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Abstract: In this paper, a semi-analytical method is adopted to analyze the free vibration characteristics
of composite laminated shallow shells under general boundary conditions. Combining two kinds
of shell theory, that is, first-order shear deformation shell theory (FSDT) and classical shell theory
(CST), to describe the dynamic relationship between the displacement resultants and force vectors,
the theoretical formulations are established. According to the presented work, the displacement and
transverse rotational variables are transformed into wave function forms to satisfy the theoretical
formulation. Related to diverse boundary conditions, the total matrix of the composite shallow
shell can be established. Searching the determinant of the total matrix using the dichotomy method,
the natural frequency of composite laminated shallow shells is obtained. Through several classical
numerical examples, it is proven that the results calculated by the presented method are more accurate
and reliable. Furthermore, to discuss the effect of geometric parameters and material constants on the
natural frequencies of composite laminated shallow shells, some numerical examples are calculated
to analyze. Also, the influence of boundary elastic restrained stiffness is discussed.

Keywords: composite laminated shallow shell; free vibration characteristics; classical and elastic
boundary conditions; general boundary conditions

1. Introduction

The shallow shell is an open shell with a small curvature and radius of curvature compared
with various shell parameters (i.e., length and width). With the development research into composite
materials, composite laminated shallow shells are widely applied in some modern engineering practice
with a high level of intensity and rigidity, for instance, petroleum equipment, aerospace equipment, and
marine equipment. It is worth noting that the composite laminated shallow shells are typically operated
under complicated environmental conditions and subjected to complex boundary conditions. So, it
is particular importance to fully investigate the free vibration characteristics of composite laminated
shallow shells with non-classical boundary conditions.

Through many years of hard work by research scholars, some shell theories have been summarized,
such as classical shell theory (CST) [1–3], first-order shear deformation shell theory (FSDT) [4,5], and
high-order shell theory (HST) [6–10]. CST is the basic shell theory and is known as the simplest
equivalent single layer, which is based on the Kirchhoff–Love hypothesis. To analyze the complex shell
structure, some shell theories were developed along with some assumptions, such as Reissner–Naghdi’s
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shell theory and Donner–Mushtari’s theory. A more detailed description of these theories can be
found in the research by Reddy [11], Leissa [12], and Qatu [13]. The main application area is thin shell
structures. To analyze the thick shell, CST ignores the effect of transverse shear deflection, causing the
calculation of natural frequencies to be inaccurate. To improve the influential impact of transverse shear
deformation, FSDT is conducted. HST can attenuate the dependence of FSDT on shear correction factors;
however, there is a large amount of calculation in the study of the high-order stress resultant force.
Simultaneously, many remarkable researchers have investigated the composite laminated shallow
shell in recent years and published some excellent papers. Ye et al. [14] investigated the free vibration
characteristics of the composite laminated shallow shell under general elastic boundary conditions. The
closed form auxiliary functions are used to transform the displacement variables into standard Fourier
cosine series. Kurpa et al. [15] extended the R-function method to investigate the composite laminated
shallow shells on an arbitrary planform by FSDT. Fazzolari and Carrera E [16] conducted the Ritz
formulation and Carrera unified formulation to investigate the composite laminated doubly-curved
anisotropic shell, and the free vibration response is discussed. Awrejcewicz et al. [17] proposed
R-functions theory and the spline-approximation to study the bending performance of the composite
shallow shell with a static loading boundary condition. Tran et al. [18] presented a static feature of
the cross-ply composite hyperbolic shell panels on Winkler–Pasternak elastic foundation, and the
smeared stiffeners technique was adopted. Biswal et al. [19] discussed the free vibration characteristic
of composite shells consisting of woven fiber glass/epoxy with hygrothermal environments. The FSDT
and quadratic eight-noded isoparametric element are adopted to study the free vibration characteristics
under elevated temperatures and moisture concentrations conditions. Garcia et al. [20] investigated
the effect of polycaprolactone nanofibers on the dynamic behavior of glass fiber reinforced polymer
composites. Garcia et al. [21] investigated the influence of the inclusion of nylon nanofibers on the
global dynamic behaviour of glass fibre reinforced polymer (GFRP)composite laminates. Shao et al. [22]
conducted the enhanced reverberation-ray matrix (ERRM) method to investigate the transient response
of the composite shallow shell. In these studies, the kinetic analysis of composite laminated shallow
shell is proposed to free vibration, and many analytical and computational methods were developed.

These include the Ritz method [23–27], dynamic stiffness method [28], closed-form solution [29–31],
boundary domain element method [32], Meshfree approach [33], Galerkin method [34,35], and finite
element method [36–38].

In recent years, the wave-based method (WBM) has been adopted to investigate the dynamic
behavior of engineering structures in some applications. WBM was first proposed in the work of [39]
to analyze the coupled vibro-acoustic systems and the steady-state dynamics characteristics of the
system concerned. Deckers et al. [40] presented a literature review of WBM research for 15 years. With
the research on structural vibration in recent years, WBM has been adopted in the dynamic analysis for
some engineering structures, such as the dynamic characteristics of cylindrical shell structures, which
many researchers have studied using WBM. Chen et al. [41] analyzed the free and force vibration
characteristics of a cylindrical shell in discontinuity thickness form. Xie et al. [42] conducted WBM to
study the free vibration and acoustic dynamic characteristics of underwater cylindrical shells with
bulkheads. Wei et al. [43] investigated the non-uniform stiffener distribution of a cylindrical shell.
At the same time, as many reinforcements and coupling structures are more common in engineering
applications, the corresponding research is increasing, such as the cylindrical shell coupled elastically
with annular plate and the ring stiffened cylindrical shell with frame ribs [44,45]. Also, the free vibration
characteristics of the composite laminated cylindrical shell have been investigated [46]. Therefore, it is
meaningful to develop an effective method for the general processing ability of composite laminated
shallow shells with general boundary conditions. According to the author’s literature review of related
topics, there has not been any published work with regard to the application of the presented method
to analyze the free vibration characteristics of the composite laminated shallow shell with general
boundary conditions.
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For the first time, the wave-based method is adopted to study the free vibration characteristics for
a composite laminated shallow shell with general boundary conditions. According to the relationship
between the displacement vector and force resultants, the governing equation of composite shells is
established by FSDT and CST. By converting the displacement variable into a wave function form and
the boundary matrices, the total matrix is established. Solving the root of the total matrix determinant
using the dichotomy method, the natural frequencies of composite laminated shallow shells are
calculated. To verify the correctness of the solutions by the presented method, the comparisons of the
current solutions with the results in represented literatures are shown. Furthermore, the influence
of material parameters and geometric constants, such as length to radius ratios, length to thickness
ratios, modulus ratios, and elastic restrained constants, are discussed in some numerical examples.
The main purpose of this paper is to provide a relatively new method for analyzing the free vibration
characteristics of composite laminated shallow shells, which provides a new direction for composite
laminated structure analysis. When studying the vibration analysis of the composite laminated shallow
shell with general boundary conditions, it is easier to obtain the total matrix, and the boundary
conditions are easy to replace. The advantages of the presented method lie in its simplicity, low
computational cost, and high precision.

2. Theoretical Formulations

2.1. The Description of Model

In Figure 1a, the schematic diagrams of the composite laminated shallow shells under elastic
restraint are shown. Lx, Ly, and h express the length, width, and thickness, respectively, of the composite
laminated shallow shells. Rx and Ry indicated the principle curvature radii. In the middle surface of
the model, a global coordinate (o-xyz) is established in the length, width, and thickness directions. For
the kth layer of the composite shell, the distances of top and bottom surface to the middle surface are
denoted as Zk+1 and Zk. For the elastic boundary conditions, there is one set of linear springs (Ku, Kv,
and Kw) and one pair of rotational springs (Kφx and Kφy), which set on two edges, x = 0 and Lx. Through
the changing of two pairs of elastic restrained springs, an arbitrary elastic boundary condition can be
achieved. In Figure 1b, with the changing of the principle curvature radii, the composite laminated
shallow shells have various types, such as plate (i.e., Rx = Ry =∞), cylindrical shell (i.e., Rx = R, Ry =

∞), spherical shell (i.e., Rx = Ry = R), and hyperbolic paraboloidal shell (i.e., Rx = −Ry = R).
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Figure 1. (a): Geometric model of the composite laminated shallow shell with elastic restraint;
(b): geometric model of the composite laminated shallow shell with various curvature types.

2.2. First-Order Shear Deformation Shell Theory (FSDT)

2.2.1. Kinematic Relations and Stress Resultants

This section is divided into subheadings. It should provide a concise and precise description
of the experimental results and their interpretation, as well as the experimental conclusions that can
be drawn.

