francis Fellowship in Pulmonary Research and a Michael
Smith Foundation for Health Research Scholar Award. The authors
thank Yijin Wang and Katherine Craig, MD, for their technical expertise
and contributions in the preparation of this manuscript.

References
1. Ganz W: Direct demonstration in dogs of the absence of lethal

reperfusion injury. J Thromb Thrombolysis 1997, 4:105-107.
2. Schaper W, Schaper J: Reperfusion injury: an opinionated

view. J Thromb Thrombolysis 1997, 4:113-116.
3. Dhainaut JF, Huyghebaert MF, Monsallier JF, Lefevre G, Dall’Ava-

Santucci J, Brunet F, Villemant D, Carli A, Raichvarg D: Coronary
hemodynamics and myocardial metabolism of lactate, free
fatty acids, glucose, and ketones in patients with septic
shock. Circulation 1987, 75:533-541.

4. Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE: The
coronary circulation in human septic shock. Circulation 1986,
73:637-644.

5. Gross GJ, Kersten JR, Warltier DC: Mechanisms of postischemic
contractile dysfunction. Ann Thorac Surg 1999, 68:1898-1904.

6. Kis A, Yellon DM, Baxter GF: Role of nuclear factor-kappaB
activation in acute ischaemia-reperfusion injury in
myocardium. Br J Pharmacol 2003, 138:894-900.

7. Pietri S, Mercier A, Mathieu C, Caffaratti S, Culcasi M: Hemody-
namic and metabolic effects of the beta-phosphorylated
nitroxide 2-diethoxyphosphoryl-2,5,5-trimethylpyrrolidinoxyl
during myocardial ischemia and reperfusion. Free Radic Biol
Med 2003, 34:1167-1177.

8. Park JL, Lucchesi BR: Mechanisms of myocardial reperfusion
injury. Ann Thorac Surg 1999, 68:1905-1912.

9. Kukreja RC, Janin Y: Reperfusion Injury: Basic concepts and pro-
tection strategies. J Thromb Thrombolysis 1997, 4:7-24.

10. Laude K, Thuillez C, Richard V: Coronary endothelial dysfunc-
tion after ischemia-reperfusion: mechanisms and possibilities
for protection [in French]. Therapie 2001, 56:589-593.

11. Benbrik E, Chariot P, Bonavaud S, Ammi-Said M, Frisdal E, Rey
C, Gherardi R, Barlovatz-Meimon G: Cellular and mitochondrial
toxicity of zidovudine (AZT), didanosine (ddI) and zalcitabine
(ddC) on cultured human muscle cells. J Neurol Sci 1997,
149:19-25.

12. Mansouri A, Demeilliers C, Amsellem S, Pessayre D, Fromenty B:
Acute ethanol administration oxidatively damages and
depletes mitochondrial DNA in mouse liver, brain, heart, and
skeletal muscles: protective effects of antioxidants. J Pharma-
col Exp Ther 2001, 298:737-743.

13. Cote HC, Brumme ZL, Craib KJ, Alexander CS, Wynhoven B, Ting L,
Wong H, Harris M, Harrigan PR, O’Shaughnessy MV, Montaner JS:
Changes in mitochondrial DNA as a marker of nucleoside toxic-
ity in HIV-infected patients. N Engl J Med 2002, 346:811-820.

14. Boyle EM Jr, Canty TG Jr, Morgan EN, Yun W, Pohlman TH,
Verrier ED: Treating myocardial ischemia-reperfusion injury by
targeting endothelial cell transcription. Ann Thorac Surg 1999,
68:1949-1953.

15. Condorelli G, Drusco A, Stassi G, Bellacosa A, Roncarati R, Iac-
carino G, Russo MA, Gu Y, Dalton N, Chung C, Latronico MV,
Napoli C, Sadoshima J, Croce CM, Ross J Jr: Akt induces
enhanced myocardial contractility and cell size in vivo in
transgenic mice. Proc Natl Acad Sci USA 2002, 99:12333-
12338.

