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Abstract

Background: Accurately covering the conformational space of amino acid side chains is essential for important
applications such as protein design, docking and high resolution structure prediction. Today, the most common
way to capture this conformational space is through rotamer libraries - discrete collections of side chain
conformations derived from experimentally determined protein structures. The discretization can be exploited to
efficiently search the conformational space. However, discretizing this naturally continuous space comes at the cost
of losing detailed information that is crucial for certain applications. For example, rigorously combining rotamers
with physical force fields is associated with numerous problems.

Results: In this work we present BASILISK: a generative, probabilistic model of the conformational space of side
chains that makes it possible to sample in continuous space. In addition, sampling can be conditional upon the
protein’s detailed backbone conformation, again in continuous space - without involving discretization.

Conclusions: A careful analysis of the model and a comparison with various rotamer libraries indicates that the
model forms an excellent, fully continuous model of side chain conformational space. We also illustrate how the
model can be used for rigorous, unbiased sampling with a physical force field, and how it improves side chain
prediction when used as a pseudo-energy term. In conclusion, BASILISK is an important step forward on the way
to a rigorous probabilistic description of protein structure in continuous space and in atomic detail.

Background
With the emergence of the first experimentally deter-
mined protein structures, the investigation of the confor-
mations of their amino acid side chains began. It quickly
became apparent that the c (chi) dihedral angles - the
main degrees of freedom in side chains - are not distribu-
ted freely, but tend to cluster around certain positions
[1-3]. This behavior was already well known for dihedral
bond angles in small organic molecules [4]. As more pro-
tein structures were solved to a high resolution, an
increasingly accurate analysis of the adopted conforma-
tions became possible.
Today, the most common way to describe the confor-

mational space of side chains is through so-called rota-
mer libraries: collections of representative side chain
conformations, called rotamers [5]. These libraries are
usually compiled from experimentally determined, high
resolution protein structures by clustering the side chain

conformations. Clusters of side chain angles thus
obtained can then for example be represented by Gaus-
sian distributions [6,7]. Traditionally, a rotamer in a
library corresponds to the mean conformation of such a
cluster and may be interpreted as a local energy mini-
mum [5]. In recent studies, rotamer libraries with many
thousands of rotamers were used [8,9]. Such libraries
are built to cover the conformational space with high
resolution.
The accurate description of side chain conformational

space is an important ingredient of the solution to many
biomolecular problems, such as protein design, docking
and high resolution protein structure prediction. Over
the past decades rotamer libraries have been successfully
applied in all of these contexts. Arguably, the most well
studied field is the prediction of side chain conforma-
tions for a fixed protein backbone; there is a manifold
of programs in the public domain devoted to this
problem [10-14].
Rotamer libraries are usually applied as discrete

collections of side chain conformations. Discretizing
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conformational space is a popular approximation to
solve problems that are computationally expensive
otherwise. For example, when assigning side chains in
the densely packed protein core, discretizing the search
space leads to exhaustive yet fast search strategies (such
as dead end elimination) which can quickly find a global
minimum solution [10,15,16]. However, in recent studies
it was shown that a Markov chain Monte Carlo
(MCMC) sampling scheme combined with a detailed
rotamer library yields equally good or better results,
which suggests that the combinatorial problem often
poses no significant obstacle to finding a global mini-
mum solution [8,13].
The discretization in rotamer libraries inherently leads

to edge effects [17,18]. In docking problems for exam-
ple, small differences in the side chain conformation
may result in large differences in energy. Rotamers are
often used as stiff building blocks; not considering the
conformations in between rotamers may skip energeti-
cally favorable configurations [17,18]. There are three
common heuristic strategies to tackle these issues. The
first, which is most commonly used, is tweaking the
energy functions; for example, by reducing the influence
of mild steric clashes [11,13,19]. The second is to
increase the number of rotamers in the library in order
to improve its resolution [8,9,19]. Finally, one can com-
bine rotamer based sampling with some form of contin-
uous optimization [3,17]. Another problem associated
with rotamer libraries is the occurrence of so-called
non-rotameric states: side chain conformations that can-
not be assigned to any of the standard gauche+, gauche-
or trans states [7]. Such conformations are typically
missing in rotamer libraries and difficult to fill in cor-
rectly [20,21].
Here we present BASILISK, a dynamic Bayesian net-

work [22] that formulates a probabilistic model of the
conformational space of amino acid side chains. The
model is generative: it allows sampling of plausible side
chain conformations. BASILISK loosely stands for Baye-
sian network model of side chain conformations esti-
mated by maximum likelihood. BASILISK represents all
relevant variables in continuous space and thus avoids
the problems that are due to the discretization used in
rotamer libraries. Furthermore, BASILISK incorporates
the � (phi) and ψ (psi) angles. This makes it possible to
condition the sampling upon the residue’s backbone
conformation, which is known to exert a strong influ-
ence on the side chain’s conformation [3]. BASILISK
represents all amino acids in a single probabilistic
model, which is an entirely novel way of attacking this
problem. Such an approach corresponds to a powerful
machine learning technique called multitask or transfer
learning, which often leads to better models with fewer
parameters [23,24].

We first describe the BASILISK model, then proceed
to evaluate its performance, and conclude with illustrat-
ing some potential applications.