According to the relationship between the displacement variables and rotation transverses of the
composite shallow shells by FSDT, the displacement variables are shown as follows [13]:

u(x, z, t) = u0(x, t) + zφx(x, t)
v(x, y, t) = v0(x, y) + zφy(x, y)
w(x, z, t) = w(x, t)

(1)

where u0, v0, and w0 are the displacements of the arbitrary point along the x, y, and z directions,
respectively, in the middle surface. φx and φy are the y and x axes transverse rotations, respectively,
and t is a time variable. The linear strain relationship between the change strain and curvature in the
middle surface under the assumption of small deformation is given as follows:

εxx = ε0
xx + zε1

xx
εyy = ε0

yy + zε1
yy

γxy = γ0
xy + zγ1

xy
γxz = γ0

xz
γyz = γ0

yz

(2)
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where {ε0
xx, ε0

yy} are the normal strains of the middle surface, {γ0
xy, γ0

xz, γ0
yz} are the shear stains, and

{ε1
xx, ε1

yy, γ1
xy} are the curvature and twisting changes of the middle surface. The detailed expressed

formulations of the strains and changes are defined as follows:

ε0
xx = ∂u0

∂x + w0
Rx

ε0
yy = ∂v0

∂y + w0
Ry

ε1
xx =

∂φx
∂x ε1

yy =
∂φy
∂y

γ0
xy = ∂v0

∂x + ∂u0
∂y γ1

xy =
∂φy
∂x +

∂φx
∂y

γ0
xz =

∂w0
∂x −

u0
Rx

+ φx γ0
yz =

∂w0
∂y −

v0
Ry

+ φy

(3)

The corresponding stresses expressed by the Hooke’s law are as follows:

σxx

σyy

τxy

τxz

τyz


=



Q11 Q12 0 0 Q16

Q12 Q22 0 0 Q26

0 0 Q44 Q45 0
0 0 Q45 Q55 0
Q16 Q26 0 0 Q66





εxx

εyy

γxy

γxz

γyz


(4)

where Qi j (i, j = 1,2,4,5,6) are the transform coefficients and depend on material parameters; and the
constants Qij (i,j = 1,2,4,5,6), which are associated with the strains and stresses, can be expressed
as follows:

Q11 = E1
1−µ12µ21

, Q12 = Q21 =
µ12E2

1−µ12µ21
, Q22 = E2

1−µ12µ21

Q44 = G23, Q55 = G13, Q66 = G12
(5)

where E1, E2 are the Yong’s moduli and µ12 and µ21 are the Poisson’s ratios. By integrating the stresses
and moments over the cross section and thickness, the relationship between the strains and curvature
in the middle surface is given as follows:

Nxx

Nyy

Nxy

Mxx

Myy

Mxy


=



A11 A12 A16 B11 B12 B16

A12 A22 A26 B12 B22 B26

A16 A26 A66 B16 B26 B66

B11 B12 B16 D11 D12 D16

B12 B22 B26 D12 D22 D26

B16 B26 B66 D16 D26 D66
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

ε0
xx
ε0

yy
γ0

xy
ε1

xx
ε1

yy
γ1

xy


,
{

Qy

Qx

}
= Kc

[
A44 A45

A45 A55

]{
γ0

yz
γ0

xz

}
(6)

where {Nxx, Nxy, Nyy} is the in-plane force resultant, {Mxx, Myy, Mxy} is the bending and twisting
moment resultant, and {Qx, Qy} is the transverse shear force resultant. Kc is the shear correction
factor and the value is set as 5/6. Furthermore, the stretching stiffness coefficients, coupling stiffness
coefficients, and bending stiffness coefficients are given as follows:

Ai j =
N∑

k=1

Qi j(Zk+1 −Zk), Bi j =
1
2

N∑
k=1

Qi j
(
Z2

k+1 −Z2
k

)
, Di j =

1
3

N∑
k=1

Qi j
(
Z3

k+1 −Z3
k

)
(7)

where N is the number of the layers. Zk+1 and Zk are the distance from the top surface and bottom
surface, respectively, to the middle surface of the kth layer. For analysis of the general cross-ply
composite laminates shallow shell, the transform coefficients Q16, Q26 and Q45 are zero. So, the
corresponding stiffness coefficients will be vanished
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2.2.2. Wave Function Solutions

The theoretical equations of the composite shell based on FSDT are given as follows [13]:

∂Nxx
∂x +

∂Nxy
∂y + Qx

Rx
= I0

∂2u0
∂t2 + I1

∂2φx
∂t2

∂Nyy
∂y +

∂Nxy
∂x +

Qy
Ry

= I0
∂2v0
∂t2 + I1

∂2φy

∂t2

Nxx
Rx

+
Nyy
Ry
−
∂Qx
∂x −

∂Qy
∂y = −I0

∂2w0
∂t2

∂Mxx
∂x +

∂Mxy
∂y −Qx = I1

∂2u0
∂t2 + I2

∂2φx
∂t2

∂Myy
∂y +

∂Mxy
∂x −Qy = I1

∂2v0
∂t2 + I2

∂2φy

∂t2

(8)

where Ii (i = 0, 1, 2) are the inertia mass moments. Submitting Equations (3) and (6) into Equation (8),
the force vector and moment resultants can be transformed as displacement variables. Furthermore,
the theoretical equations are follows:

T11 T12 T13 T14 T15

T21 T22 T23 T24 T25

T31 T32 T33 T34 T35

T41 T42 T43 T44 T45

T51 T52 T53 T54 T55





u0

v0

w0

φx

φy


=



0
0
0
0
0


(9)

where Tij (i,j = 1, 2, 3, 4, 5) are the operators of the matrix T in Equation (9), and are shown as follows:

T11 = A11
∂2

∂x2 + A66
∂2

∂y2 −
KcA55

Rx2 − I0
∂2

∂t2 , T12 = (A66 + A12)
∂2

∂y∂x , T13 =
(

A12
Ry

+ A55Kc+A11
Rx

)
∂
∂x

T14 = B11
∂2

∂x2 + B66
∂2

∂y2 +
KcA55

Rx − I1
∂2

∂t2 , T15 = (B12 + B66)
∂2

∂y∂x

T21 = T12, T22 = A66
∂2

∂x2 + A22
∂2

∂y2 −
KcA44

Ry2 − I0
∂2

∂t2 , T23 =
(

A44Kc+A22
Ry

+ A12
Rx

)
∂
∂y

T24 = (B12 + B66)
∂2

∂y∂x , T25 = B66
∂2

∂x2 + B22
∂2

∂y2 +
KcA44

Ry − I1
∂2

∂t2

T31 = T13, T23 = T32, T33 = −A55Kc
∂2

∂x2 −A44Kc
∂2

∂y2 +
(

A11
Rx2 +

2A12
RxRy

+ A22
Ry2

)
+ I0

∂2

∂t2

T34 =
(
−A55Kc +

B12
Ry

+ B11
Rx

)
∂
∂x , T35 = −A44Kc +

B22
Ry

+ B12
Rx

T41 = T14, T42 = T24, T43 = T34, T44 = D11
∂2

∂x2 + D66
∂2

∂y2 −KcA55 − I2
∂2

∂t2

T51 = T15, T52 = T25, T53 = T35, T54 = T45, T55 = D66
∂2

∂x2 + D22
∂2

∂y2 −KcA44 − I2
∂2

∂t2

(10)

For certain cross-ply composite laminated shallow shells under shear diaphragm boundary
conditions, which are set at the opposite supports y = 0 and Ly (u0 = w0 = φx = Nyy = Myy = 0), the
generalized displacement variables are transformed in the wave function form as follows:

u(x, y, t)
v(x, y, t)
w(x, y, t)
φx(x, y, t)
φy(x, y, t)


=
∞∑

n=0



U0eiknx sin(Kyy)e− jωt

V0eiknx cos(Kyy)e− jωt

W0eiknx sin(Kyy)e− jωt

Φxeiknx sin(Kyy)e− jωt

Φyeiknx cos(Kyy)e− jωt


(11)

where Ky = nπ/Ly is the y direction modal wave number and kn is the wave number in the x direction.
U0, V0, W0, Φx, and Φy are the corresponding displacement amplitude variables of the nth mode for
the composite laminated shallow shells.
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Submitting the wave function solutions of the displacement variables into Equation (9), the
governing equation can be obtained as follows:

L11 L12 L13 L14 L15

L21 L22 L23 L24 L25

L31 L32 L33 L34 L35

L41 L42 L43 L44 L45

L51 L52 L53 L54 L55





U0

V0

W0

Φx

Φx


=



0
0
0
0
0


(12)

where Lij (i,j = 1, 2, 3, 4, 5) are the governing equation coefficients of Equation (12), given as follows:

L11 = −kn
2A11 −

A55Kc
Rx2 −Ky

2A66 + I0ω2, L12 = −iknKy(A12 + A66), L13 = ikn

(
A11
Rx

+ A12
Ry

+ KcA55
Rx

)
L14 = A55Kc

Rx
− kn

2B11 −Ky
2B66 + I1ω2, L15 = −iknKy(B12 + B66)

L21 = −L12, L22 = −Ky
2A22 −

KcA44
Ry2 − kn

2A66 + I0ω2, L23 = Ky

(
A22+A44Kc

Ry
+ A12

Rx

)
L24 = iknKy(B12 + B66), L25 = −Ky

2B22 − kn
2B66 +

KcA44
Ry

+ I1ω2

L31 = L13, L32 = −L23, L33 = A11
Rx2 +

2A12
RxRy

+ A22
Ry2 + Kckn

2A55 + KcKy
2A44 − I0ω2

L34 = ikn

(
B12
Ry

+ B11
Rx
−KcA55

)
, L35 = Ky

(
KcA44 −

B12
Rx
−

B22
Ry

)
L41 = −L14, L42 = L24, L43 = −L34, L44 = kn

2D11 + Ky
2D66 + KcA55 − I2ω2

L51 = L15, L52 = −L25, L53 = L35, L54 = −L45, L55 = Ky
2D22 + kn

2D66 + KcA44 − I2ω2

(13)

The solutions of Equation (12) can be solved and the determinant of the matrix T equal to zero.
The characteristics equation of axial wavenumber kn is shown as follows:

λ10k10
n + λ8k8

n + λ6k6
n + λ4k4

n + λ2k2
n + λ0 = 0 (14)

There is a fifth-order equation of k2
n and λ10, λ8, λ6, λ4, λ2, and λ0 are the coefficients, which

depend on the coefficient matrix T. There are ten characteristic axial wavenumbers to be obtained as
±kn,1, ±kn,2, ±kn,3, ±kn,4, and ±kn,5. Through the characteristic axial wavenumbers ±kn,i (i = 1, 2, 3, 4,
5), the corresponding basic solution vector is defined as follows:{

ξn,i, ηn,i, 1,χn,i,ψn,i
}

(15)