16. Lozza G, Conti A, Ongini E, Monopoli A: Cardioprotective
effects of adenosine A1 and A2A receptor agonists in the iso-
lated rat heart. Pharmacol Res 1997, 35:57-64.

17. Schlensak C, Doenst T, Kobba J, Beyersdorf F: Protection of
acutely ischemic myocardium by controlled reperfusion. Ann
Thorac Surg 1999, 68:1967-1970.

18. Todd J, Zhao ZQ, Williams MW, Sato H, Van Wylen DG, Vinten-
Johansen J: Intravascular adenosine at reperfusion reduces
infarct size and neutrophil adherence. Ann Thorac Surg 1996,
62:1364-1372.

19. Headrick JP, Peart J, Hack B, Flood A, Matherne GP: Functional
properties and responses to ischaemia-reperfusion in Lan-
gendorff perfused mouse heart. Exp Physiol 2001, 86:703-
716.

Critical Care    December 2003 Vol 7 No 6 Davani et al.

Key messages

• In an ex vivo model of myocardial ischemia and 
reperfusion, IGF-1 protects against 
reperfusion-associated in jury and improves cardiac
performance

• This protective effect correlates to mtDNA : nDNA ratio
that was elevated with respect to baseline and may
represent a marker for the preservation of 
mitochondrial function

• This study provides new insight into ischemia 
reperfusion and possible mechanisms and treatment
for the tissue injury and organ dysfunction that is 
associated with this process



R183

20. Sumeray MS, Yellon DM: Characterisation and validation of a
murine model of global ischaemia-reperfusion injury. Mol Cell
Biochem 1998, 186:61-68.

21. Wang QD, Swardh A, Sjoquist PO: Relationship between
ischaemic time and ischaemia/reperfusion injury in isolated
Langendorff-perfused mouse hearts. Acta Physiol Scand
2001, 171:123-128.

22. O’Brien PJ, Dameron GW, Beck ML, Kang YJ, Erickson BK, Di
Battista TH, Miller KE, Jackson KN, Mittelstadt S: Cardiac tro-
ponin T is a sensitive, specific biomarker of cardiac injury in
laboratory animals. Lab Anim Sci 1997, 47:486-495.

23. Apple FS: The specificity of biochemical markers of cardiac
damage: a problem solved. Clin Chem Lab Med 1999, 37:
1085-1089.

24. Birkus G, Hitchcock MJ, Cihlar T: Assessment of mitochondrial
toxicity in human cells treated with tenofovir: comparison with
other nucleoside reverse transcriptase inhibitors. Antimicrob
Agents Chemother 2002, 46:716-723.

25. Flood AJ, Willems L, Headrick JP: Coronary function and adeno-
sine receptor-mediated responses in ischemic-reperfused
mouse heart. Cardiovasc Res 2002, 55:161-170.

26. Yamamura T, Otani H, Nakao Y, Hattori R, Osako M, Imamura H:
IGF-I differentially regulates Bcl-xL and Bax and confers
myocardial protection in the rat heart. Am J Physiol Heart Circ
Physiol 2001, 280:H1191-H1200.

27. Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological
phenomenon with wide-ranging implications in tissue kinet-
ics. Br J Cancer 1972, 26:239-257.

28. Kang PM, Haunstetter A, Aoki H, Usheva A, Izumo S: Morpholog-
ical and molecular characterization of adult cardiomyocyte
apoptosis during hypoxia and reoxygenation. Circ Res 2000,
87:118-125.

29. Wang L, Ma W, Markovich R, Chen JW, Wang PH: Regulation of
cardiomyocyte apoptotic signaling by insulin-like growth
factor I. Circ Res 1998, 83:516-522.

30. Guse AH, Kiess W, Funk B, Kessler U, Berg I, Gercken G: Identi-
fication and characterization of insulin-like growth factor
receptors on adult rat cardiac myocytes: linkage to inositol
1,4,5-trisphosphate formation. Endocrinology 1992, 130:145-
151.