The coefficients in Equation (15) are defined as follows:

ξn,i =
[Ω1

Ω

]
kn=±kn,i

, ηn,i =
[Ω2

Ω

]
kn=±kn,i

,χn,i =
[Ω4

Ω

]
kn=±kn,i

,ψn,i =
[Ω5

Ω

]
kn=±kn,i

(16)

where Ω and Ωi (i = 1, 2, 4, 5) are given as follows:

Ω =

∣∣∣∣∣∣∣∣∣∣∣
L11 L12 L14 L15

L21 L22 L24 L25

L41 L42 L44 L45

L51 L52 L54 L55

∣∣∣∣∣∣∣∣∣∣∣
kn=±kn,i

Ω1 =

∣∣∣∣∣∣∣∣∣∣∣
−L13 L12 L14 L15

−L23 L22 L24 L25

−L43 L42 L44 L45

−L53 L52 L54 L55

∣∣∣∣∣∣∣∣∣∣∣
kn=±kn,i

Ω2 =

∣∣∣∣∣∣∣∣∣∣∣
L11 −L13 L14 L15

L21 −L23 L24 L25

L41 −L43 L44 L45

L51 −L53 L54 L55

∣∣∣∣∣∣∣∣∣∣∣
kn=±kn,i

Ω4 =

∣∣∣∣∣∣∣∣∣∣∣
L11 L12 −L13 L15

L21 L22 −L23 L25

L41 L42 −L43 L45

L51 L52 −L53 L55

∣∣∣∣∣∣∣∣∣∣∣
kn=±kn,i

Ω5 =

∣∣∣∣∣∣∣∣∣∣∣
L11 L12 L14 −L13

L21 L22 L24 −L23

L41 L42 L44 −L43

L51 L52 L54 −L53

∣∣∣∣∣∣∣∣∣∣∣
kn=±kn,i

(17)

On the basis of the generalized displacement variables being transformed in the wave function
form in Equation (11), related to the basic solution vector in Equation (15), the generalized displacement
variables are shown in the matrix form:

δn = Yn(y)DnPn(x)Wn (18)
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where δn = {u, v, w, φx, φy}T is the generalized displacement resultant; Yn(y) is the modal matrix in the
y direction; Dn is the coefficient matrix of the displacement resultant; Pn(x) is the axial wavenumber
matrix; and Wn is the wave contribution factor resultant. The detailed expression of them is given
as follows:

Yn(y) = diag
{
sin

(
Kyy

)
, cos

(
Kyy

)
, sin

(
Kyy

)
, sin

(
Kyy

)
, cos

(
Kyy

)}
(19)

Dn =


ξn,1 ξn,2 · · · ξn,ns−1 ξn,ns

ηn,i ηn,i · · · ηn,ns−1 ηn,ns

1 1 · · · 1 1
χn,1 χn,2 · · · χn,ns χn,ns−1

ψn,1 ψn,2 · · · ψn,ns ψn,ns−1


(20)

Pn(x) = diag
{
eikn,1x, eikn,2x, · · · , eikn,ns−1x, eikn,nsx

}
(21)

Wn =
{
Wn,1, Wn,2, · · · , Wn,ns−1, Wn,ns

}T
(22)

where ns is the number of characteristics roots of axial wavenumber in Equation (14). Also, the
generalized force resultant fn = {Nxx, Nxy, Qx, Mxx, Mxy}T can refer to the constitutive relationship in
Equations (3) and (6), as follows:

fn = Yn(y)FnPn(x)Wn (23)

where the coefficient matrix Fn of force resultant fn is given as follows:

Fn,1i = ikn,iA11ξn,i −KyA12ηn,i +
A11
Rx

+ A12
Ry

+ ikn,iB11χn,i −KyB12ψn,i

Fn,2i = KyA66ξn,i + ikn,iA66ηn,i + KyB66χn,i + ikn,iB66ψn,i

Fn,3i = KcA55

(
ikn,i + χn,i −

ξn,i
Rx

)
Fn,4i = ikn,iB11ξn,i −KyB12ηn.i +

B11
Rx

+ B12
Ry

+ ikn,iD11χn,i −KyD12ψn,i

Fn,5i = KyB66ξn,i + ikn,iB66ηn,i + KyD66χn,i + ikn,iD66ψn,i

(24)

2.3. Classical Shell Theory (CST)

2.3.1. Kinematic Relations and Stress Resultants

For the integrity of the paper, the governing equations and wave function solutions in the CST are
given. On the basis of the theoretical technique of FSDT, the governing equation can refer to CST by
setting the slope of the rotation components φx and φy close to the transverse normal, as follows [12,13]:

φx =
u0

Rx
−
∂w0

∂x
,φy =

v0

Ry
−
∂w0

∂y
(25)

2.3.2. Wave Function Solutions

In CST, the shear deformation in the kinematics equation is negligible, and the in-plane
displacement can be expressed as a linear change in the thickness direction of the shallow shell.
So, the governing equation can be given as follows [13]:

∂Nxx
∂x +

∂Nxy
∂y + Qx

Rx
= I0

∂2u0
∂t2

∂Nyy
∂y +

∂Nxy
∂x +

Qy
Ry

= I0
∂2v0
∂t2

Nxx
Rx

+
Nyy
Ry
−

(
∂Qx
∂x +

∂Qy
∂y

)
= −I0

∂2w0
∂t2

(26)
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where
Qx = ∂Mxx

∂x +
∂Mxy
∂y

Qy =
∂Myy
∂y +

∂Mxy
∂x

(27)

Submitting the generalized displacement variables in CST, the governing equation can be expressed
as follows: 

T̃11 T̃12 T̃13

T̃21 T̃22 T̃23

T̃31 T̃32 T̃33




u0

v0

w0

 =


0
0
0

 (28)

where T̃i j (i,j = 1, 2, 3) are the operators, which are shown as follows:

T̃11 =
(
A11 +

2B11
Rx

+ D11
Rx2

)
∂2

∂x2 +
(
A66 +

2B66
Rx

+ D66
Rx2

)
∂2

∂y2 − I0
∂2

∂t2

T̃12 =
(
A12 + A66 +

B12+B66
Ry

+ B12+B66
Rx

+ D12+D66
RxRy

)
∂2

∂y∂x

T̃13 = −
(
B11 +

D11
Rx

)
∂3

∂x3 +
(

A12
Ry

+ A11
Rx

+ B12
RxRy

+ B11
Rx2

)
∂
∂x −

(
B12 + 2B66 +

D12+2D66
Rx

)
∂3

∂y2∂x

T̃21 = T̃12, T̃22 =
(
A66 +

2B66
Ry

+ D66
Ry2

)
∂2

∂x2 +
(
A22 +

2B22
Ry

+ D22
Ry2

)
∂2

∂y2 − I0
∂2

∂t2

T̃23 = −
(
B22 +

D22
Ry

)
∂3

∂y3 −

(
2B66 + B12 +

D12+2D66
Ry

)
∂3

∂y∂x2 +
(

A12
Rx

+ A22
Ry

+ B12
RxRy

+ B22
Ry2

)
∂
∂y

T̃31 = T̃13, T̃32 = T̃23

T̃33 = D11
∂4

∂x4 + D22
∂4

∂y4 + 2(D12 + 2D66)
∂4

∂y2∂x2 +
(
−

2B11
Rx
−

2B12
Ry

)
∂2

∂x2

+
(
−

2B12
Rx
−

2B22
Ry

)
∂2

∂y2 +
(

A11
Rx2 +

2A12
RxRy

+ A22
Ry2

)
+ I0

∂2

∂t2

(29)

For the generalized displacement functions of cross-ply composite laminated shallow shell with
shear diaphragm boundary conditions, which are set as opposite support edges y = 0 and Ly (u0 = w0

= Nyy = Myy = 0), the displacement variables can be shown in the wave functions form:


u(x, y, t)
v(x, y, t)
w(x, y, t)
φx(x, y, t)

 =
∞∑

n=0


U0eiknx sin

(
Kyy

)
e− jωt

V0eiknx cos
(
Kyy

)
e− jωt

W0eiknx sin
(
Kyy

)
e− jωt

Φxeiknx sin
(
Kyy

)
e− jωt


(30)

Submitting Equation (30) into Equation (28), the governing equation can transform into the matrix
form as follows: 

L̃11 L̃12 L̃13

L̃21 L̃22 L̃23

L̃31 L̃32 L̃33




U0

V0

W0

 =


0
0
0

 (31)

where L̃i j (i,j = 1, 2, 3) are the governing equation coefficients, as follows:

L̃11 = −kn
2
(
A11 +

2B11
Rx

+ D11
Rx2

)
−Ky

2
(
A66 +

2B66
Rx

+ D66
Rx2

)
+ I0ω2

L̃12 = −iknKy

(
A12 + A66 +

B66+B12
Ry

+ B66+B12
Rx

+ D12+D66
RxRy

)
L̃13 = ikn

3
(
B11 +

D11
Rx

)
+ ikn

(
A11
Rx

+ A12
Ry

+ B11
Rx2 +

B12
RxRy

)
+ iknKy

2
(
B12 + 2B66 +

D12+2D66
Rx

)
L̃21 = −̃L12, L̃22 = −kn

2
(
A66 +

2B66
Ry

+ D66
Ry2

)
−Ky

2
(
A22 +

2B22
Ry

+ D22
Ry2

)
+ I0ω2

L̃23 = Ky
3
(
B22 +

D22
Ry

)
+ kn

2Ky

(
2B66 + B12 +

D12+2D66
Ry

)
+ Ky

(
A12
Rx

+ A22
Ry

+ B12
RxRy

+ B22
Ry2

)
L̃31 = L̃13, L̃32 = −̃L23, L̃33 = kn

4D11 + Ky
4D22 + 2kn

2Ky
2(D12 + 2D66) + 2kn

2
(

B11
Rx

+ B12
Ry

)
+2Ky

2
(

B12
Rx

+ B22
Ry

)
+

(
A11
Rx2 +

A22
Ry2 +

2A12
RxRy

)
− I0ω2

(32)
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Next, the corresponding basic solution vector is set as {ξn,i, ηn,i, 1}T, and the detailed expression of
the vector is given as follows:

ξn,i =
[Ω1

Ω

]
kn=±kn,i

, ηn,i =
[Ω2

Ω

]
kn=±kn,i

(33)

where

Ω =

∣∣∣∣∣∣ N11 N12

N21 N22

∣∣∣∣∣∣
kn=±kn,i

, Ω1 =

∣∣∣∣∣∣ −N13 N12

−N23 N22

∣∣∣∣∣∣
kn=±kn,i

, Ω2 =

∣∣∣∣∣∣ N11 −N13

N21 −N23

∣∣∣∣∣∣
kn=±kn,i

(34)

On the basis of the basic solution vector, the displacement resultant δn = {u, v, w, φx}T and force
resultant fn = {Nxx,Nxy + Mxy/Ry,Qx + ∂Mxy/∂y,Mxx}T are expressed as follows:

δn = Yn(y)DnPn(x)Wn

fn = Yn(y)FnPn(x)Wn
(35)

where
Yn(y) = diag

{
sin

(
Kyy

)
, cos

(
Kyy

)
, sin

(
Kyy

)
, sin

(
Kyy

)}
(36)

Dn =


ξn,1 ξn,2 · · · ξn,ns−1 ξn,ns

ηn,1 ηn,2 · · · ηn,ns−1 ηn,ns

1 1 · · · 1 1
ξn,1
Rx
− ikn,1

ξn,2
Rx
− ikn,2 · · ·

ξn,ns−1
Rx
− ikn,ns−1

ξn,ns
Rx
− ikn,ns

 (37)

Fn =


Fn,11 Fn,12 · · · Fn,1ns−1 Fn,1ns
Fn,21 Fn,22 · · · Fn,2ns−1 Fn,2ns

Fn,31 Fn,32 · · · Fn,3ns−1 Fn,3ns

Fn,41 Fn,42 · · · Fn,4ns−1 Fn,4ns

 (38)

in which the coefficients Fn,ji(j = 1–4,i = 1–ns) are given as follows:

Fn,1i = ikn,i
(
A11 +

B11
Rx

)
ξn,i + Ky

(
−A12 −

B12
Ry

)
ηn,i +

A11
Rx

+ A12
Ry

+ kn,i
2B11 + Ky

2B12

Fn,2i = Ky

(
A66 +

B66
Rx

+ B66
Ry

+ D66
RxRy

)
ξn,i + ikn,i

(
A66 +

2B66
Ry

+ D66
Ry2

)
ηn,i + 2ikn,iKy

(
−B66 −

D66
Ry

)
Fn,3i = −

(
kn,i

2
(
B11 +

D11
Rx

)
+ 2Ky

2
(
B66 +

D66
Rx

))
ξn,i − ikn,iKy

(
B12 + 2B66 +

D12+2D66
Ry

)
ηn,i

+ikn,i
3D11 + ikn,iKy

2(D12 + 4D66) + ikn,i

(
B11
Rx

+ B12
Ry

)
Fn,4i = ikn,i

(
B11 +

D11
Rx

)
ξn,i −Ky

(
B12 +

D12
Ry

)
ηn.i + kn,i

2D11 + Ky
2D12 +

B11
Rx

+ B12
Ry

(39)

2.4. Implementation of the WBM

Through the introduction of the generalized displacement and force resultant, the final governing
equations are assembled by the generalized displacement coefficient matrix, generalized force coefficient
matrix, and boundary matrix. The final governing equation of the whole structure is defined as follows:

[K]{W} = {F} (40)

where F is the external force vector and is related to the external situation; when analyzing the free
vibration dynamic, the external force F should vanish. W = {W1, W2}T is the wave contribution factor
resultant of the composite shell, and Wi = {Wi,1, Wi,2, . . . , Wi,ns}T(i = 1, 2) is the wave contribution
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factor vector and is associated with the boundary conditions at x = 0 and x = L. K is the total matrix
and the detailed expression of the matrix is shown as follows:

K2ns×2ns =


B1(0) 0 1

2 ns×ns

DnPn(L) −DnPn(0)
FnPn(L) −FnPn(0)
0 1

2 ns×ns B2(0)

 (41)

For the classical boundary conditions, the boundary matrix can be shown as follows:

B1,2(x) =
(
TδDn + T f Fn

)
Pn(x) (42)

where Tδ and Tf are the transform matrix of boundary matrix, as follows:
Free edge (F):

FSDT :
{

Tδ = diag{0, 0, 0, 0, 0}
T f = diag{1, 1, 1, 1, 1}

CST :
{

Tδ = diag{0, 0, 0, 0}
T f = diag{1, 1, 1, 1}

(43)

Clamped edge (C):

FSDT :
{

Tδ = diag{1, 1, 1, 1, 1}
T f = diag{0, 0, 0, 0, 0}

CST :
{

Tδ = diag{1, 1, 1, 1}
T f = diag{0, 0, 0, 0}

(44)

Shear-diaphragm edge (SD):

FSDT :
{

Tδ = diag{0, 1, 1, 0, 1}
T f = diag{1, 0, 0, 1, 0}

CST :
{

Tδ = diag{0, 1, 1, 0}
T f = diag{1, 0, 0, 1}

. (45)

For the elastic boundary conditions, the boundary condition matrix B1(x) and B2(x) are given as
follows:

B1,2(x) = (KδDn ± Fn)Pn(x), (46)

where Kδ is the stiffness transform matrix and the detailed expression about it is as follows:
When the composite shell is under elastic restraint in the axial direction, the stiffness transform

matrix Kδ is given as follows:

FSDT :
CST :

{
Kδ = diag{Ku, 0, 0, 0, 0}
Kδ = diag{Ku, 0, 0, 0}

(47)

where {Ku, Kv, Kw } are linear springs and {Kφx, Kφy } are rotational springs, which are set in various
directions. When the other displacements are under elastic restraint, the stiffness transform matrix Kδ

is given as follows:

v :
FSDT :

CST :

{
Kδ = diag{0, Kv, 0, 0, 0}
Kδ = diag{0, Kv, 0, 0}

w :
FSDT :

CST :

{
Kδ = diag{0, 0, Kw, 0, 0}
Kδ = diag{0, 0, Kw, 0}

φx :
FSDT :

CST :

 Kδ = diag
{
0, 0, 0, Kφx, 0

}
Kδ = diag

{
0, 0, 0, Kφx

}
φy : FSDT :Kδ = diag

{
0, 0, 0, 0, Kφy

}
(48)
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Through the introduction of the boundary conditions B1(x) and B2(x), which include the classical
and elastic boundary conditions, the total matrix K is established. When analyzing the free vibration
characteristics, the external force vector F vanishes. When calculating the natural frequencies, a series
of the total matrix determinant is obtained. Using the dichotomy method to search the zeros position
of the total matrix determinant, the natural frequency will be obtained with each circumferential mode
number n. Through the numerical dichotomy method when the sign changed, the location of the
total matrix K determinant is calculated and the natural frequencies can be obtained. Furthermore,
to analyze the free vibration characteristics of the composite laminated shallow shell with arbitrary
boundary conditions, the shell structure is considered to be calculated as a whole model and the
displacement variable solutions are set as infinite wave function forms; the convergence study of
the truncated number does not need to be considered. Thus, the computational cost of the present
approach is low.

3. Numerical Examples and Discussion

Through the description of the theory formulation with FSDT and CST, the free vibration
characteristics of composite laminated shallow shell with arbitrary classical boundary conditions,
elastic boundary conditions, and their combinations are analyzed by WBM. In this part, some numerical
examples are listed to verify the correctness of the results by WBM through the comparison with the
presented results. Also, some numerical examples are presented to study the influence of the material
parameters and geometric constants on the natural frequencies of composite laminated shallow shells
with general boundary conditions.

3.1. Composite Laminated Shallow Shell with Classical Boundary Conditions

In this section, the free vibration characteristics of composite laminated shallow shells with
arbitrary classical boundary conditions are concerned. Through the introduction of the boundary
transform matrix Tδ and Tf, arbitrary classical boundary conditions can transform into boundary
matrices B1(x) and B2(x) to investigate the free vibration characteristics of composite shallow shell with
classical boundary conditions. In order to verify the correctness of the calculation by the presented
method, some numerical examples are selected for verification. At the same time, the selected material
parameters and geometric parameters are consistent with the examples in the comparative literatures.