31. Cittadini A, Ishiguro Y, Stromer H, Spindler M, Moses AC, Clark
R, Douglas PS, Ingwall JS, Morgan JP: Insulin-like growth
factor-1 but not growth hormone augments mammalian
myocardial contractility by sensitizing the myofilament to Ca2+

through a wortmannin-sensitive pathway: studies in rat and
ferret isolated muscles. Circ Res 1998, 83:50-59.

32. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg
ME: Akt phosphorylation of BAD couples survival signals to
the cell-intrinsic death machinery. Cell 1997, 91:231-241.

33. Ren J, Walsh MF, Hamaty M, Sowers JR, Brown RA: Altered
inotropic response to IGF-I in diabetic rat heart: influence of
intracellular Ca2+ and NO. Am J Physiol 1998, 275:H823-H830.

34. Brandes R, Bers DM: Intracellular Ca2+ increases the mito-
chondrial NADH concentration during elevated work in intact
cardiac muscle. Circ Res 1997, 80:82-87.

35. Luo Z, Diaco M, Murohara T, Ferrara N, Isner JM, Symes JF: Vas-
cular endothelial growth factor attenuates myocardial
ischemia-reperfusion injury. Ann Thorac Surg 1997, 64:993-
998.

36. Anwar A, Zahid AA, Scheidegger KJ, Brink M, Delafontaine P:
Tumor necrosis factor-alpha regulates insulin-like growth
factor-1 and insulin-like growth factor binding protein-3
expression in vascular smooth muscle. Circulation 2002, 105:
1220-1225.

37. Smith LE, Shen W, Perruzzi C, Soker S, Kinose F, Xu X, Robinson
G, Driver S, Bischoff J, Zhang B, Schaeffer JM, Senger DR: Reg-
ulation of vascular endothelial growth factor-dependent
retinal neovascularization by insulin-like growth factor-1
receptor. Nat Med 1999, 5:1390-1395.

38. Michell BJ, Griffiths JE, Mitchelhill KI, Rodriguez-Crespo I, Tiganis
T, Bozinovski S, de Montellano PR, Kemp BE, Pearson RB: The
Akt kinase signals directly to endothelial nitric oxide synthase.
Curr Biol 1999, 9:845-848.

39. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K,
Franke TF, Papapetropoulos A, Sessa WC: Regulation of
endothelium-derived nitric oxide production by the protein
kinase Akt. Nature 1999, 399:597-601.

40. Reeves I, Abribat T, Laramee P, Jasmin G, Brazeau P: Age-
related serum levels of insulin-like growth factor-I, -II and
IGF-binding protein-3 following myocardial infarction. Growth
Horm IGF Res 2000, 10:78-84.

41. Norby FL, Wold LE, Duan J, Hintz KK, Ren J: IGF-I attenuates
diabetes-induced cardiac contractile dysfunction in ventricular
myocytes. Am J Physiol Endocrinol Metab 2002, 283:E658-
E666.

42. Guan J, Bennet L, George S, Wu D, Waldvogel HJ, Gluckman
PD, Faull RL, Crosier PS, Gunn AJ: Insulin-like growth factor-1
reduces postischemic white matter injury in fetal sheep. J
Cereb Blood Flow Metab 2001, 21:493-502.

43. Boes M, Dake BL, Booth BA, Sandra A, Bateman M, Knudtson
KL, Bar RS: IGF-I and IGFBP-3 transport in the rat heart. Am J
Physiol Endocrinol Metab 2003, 284:E237-E239.

44. Nakao Y, Otani H, Yamamura T, Hattori R, Osako M, Imamura H:
Insulin-like growth factor 1 prevents neuronal cell death and
paraplegia in the rabbit model of spinal cord ischemia. J
Thorac Cardiovasc Surg 2001, 122:136-143.

45. von Lewinski D, Voss K, Hulsmann S, Kogler H, Pieske B: Insulin-
like growth factor-1 exerts Ca2+-dependent positive inotropic
effects in failing human myocardium. Circ Res 2003, 92:169-
176.

Available online http://ccforum.com/content/7/6/R176