First, the composite laminated shallow shell with full shear diagram boundary condition
is concerned. In Tables 1 and 2, the fundamental frequency parameters Ω = ωL2

x
√
ρ/E2h2 for

three type cross-ply composite laminated shallow shells (i.e., cylindrical shell, spherical shell, and
hyperbolic paraboloidal shell) with various radius to length ratios Ry/Ly (i.e., Ry/Ly = 2, 5, 10) under
Shear-diaphragm boundary condition (SD-SD) by FSDST and CST are presented. Three kinds of
cross-ply type layered composite shells (i.e., [0◦/90◦/90◦/0◦], [0◦/90◦], and [90◦/0◦]) are concerned. The
material parameters and geometric constants are given as follows: Lx = 1 m, Ly/Lx = 1, h/Ly = 0.01 and
0.1, E2 = 7 GPa, E1/E2 = 15, G12 = G13 = 0.5E2, G23 = 0.5E2, µ12 = 0.25, ρ = 1650 kg/m3. The presented
results compare with the results by Qatu [13] and Shao et al. [22]. From Tables 1 and 2, the presented
results by WBM match well with the results in the presented literatures. The maximum divergence
is −4.61% with the situation Ry/Ly = −1 for the [90◦/0◦] cross-ply composite laminated paraboloidal
shell. It is obvious that the errors in Table 2 by CST are lower than the errors in Table 1 by FSDT. Also,
from Table 1, it can be found that, with the radius to length ratios Ry/Ly from 2 to 10 for the composite
shallow shell with the lamination schemes 0◦/90◦/90◦/0◦ and 0◦/90◦, the errors between the solutions
by the presented method those of the the results in the literature by Quta are generally growing. This
is caused by the curvature effect, which is not well predicted by shallow shell theory, thus full shell
theory should be considered. Furthermore, when the parameter (Rx/Ry) decreases from 1 to −1, the
fundamental frequency parameters for the composite laminates are lower. It can be observed that the
fundamental frequency parameter Ω for the composite laminated spherical shell is higher than that for
the cylindrical shell and hyperbolic paraboloidal shell.
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Table 1. The fundamental frequency parameter Ω for the composite shallow shell with the SD-SD
boundary condition by first-order shear deformation shell theory (FSDT). WBM, wave-based method.

Rx/Ry Ry/Ly
0◦/90◦/90◦/0◦

WBM Ref. [13] Error Ref. [22] Error

1
2 12.3093 12.5718 −2.09% 12.3633 −0.44%
5 11.1495 11.2522 −0.91% 11.2135 −0.57%

10 10.9672 11.0428 −0.69% 11.0329 −0.60%

0
2 11.2142 11.3342 −1.06% 11.2756 −0.54%
5 10.9562 11.0316 −0.68% 11.0217 −0.59%

10 10.9562 10.9867 −0.28% 10.9842 −0.25%

−1
2 10.3671 10.7031 −3.14% 10.4300 −0.60%
5 10.8169 10.9273 −1.01% 10.8826 −0.60%

10 10.8831 10.9605 −0.71% 10.9493 −0.60%

Rx/Ry Ry/Ly 0◦/90◦

1
2 10.0265 10.2492 −2.17% 10.0998 −0.73%
5 8.3845 8.5084 −1.46% 8.4783 −1.11%

10 8.1132 8.2190 −1.29% 8.2111 −1.19%

0
2 8.6166 8.7523 −1.55% 8.7075 −1.04%
5 8.1475 8.2445 −1.18% 8.2458 −1.19%

10 8.0644 8.1592 −1.16% 8.1636 −1.22%

−1
2 7.8626 8.0831 −2.73% 7.9596 −1.22%
5 8.0549 8.1538 −1.21% 8.1546 −1.22%

10 8.0537 8.1448 −1.12% 8.1534 −1.22%

Rx/Ry Ry/Ly 90◦/0◦

1
2 10.0261 10.2492 −2.18% 10.0998 −0.73%
5 8.3843 8.5084 −1.46% 8.4783 −1.11%

10 8.1131 8.2190 −1.29% 8.2111 −1.19%

0
2 8.3533 8.5784 −2.62% 8.4421 −1.05%
5 8.1474 8.1774 −0.37% 8.1448 0.03%

10 8.0644 8.1259 −0.76% 8.1136 −0.61%

−1
2 7.4152 7.7739 −4.61% 7.5071 −1.22%
5 7.8606 8.0223 −2.02% 7.9581 −1.22%

10 7.9554 8.0785 −1.52% 8.0540 −1.22%
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Table 2. The fundamental frequency parameter Ω for composite shallow shell with the SD-SD boundary
condition by classical shell theory (CST) theory.

Rx/Ry Ry/Ly
0◦/90◦/90◦/0◦

WBM Ref. [13] Error Ref. [22] Error

1
2 66.52832 66.5774 −0.07% 66.5285 0.00%
5 29.29062 29.309 −0.06% 29.2906 0.00%

10 18.12154 18.129 −0.04% 18.1215 0.00%

0
2 35.10566 35.1838 −0.22% 35.1622 −0.16%
5 18.08579 18.1107 −0.14% 18.1038 −0.10%

10 13.96209 13.9703 −0.06% 13.9681 −0.04%

−1
2 11.67421 11.9776 −2.60% 11.6742 0.00%
5 12.1784 12.2279 −0.41% 12.1783 0.00%

10 12.25251 12.2649 −0.10% 12.2525 0.00%

Rx/Ry Ry/Ly 0◦/90◦

1
2 65.98726 66.0139 −0.04% 65.98717 0.00%
5 27.95602 27.9666 −0.04% 27.95599 0.00%

10 15.85265 15.8573 −0.03% 15.85258 0.00%

0
2 28.16678 28.2471 −0.28% 28.16667 0.00%
5 15.84446 15.8484 −0.02% 15.81926 0.16%

10 10.85982 10.8616 −0.02% 10.85171 0.07%

−1
2 8.121357 8.37737 −3.06% 8.17396 −0.64%
5 8.487776 8.54161 −0.63% 8.51081 −0.27%

10 8.545494 8.56847 −0.27% 8.55691 −0.13%

Rx/Ry Ry/Ly 90◦/0◦

1
2 65.98726 66.0139 −0.04% 66.0139 −0.04%
5 27.95602 27.9666 −0.04% 27.9666 −0.04%

10 15.85265 15.8573 −0.03% 15.8573 −0.03%

0
2 27.692 27.827 −0.49% 27.69195 0.00%
5 15.81913 15.8342 −0.10% 15.84456 −0.16%

10 10.85163 10.8567 −0.05% 10.85977 −0.08%

−1
2 8.173862 8.34143 −2.05% 8.12143 0.64%
5 8.510863 8.52632 −0.18% 8.48796 0.27%

10 8.557038 8.55594 0.01% 8.54535 0.14%

In the next part, the fundamental frequency parameters Ω of a composite laminated plate with
SD-SD boundary conditions are compared with the results by Qatu [13] in Tables 3 and 4. In Table 3,
two types of layered cross-ply composite laminated plates (i.e., [0◦/90◦] and [0◦/90◦/90◦/0◦]) by FSDT
and CST are investigated with various length to thickness ratios Ly/h (i.e., Ly/h = 5, 10, 20, and 100). The
material constants and geometric parameters are set as follows: Lx = 1 m, Ly/Lx = 1, E2 = 7 GPa, E1/E2

= 15, G12 = G13 = 0.5E2, G23 = 0.5E2, µ12 = 0.25, ρ = 1650 kg/m3. From Table 3, it is clearly seen that the
results by the presented method agree well with the solutions in the presented literatures. Also, with
the growing of the length to thickness ratios Ly/h, the fundamental frequency parameters are decreased
for the two types of layered cross-ply composite laminated plates by different theory. Particularly, the
fundamental frequency parameter is basically unchanged with [0◦/90◦/90◦/0◦] cross-ply composite
laminated plate by CST. Furthermore, three types of layered cross-ply composite laminated plates (i.e.,
[0◦/90◦], [0◦/90◦/0◦], and [0◦/90◦/90◦/0◦]) with high modulus ratios under SD-SD boundary conditions
are considered. With different shell theory, the presented results agree well with the solutions in the
represented literature by Qatu [13].
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Table 3. The fundamental frequency parameter Ω for a composite plate with the SD-SD boundary
condition with variety theory.

Lamination Theory

Ly/h

0◦/90◦ 0◦/90◦/90◦/0◦

FSDT CST FSDT CST

Ref. [13] WBM Ref. [13] WBM Ref. [13] WBM Ref. [13] WBM

100 8.56394 8.55196 8.56847 8.56858 12.26147 12.26147 12.37733 12.27746
20 8.44807 8.44807 8.55811 8.55808 11.90100 11.90100 12.27733 12.27731
10 8.11956 8.11956 8.52569 8.52570 10.97163 10.97163 12.27733 12.27733
5 7.14661 7.14661 8.39526 8.39527 8.77840 8.77841 12.27733 12.27734

Table 4. The fundamental frequency parameter Ω for a composite plate with the SD-SD boundary
condition by variety theory.

Lamination Theory

Ly//h

0◦/90◦

FSDT CST

Ref. [13] WBM Ref. [13] WBM

100 9.6873 9.6873 9.696 9.6961
10 8.9001 8.9001 9.6436 9.6436

Ly//h 0◦/90◦/0◦

100 15.183 15.1834 15.228 15.2278
10 12.163 12.1629 15.228 15.2278

Ly//h 0◦/90◦/90◦/0◦

100 15.184 15.1839 15.228 15.2278
10 12.226 12.2272 15.228 15.2278

In the next part, the fundamental frequency parameter Ω of the composite laminated shallow
shell under classical combination boundary conditions is discussed. In Tables 5 and 6, the composite
laminated shallow cylindrical shell and spherical shell with various classical combination boundary
conditions (i.e., F-F, F-S, F-C, S-S, S-C, C-C) are investigated by FSDT and CST. Two types of layered
lamination schemes (i.e., [0◦/90◦] and [0◦/90◦/0◦]) and radius constants (i.e., R = 5, 20) are discussed.
The material constants and geometric parameters are defined as follows: Lx = 1 m, Ly/Lx = 1, E2 = 7
GPa, E1/E2 = 25, G12 = G13 = 0.5E2, G23 = 0.2E2, µ12 = 0.25, ρ = 1650 kg/m3. Also, the fundamental
frequency parameters Ω are compared with the solutions in the represented literature by Qatu [13].
From the comparison of the results by the presented method and represented literature, it can be
seen that the errors obtained by the two different methods are small. The maximum error of 3.62%
appears in the situation with [0◦/90◦/0◦] composite laminated cylindrical shell (FSDT, R = 5) with F-F
boundary condition in Table 5. Furthermore, the maximum error is 3.71% in Table 6 for the [0◦/90◦]
composite laminated shallow spherical shell (CST, R = 20) with the F-F boundary condition. For
various boundary conditions, the maximum parameters Ω appear when the composite shells have
the C-C boundary condition. Simultaneously, the minimum frequency parameters emerge with F-F
for several lamination schemes and shell theory. So, the composite laminated shallow shells with
arbitrary classical combination boundary conditions by WBM can be verified through the presented
numerical examples. In order to further investigate the free vibration characteristics of composite
laminated shallow shells with arbitrary combination boundary conditions, some mode shapes (n, m) of
the composite laminated cylindrical shell and spherical shell are shown in Figures 2 and 3, respectively.
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Table 5. The fundamental frequency parameter Ω for two types of the layered composite shallow
cylindrical shell with various boundary conditions, theories, and radii.

Lamination
Schemes

Theory R
Boundary Conditions

F-F F-S F-C S-S S-C C-C

0◦/90◦

CST

20
Ref. [13] 6.128 6.489 7.008 9.56 12.136 15.757

WBM 6.147 6.376 7.257 9.633 12.236 15.895
Error 0.31% −1.74% 3.55% 0.77% 0.82% 0.88%

5
Ref. [13] 6.096 6.444 7.014 9.598 12.154 15.747

WBM 6.070 6.433 7.231 9.630 12.225 15.861
Error −0.42% −0.16% 3.10% 0.34% 0.58% 0.72%

FSDT

20
Ref. [13] 5.763 6.087 6.535 8.894 10.609 12.623

WBM 5.778 6.007 6.532 8.803 10.555 12.621
Error 0.26% −1.32% −0.05% −1.03% −0.50% −0.01%

5
Ref. [13] 5.716 6.030 6.524 8.931 10.647 12.663

WBM 5.850 5.994 6.502 8.826 10.582 12.651
Error 2.34% −0.59% −0.34% −1.17% −0.61% −0.10%

0◦/90◦/0◦

CST

20
Ref. [13] 3.902 4.484 6.866 15.106 22.557 32.091

WBM 3.966 4.501 6.891 15.229 22.214 32.385
Error 1.63% 0.39% 0.36% 0.82% −1.52% 0.92%

5
Ref. [13] 3.894 4.472 6.901 15.136 22.560 32.062

WBM 3.966 4.475 6.917 15.253 22.214 32.352
Error 1.84% 0.07% 0.23% 0.77% −1.53% 0.90%

FSDT

20
Ref. [13] 3.787 4.318 6.146 12.166 14.250 16.385

WBM 3.796 4.312 6.146 12.104 14.218 16.384
Error 0.23% −0.14% 0.00% −0.51% −0.22% 0.00%

5
Ref. [13] 3.773 4.301 6.176 12.212 14.284 16.408

WBM 3.910 4.392 6.170 12.148 14.250 16.406
Error 3.62% 2.11% −0.09% −0.53% −0.24% −0.01%

Table 6. The fundamental frequency parameter Ω for two types of the layered composite shallow
spherical shell with various boundary conditions, theories, and radii.

Lamination
Schemes

Theory R
Boundary Conditions

F-F F-S F-C S-S S-C C-C

0◦/90◦

CST

20
Ref. [13] 6.132 6.493 7.002 9.588 12.165 15.822

WBM 6.360 6.360 7.066 9.663 12.274 15.975
Error 3.71% −2.05% 0.91% 0.78% 0.90% 0.97%

5
Ref. [13] 6.162 6.51 6.971 9.903 12.465 16.82

WBM 6.250 6.482 6.940 9.945 12.560 16.990
Error 1.43% −0.43% −0.44% 0.42% 0.77% 1.01%

FSDT

20
Ref. [13] 5.768 6.093 6.535 8.922 10.64 12.713

WBM 5.764 6.076 6.532 8.833 10.590 12.714
Error −0.07% −0.27% −0.04% −1.00% −0.47% 0.01%

5
Ref. [13] 5.787 6.105 6.511 9.247 11.004 14.081

WBM 5.765 6.073 6.493 9.146 10.946 14.078
Error −0.38% −0.53% −0.27% −1.09% −0.53% −0.02%

0◦/90◦/0◦

CST

20
Ref. [13] 3.909 4.49 6.863 15.116 22.562 32.136

WBM 3.924 4.512 6.888 15.236 22.214 32.430
Error 0.38% 0.49% 0.36% 0.79% −1.54% 0.91%

5
Ref. [13] 4.009 4.562 6.861 15.29 22.64 32.785

WBM 4.010 4.599 6.909 15.356 22.215 33.051
Error 0.02% 0.81% 0.70% 0.43% −1.88% 0.81%

FSDT

20
Ref. [13] 3.794 4.325 6.146 12.178 14.264 16.487

WBM 3.794 4.319 6.146 12.114 14.231 16.486
Error 0.00% −0.14% −0.01% −0.52% −0.23% −0.01%

5
Ref. [13] 3.891 4.397 6.163 12.394 14.499 17.959

WBM 3.884 4.369 6.163 12.312 14.454 17.951
Error −0.18% −0.63% 0.00% −0.66% −0.31% −0.04%
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Figure 3. The mode shapes for the composite laminated shallow spherical shell with various boundary
conditions. (a) C-C,(1,1); (b) C-C,(1,2); (c) C-C,(1,3); (d) F-C,(1,1); (e) F-C,(1,2); (f) F-C,(1,3); (g) F-F,(1,1);
(h) F-F,(1,2); (i) F-F,(1,3); (j) F-S,(1,1); (k) F-S,(1,2); (l) F-S,(1,3); (m) S-C,(1,1); (n) S-C,(1,2); (o) S-C,(1,3).
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In this section, the influence of the length to thickness ratio Lx/h and length to radius ratio Lx/Rx

on the fundamental frequency parameter Ω is discussed. In Tables 7–9, the fundamental frequency
parameter Ω for three types of the layered (i.e., [0◦/90◦/90◦/0◦], [0◦/90◦], and [90◦/0◦]) composite
laminated shallow cylindrical shell, spherical shell, and hyperbolic paraboloidal shell with SD-SD
by FSDT and CST is discussed. The material parameters and geometric constants are defined as
follows: Lx = 1 m, Ly/Lx = 1, E2 = 7 GPa, E1/E2 = 15, G12 = G13 = 0.5E2, G23 = 0.5E2, µ12 = 0.25, ρ =

1650 kg/m3. Especially with the composite laminated shallow shells with Lx/Rx = 0, the composite
shells are transformed into the plate form. From Tables 7–9, with the growing of length to radius
ratio Lx/Rx (i.e., Lx/Rx = 0, 0.1, 0.2, and 0.5), the fundamental frequency parameters of the composite
cylindrical and spherical shell generally grow for various length to thickness ratios Lx/h, lamination
schemes, and shell theories. Simultaneously, the fundamental frequency parameters of the composite
laminated hyperbolic paraboloidal shell are generally decreased with the changing of the length to
radius ratio Lx/Rx. It can be clearly seen that, for different laminated schemes and shell theories, when
the length to thickness ratio Lx/h = 0.01, the fundamental frequency parameter of various composite
laminated shallow shells increases significantly. Relatively, when Lx/h = 0.1, the frequency parameter
increases a little and remains within a stable range. To further investigate the effect of the length to
thickness ratio Lx/h on frequency parameters Ω of the composite shallow shell, the variations of the
frequency parameter Ω for composite shells with SD-SD boundary conditions, with respect to diverse
length to radius ratios Lx/Rx and length to radius ratios Lx/h, by FSDT and CST are shown in Figures 4
and 5. It can be seen that, for different laminated schemes, shallow shell structures, and shell theories,
as the length to thickness ratio Lx/h increases, the fundamental frequency parameters Ω gradually
decrease. At the same time, it can be seen that, for the composite laminated hyperbolic paraboloidal
shell, the variation of the fundamental frequency parameters Ω is small and the effect of the length to
thickness ratio Lx/h is not particularly obvious.

Table 7. The fundamental frequency parameter Ω for three types of layered composite shallow
cylindrical shells for variety theories, length to thickness ratios Lx/h, and length to radius ratios Lx/Rx

with the SD-SD boundary condition.

Lx/h Lx/Rx

Lamination Schemes

0◦/90◦/90◦/0◦ 0◦/90◦ 90◦/0◦

FSDT CST FSDT CST FSDT CST

100

0 12.2531 12.2775 8.5520 8.5686 8.5520 8.5686
0.1 13.9407 13.9621 10.8462 10.8598 10.8382 10.8516
0.2 18.0687 18.0858 15.8342 15.8445 15.8090 15.8192
0.5 35.0954 35.1057 28.1209 28.1668 27.6433 27.6921

20

0 11.8617 12.2773 8.3908 8.5581 8.3908 8.5581
0.1 11.9222 12.3350 8.5016 8.6680 8.4735 8.6386
0.2 12.1011 12.2811 8.8000 8.9626 8.7410 8.9010
0.5 13.2636 13.6185 10.6002 10.7427 10.4142 10.5501

10

0 10.9053 12.2773 8.0202 8.5257 8.0202 8.5257
0.1 10.9125 12.2803 8.0644 8.5724 8.0149 8.5146
0.2 10.9338 12.2894 8.1475 8.6547 8.0476 8.5383
0.5 11.0809 12.3534 8.6166 9.1042 8.3533 8.8006
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Table 8. The fundamental frequency parameter Ω for three types of layered composite shallow spherical
shells for variety theories, length to thickness ratios Lx/h, and length to radius ratios Lx/Rx with the
SD-SD boundary condition.

Lx/h Lx/Rx

Lamination Schemes

0◦/90◦/90◦/0◦ 0◦/90◦ 90◦/0◦

FSDT CST FSDT CST FSDT CST

100

0 12.2531 12.2775 8.5520 8.5686 8.5520 8.5686
0.1 18.1044 18.1215 15.8423 15.8526 15.8423 15.8526
0.2 29.2786 29.2906 27.9478 27.9560 27.9478 27.9560
0.5 66.5196 66.5283 65.9775 65.9873 65.9775 65.9873

20

0 11.8617 12.2773 8.3908 8.5581 8.3908 8.5581
0.1 12.1375 12.5436 8.7873 8.9489 8.7873 8.9489
0.2 12.9248 13.3057 9.8753 10.0240 9.8753 10.0240
0.5 17.3215 17.6007 15.3115 15.4258 15.3114 15.4258

10

0 10.9053 12.2773 8.0202 8.5257 8.0202 8.5257
0.1 10.9672 12.3284 8.1132 8.6132 8.1131 8.6132
0.2 11.1495 12.4794 8.3845 8.8692 8.3843 8.8692
0.5 12.3093 13.4531 10.0265 10.4333 10.0261 10.4333

Table 9. The fundamental frequency parameter Ω for three types of layered composite shallow
hyperbolic paraboloidal shells for variety theories, length to thickness ratios Lx/h, and length to radius
ratios Lx/Rx with the SD-SD boundary condition.

Lx/h Lx/Rx

Lamination Schemes

0◦/90◦/90◦/0◦ 0◦/90◦ 90◦/0◦

FSDT CST FSDT CST FSDT CST

100

0 12.2531 12.2775 8.5520 8.5686 8.5520 8.5686
0.1 12.2283 12.2525 8.5404 8.5570 8.5289 8.5454
0.2 12.1543 12.1783 8.4944 8.5109 8.4716 8.4877
0.5 11.6512 11.6742 8.1583 8.1739 8.1059 8.1213

20

0 11.8617 12.2773 8.3908 8.5581 8.3908 8.5581
0.1 11.8377 12.2524 8.4015 8.5698 8.3464 8.5120
0.2 11.7659 12.1778 8.3783 8.5466 8.2693 8.4325
0.5 11.2784 11.6712 8.1079 8.2715 7.8571 8.0092

10

0 10.9053 12.2773 8.0202 8.5257 8.0202 8.5257
0.1 10.8831 12.2519 8.0537 8.5664 7.9554 8.4514
0.2 10.8169 12.1761 8.0549 8.5724 7.8606 8.3452
0.5 10.3671 11.6619 7.8626 8.6024 7.4152 7.8559

In the previous numerical example, the effect of geometric parameters on the fundamental
frequency parameters is discussed. In this part, the influence of the material parameter on the
frequency parameter is investigated. In Tables 10 and 11, the fundamental frequency parameter for
composite laminated shallow spherical shells with various length to radius ratios Lx/Rx, modulus
ratios E1/E2, and boundary conditions (i.e., SD-SD, F-F, and C-C) are discussed by FSDT and CST.
The material parameters and geometric constants are given as follows: Lx = 1 m, Ly/Lx = 1, h/Ly

= 0.1, E2 = 7 GPa, G12 = G13 = 0.5E2, G23 = 0.5E2, µ12 = 0.25, ρ = 1650 kg/m3. It can be clearly
seen from Tables 10 and 11 that the fundamental frequency parameter Ω generally grows with the
changing of modulus ratios E1/E2 from 5 to 40. To further reflect the impact of modulus ratios E1/E2

on fundamental frequency parameters, the variations of the fundamental frequency parameter Ω
for composite spherical shells with various boundary conditions with respect to multiple length to
radius ratios Lx/Rx and modulus ratios E1/E2 by FSDT and CST are shown in Figure 6. Therefore, it
can be concluded that the modulus ratios E1/E2 has a significant effect on the fundamental frequency
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parameters of the composite spherical shell and plays a positive role. Different boundary conditions
cause the stiffness matrix to change. For the free boundary condition, the determinant of the stiffness
matrix increases with respect to the clamped boundary condition, and when the mass matrix remains
unchanged, the natural frequency increases.
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Figure 4. Variation laws of the fundamental frequency parameter Ω for composite laminated shallow
shells with the SD-SD boundary condition with respect to various length to radius ratios Lx/Rx and
length to thickness ratios Lx/h by first-order shear deformation shell theory (FSDT). (a) Cylindrical
shell, 0◦/90◦/90◦/0◦; (b) cylindrical shell, 0◦/90◦; (c) cylindrical shell, 90◦/0◦; (d) spherical shell,
0◦/90◦/90◦/0◦; (e) spherical shell, 0◦/90◦; (f) spherical shell, 90◦/0◦; (g) hyperbolic paraboloidal,
0◦/90◦/90◦/0◦; (h) hyperbolic paraboloidal, 0◦/90◦; (i) hyperbolic paraboloidal, 90◦/0◦.
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Figure 5. Variation laws of the fundamental frequency parameter Ω for composite laminated shallow
shells with the SD-SD boundary conditions with respect to various length to radius ratios Lx/Rx

and length to thickness ratios Lx/h by classical shell theory (CST). (a) Cylindrical shell, 0◦/90◦/90◦/0◦;
(b) cylindrical shell, 0◦/90◦; (c) cylindrical shell, 90◦/0◦; (d) spherical shell, 0◦/90◦/90◦/0◦; (e) spherical
shell, 0◦/90◦; (f) spherical shell, 90◦/0◦; (g) hyperbolic paraboloidal, 0◦/90◦/90◦/0◦; (h) hyperbolic
paraboloidal, 0◦/90◦; (i) hyperbolic paraboloidal, 90◦/0◦.

Table 10. The fundamental frequency parameter Ω for composite shallow [0◦/90◦] spherical shells for
variety length to radius ratios Lx/Rx, modulus ratios E1/E2, and boundary conditions by FSDT.

Boundary
Conditions

Lx/Rx
E1/E2

5 10 15 25 40

SD-SD
0.1 6.8768 7.5476 8.1132 9.0869 10.3019
0.2 7.1668 7.8326 8.3845 9.3295 11.1241
0.5 8.8937 9.5415 10.0265 10.8234 11.8112

F-F
0.1 3.9347 4.5645 5.0554 5.8596 6.8237
0.2 3.9482 4.5782 5.0664 5.8626 6.8150
0.5 4.0430 4.6793 5.1581 5.9229 6.8248

C-C
0.1 4.2046 5.0239 5.6852 6.7780 8.0950
0.2 5.0485 6.3327 7.3725 9.0778 11.1241
0.5 9.0303 12.0219 14.4032 18.2531 22.2144
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Table 11. The fundamental frequency parameter Ω for composite shallow [0◦/90◦] spherical shells for
variety length to radius ratios Lx/Rx, modulus ratios E1/E2, and boundary conditions by CST.

Boundary
Conditions

Lx/Rx
E1/E2

5 10 15 25 40

SD-SD
0.1 7.2637 7.9884 8.6201 9.7202 11.1634
0.2 7.5404 8.2592 8.8759 9.9450 11.3972
0.5 9.0807 9.8983 10.4389 11.3430 12.5272

C-C
0.1 4.2891 5.1468 5.8463 7.0198 8.4698
0.2 5.1199 6.4318 7.4987 9.2602 11.3972
0.5 9.0807 12.0872 14.4816 18.3556 22.2167
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Figure 6. Variation laws of the fundamental frequency parameter Ω for composite laminated shallow
spherical shells with various boundary conditions with respect to diverse length to radius ratios
Lx/Rx and modulus ratios E1/E2 by FSDT and CST. (a) FSDT: SD-SD; (b) FSDT: C-C; (c) CST: SD-SD;
(d) CST: C-C.

3.2. Composite Laminated Shallow Shell with Elastic Boundary Conditions

The composite laminated shallow shell with elastic constraint is widely encountered in many
engineering applications. So, analysis of the composite shallow shells with such an elastic boundary
condition is necessary and significant. Therefore, in this section, the free vibration characteristics of the
composite shallow shell with elastic boundary conditions are discussed.

In this section, the effect of the restrained springs on the frequency parameter of the certain
cross-ply composite laminated shallow shells is discussed. The certain cross-ply layered [0◦/90◦]
composite laminated shallow shells with S-elastic boundary conditions are concerned by FSDT. For the
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elastic restrained edge, there is only one set of spring component on one displacement or transverse
rotational direction and the range of stiffness constants is defined as 100–1012. The material parameters
and geometric constants are defined as follows: Lx = 1 m, Ly/Lx = 1, Rx/Ly, E2 = 7 GPa, E1/E2 = 25, G12 =

G13 = 0.5E2, G23 = 0.2E2, µ12 = 0.25, ρ= 1650 kg/m3. In Tables 12–16, the lowest two frequency parameter
Ω for the composite shells with S-elastic boundary conditions by restrained spring components Ku, Kv,
Kw, Kφx, and Kφy for a certain circumferential number of n = 1 is calculated.

Table 12. The frequency parameter Ω for composite shallow [0◦/90◦] shells with S-Ku boundary
conditions by FSDT.

Stiffness
Plate Cylindrical Shell Spherical Shell Hyperbolic

Paraboloidal

m = 1 m = 2 m = 1 m = 2 m = 1 m = 2 m = 1 m = 2

100 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
101 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
102 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
103 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
104 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
105 6.0999 11.8764 6.1713 11.9614 6.0843 12.1226 5.8619 7.0016
106 6.0999 11.8766 6.1716 11.9615 6.0847 12.1228 5.8619 7.0016
107 6.1000 11.8780 6.1739 11.9629 6.0884 12.1251 5.8619 7.0016
108 6.1009 11.8911 6.1960 11.9763 6.1241 12.1468 5.8600 7.0017
109 6.1070 11.9770 6.3472 12.0653 6.3634 12.2935 5.6539 7.0042
1010 6.1187 12.1169 6.6216 12.2166 6.7778 12.5456 7.0567 7.4902
1011 6.1223 12.1553 6.7039 12.2594 6.8965 12.6167 7.0752 7.3410
1012 6.1228 12.1598 6.7137 12.2645 6.9106 12.6251 7.0754 7.3395

Table 13. The frequency parameter Ω for composite shallow [0◦/90◦] shells with S-Kv boundary
conditions by FSDT.

Stiffness
Plate Cylindrical Shell Spherical Shell Hyperbolic

Paraboloidal

m = 1 m = 2 m = 1 m = 2 m = 1 m = 2 m = 1 m = 2

100 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
101 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
102 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
103 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
104 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
105 6.0999 11.8764 6.1713 11.9613 6.0844 12.1226 5.8619 7.0016
106 6.1000 11.8765 6.1715 11.9614 6.0849 12.1228 5.8619 7.0016
107 6.1012 11.8772 6.1731 11.9621 6.0907 12.1251 5.8619 7.0016
108 6.1122 11.8844 6.1890 11.9686 6.1466 12.1476 5.8619 7.0016
109 6.2016 11.9437 6.3170 12.0234 6.5714 12.3419 5.8600 7.0016
1010 6.4698 12.1403 6.6986 12.2091 7.5921 13.0667 5.9118 7.0022
1011 6.6018 12.2486 6.8848 12.3139 7.9735 13.4990 5.9009 7.0021
1012 6.6204 12.2645 6.9109 12.3294 8.0215 13.5632 5.9008 7.0021
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Table 14. The frequency parameter Ω for composite shallow [0◦/90◦] shells with S-Kw boundary
conditions by FSDT.

Stiffness
Plate Cylindrical Shell Spherical Shell Hyperbolic

Paraboloidal

m = 1 m = 2 m = 1 m = 2 m = 1 m = 2 m = 1 m = 2

100 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
101 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
102 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
103 6.0999 11.8765 6.1713 11.9614 6.0843 12.1226 5.8619 7.0016
104 6.1002 11.8766 6.1716 11.9616 6.0846 12.1227 5.8619 7.0016
105 6.1031 11.8786 6.1745 11.9635 6.0876 12.1245 5.8619 7.0016
106 6.1315 11.8980 6.2027 11.9826 6.1172 12.1424 5.8605 7.0024
107 6.3925 12.0948 6.4630 12.1764 6.3902 12.3238 6.4573 7.0719
108 7.7073 14.0587 7.7845 14.1180 7.8101 14.1629 7.7352 9.1254
109 8.7004 19.8103 8.7935 19.8887 19.8721 21.5398 8.7320 9.1254
1010 8.8380 21.1601 8.9336 21.2291 21.1699 21.6778 8.8733 9.1254
1011 8.8521 21.2786 8.9478 21.3223 21.2528 21.7339 8.8433 9.1254
1012 8.8535 21.2894 8.9493 21.3296 21.2599 21.7405 8.8434 9.1254

Table 15. The frequency parameter Ω for composite shallow [0◦/90◦] shells with S-Kφx boundary
conditions by FSDT.

Stiffness
Plate Cylindrical Shell Spherical Shell Hyperbolic

Paraboloidal

m = 1 m = 2 m = 1 m = 2 m = 1 m = 2 m = 1 m = 2

100 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
101 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
102 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
103 6.0999 11.8762 6.1713 11.9611 6.0843 12.1223 5.8619 7.0016
104 6.0997 11.8739 6.1711 11.9588 6.0840 12.1200 5.8619 7.0016
105 6.0974 11.8507 6.1688 11.9354 6.0812 12.0971 5.8619 7.0013
106 6.0711 11.5921 6.1418 11.6754 6.0485 11.8418 5.8619 6.9694
107 6.5494 9.0772 6.6282 9.1053 6.6639 9.0215 5.8621 9.1254
108 6.2722 14.4763 6.3469 14.5752 6.3025 14.7114 5.8621 8.9458
109 6.2620 14.2671 6.3365 14.3650 6.2894 14.5019 5.8621 8.9351
1010 6.2611 14.2479 6.3356 14.3457 6.2882 14.4828 5.8621 8.9350
1011 6.2610 14.2460 6.3355 14.3438 6.2881 14.4808 5.8621 8.9350
1012 6.2609 14.2458 6.3355 14.3436 6.2880 14.4807 5.8621 8.9350

Table 16. The frequency parameter Ω for composite shallow [0◦/90◦] shells with S-Kφy boundary
conditions by FSDT.

Stiffness
Plate Cylindrical Shell Spherical Shell Hyperbolic

Paraboloidal

m = 1 m = 2 m = 1 m = 2 m = 1 m = 2 m = 1 m = 2

100 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
101 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
102 6.0999 11.8764 6.1713 11.9613 6.0843 12.1225 5.8619 7.0016
103 6.0997 11.8763 6.1711 11.9612 6.0841 12.1225 5.8619 7.0016
104 6.0977 11.8755 6.1691 11.9604 6.0820 12.1217 5.8619 7.0016
105 6.0780 11.8669 6.1485 11.9521 6.0611 12.1145 5.8610 7.0017
106 5.8434 11.7713 5.9050 11.8600 5.8139 12.0349 5.7743 7.0070
107 5.7759 9.0847 9.1053 9.2703 9.0215 9.4964 7.1004 9.1254
108 7.5204 12.8896 7.6516 12.9518 7.6426 12.9930 7.1247 9.4010
109 7.4432 12.8039 7.5710 12.8671 7.5546 12.9172 7.1250 9.3841
1010 7.4360 12.7961 7.5634 12.8594 7.5463 12.9103 7.1250 9.3840
1011 7.4352 12.7954 7.5627 12.8587 7.5455 12.9096 7.1250 9.3840
1012 7.4352 12.7953 7.5626 12.8586 7.5454 12.9095 7.1250 9.3840
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In Tables 12 and 13, when the certain cross-ply composite laminated shallow shells are only
restrained in the direction of u and v, the frequency parameters generally increase with the various
composite laminated shallow shell forms. Also, the increase in frequency parameters is small and
basically remains within a stable range. Correspondingly, when Ku = 106, the frequency parameter
starts to increase slightly, and when Ku = 1010, the frequency parameter remains basically unchanged.
When the composite laminated shallow shells are under the elastic restraint Kw in Table 14, the
frequency parameters Ω are generally decreased with the growing of the spring stiffness from 100 to
1012. In particular, for the hyperbolic paraboloidal shell, the frequency parameter increases less than
that of the other composite laminated shallow shell forms. For the effect of transverse rotational spring
stiffness on the frequency parameter of composite laminated shallow shells, Tables 15 and 16 show
the changing rule of the frequency parameters with the growing of the stiffness constants for Kφx and
Kφy. In general, as the stiffness constants Kφx and Kφy continue to increase, the frequency parameters
corresponding to each structure tend to increase; at the same time, the main change region of the
frequency parameter is between Kφx,y = 104–1010. However, when Kφx,y = 107, there will be some jitter
in the frequency parameters, which suddenly increase or decrease. Therefore, as the elastic restrained
stiffness constants in different directions increase, the frequency parameters of various composite shell
forms are gradually increasing and have different change regions. Furthermore, the variations of the
frequency parameter with the changing of the stiffness constants are shown in Figures 7–11.
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Figure 7. Variation laws of the frequency parameter Ω for composite shallow [0◦/90◦] shells with
various stiffness constant Ku by FSDT. (a) m = 1; (b) m = 2.
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Figure 8. Variation laws of the frequency parameter Ω for composite shallow [0◦/90◦] shells with
various stiffness constant Kv by FSDT. (a) m = 1; (b) m = 2.
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Figure 9. Variation laws of the frequency parameter Ω for composite shallow [0◦/90◦] shells with
various stiffness constant Kw by FSDT. (a) m = 1; (b) m = 2.
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Figure 10. Variation laws of the frequency parameter Ω for composite shallow [0◦/90◦] shells with
various stiffness constant Kφx by FSDT. (a) m = 1; (b) m = 2.
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various stiffness constant Kφy by FSDT. (a) m = 1; (b) m = 2.

4. Conclusions

A semi-analyzed method is conducted for the free vibration characteristics of composite laminated
shallow shells with general boundary conditions, including classical boundary conditions, elastic
boundary conditions, and their combinations. Through the relationship between the displacement
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vector and force resultants, the formulations are established related to classical shell theory (CST)
and first-order shear deformation shell theory (FSDT). According to diverse boundary conditions, the
boundary matrix and the total matrix of the composite shallow shell will be established. Through the
dichotomy method to search the zeros position of the total matrix determinant, the natural frequency
can be obtained. Correspondingly, some numerical examples are calculated and the conclusions can be
summarized as follows:

First, by comparing the solutions by the presented method with some reported literature results,
the correctness of the calculation for the free vibration characteristics of composite laminated shallow
shells with classical boundary conditions, elastic boundary conditions, and their combinations can
be proven.

Second, some numerical examples are extended to investigate the influence of material parameters
and geometric constants, like length to radius ratios, length to thickness ratios, and modulus ratios,
on the frequency parameter. It can concluded that different material and geometric parameters have
different influence factors on frequency parameters. Simultaneously, changing laws obtained by
various composite laminated shallow shell structures are not consistent.

Finally, the effect of boundary elastic restrained stiffness on the natural frequency parameters
is discussed. By changing the value of the spring stiffness in different displacement directions and
transverse rotation from 100 to 1012, the variation of the frequency parameter with the elastic restrained
spring stiffness constants is obtained. It can be seen from numerical analysis examples that the different
elastic constants have a positive effect on the frequency parameters and have a certain effect on the
increase of the frequency parameters. Simultaneously, the effect of each spring stiffness constant has its
own influence range.
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