Results and discussion
Parameterization
For our purposes, bond angles and bond lengths in
amino acid side chains can be considered as fixed to
their ideal values, as they show only very small varia-
tions [25]. This leaves the rotations around the bonds -
the c dihedral angles - as the main degrees of freedom.
Accordingly, the sequence of c angles is a good parame-
terization of the conformation of a given side chain. The
same parameterization of the conformational space is
also used in most popular rotamer libraries [6,7]. The
number of angles necessary to describe a side chain
conformation varies between zero and four for the 20
different standard amino acid types. Figure 1 illustrates
the dihedral angles for glutamate.
In previous studies, it has been shown that the side

chain conformation correlates highly with the conforma-
tion of the backbone [6]. For the backbone, the two
main degrees of freedom are the � and ψ dihedral
angles, which when plotted against each other result in
the celebrated Ramachandran plot [26]. We incorporate
� and ψ angles in BASILISK to be able to condition the
sampling on the backbone conformation.

Figure 1 Dihedral angles in glutamate: Dihedral angles are the
main degrees of freedom for the backbone (� and ψ angles) and
the side chain (c angles) of an amino acid. The number of c angles
varies between zero and four for the 20 standard amino acids. The
figure shows a ball-and-stick representation of glutamate, which has
three c angles. The fading conformations in the background
illustrate a rotation around c1. The figure was made using PyMOL
http://www.pymol.org.
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BASILISK: a generative model of side chain conformations
Bayesian networks are graphical models that determine
the possible factorizations of the joint probability distri-
bution of a set of random variables [27-29]. A Bayesian
network is a graph in which the nodes represent the
random variables, and the edges encode their condi-
tional independencies. The graph is directed and acyclic,
and is often chosen based on prior, expert knowledge. If
sequences of variables are modeled, the models are
called dynamic Bayesian networks (DBNs) [22]. Here,
dynamic originally referred to time sequences, such as
speech signals, but arbitrary sequences can be modeled.
Each position in the sequence is called a slice. The
sequences represented by a DBN are allowed to have
different lengths; a property which we use to our advan-
tage, as explained below.
BASILISK was implemented as a DBN, and its para-

meters were estimated by a maximum likelihood
method using a data set derived from more than 1500
crystal structures (see Data sets for training and testing).
The model is shown in Figure 2.
We briefly describe the most important features of the

model. For each slice, an input node (which is a discrete
variable) indicates which angle and amino acid type are
modeled. For example, 3 indicates the c1 angle of aspar-
tate, 4 indicates the c2 angle of aspartate, and so forth.

We recently used a similar approach to formulate a
probabilistic model of RNA structure [30].
The natural manifold of all the dihedral angles com-

bined is the hypertorus: a torus with dimension three or
higher. BASILISK constructs a probability distribution
on this manifold in the following way: the model has a
single output node per slice, in the form of a von Mises
distribution [31], which can be considered the circular
equivalent of a Gaussian distribution. The von Mises
distribution takes the circular nature of the data into
account: a dihedral angle in [- π, π[ is naturally repre-
sented as a point on the circle. The von Mises distribu-
tion belongs to the realm of directional statistics [31]:
the statistics of angles, directions and orientations. We
previously developed probabilistic models of RNA and
protein structure based on the combination of DBNs
and directional statistics [30,32,33]. The von Mises dis-
tribution was also used previously in a seminal study on
probabilistic models of the protein backbone in terms of
the � and ψ angles [34], and in a preliminary study on
clustering of side chainrotamers [35].
The problem of representing amino acid types that

differ in the number of c angles within one model is
elegantly solved by using a DBN with a variable number
of slices. There are two slices for the � and ψ angles,
followed by a sequence of slices that represent the c
angles. For example, to model glutamine, which has
three c angles in its side chain, one slice is added to the
DBN that is shown in Figure 2.
The dependencies between the input nodes (which

specify the amino acid type and the angles) and the out-
put nodes (which specify the values of the angles) are
mediated by a sequence of interconnected, discrete hid-
den nodes. The values of these nodes are never
observed: their technical purpose is to model the depen-
dencies between the amino acid type and the c angles
on the one hand, and the sequential dependencies
between the c angles on the other hand. The hidden
nodes are so-called nuisance variables, that are inte-
grated away in parameter estimation, sampling and
inference. It should be noted that the hidden nodes thus
introduce dependencies between all angles, and not just
between two consecutive angles - a common
misconception.
Our aim was to describe all side chain and backbone

angles for all different amino acid types in a single
probabilistic model. This approach is known as multi-
task or transfer learning in the field of machine learn-
ing [23,24] and has several advantages. As the same set
of distributions is used to model all amino acids (and
all angles), it leads to a lower amount of free para-
meters. Moreover, it makes “knowledge transfer” possi-
ble between amino acids with similar conformational
properties during training [23,24]. Finally, for rotamer

Figure 2 The BASILISK dynamic Bayesian network: The network
shown represents an amino acid with two c angles, such as for
example histidine. In this case, the DBN consists of four slices: two
slices for the �, ψ angles, followed by two slices for the c angles.
Sampling a set of c angles is done as follows. First, the values of
the input nodes (top row) are filled with bookkeeping indices that
determine both the amino acid type (for example histidine) and the
labels of the angles (for histidine, �, ψ followed by c1 and c2). In
the next step, the hidden node values (middle row, discrete nodes)
are sampled conditioned upon the observed nodes. These observed
nodes always include the index nodes (top row, discrete nodes),
and optionally also the �, ψ nodes (first two nodes in the bottom
row) if the sampling is conditioned on the backbone. Finally, a set
of c angles is drawn from the von Mises nodes (bottom row),
whose parameters are specified by the sampled values of the
hidden nodes.
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libraries, one needs to determine the optimal number
of rotamers for each amino acid type separately, while
in our approach, only the size of the hidden node
needs to be determined. This can be done using an
established statistical procedure for model selection
(see Model training).
Several other network architectures were discarded

during model selection as they could not adequately
capture the joint distributions, which illustrates the
importance of the network’s architecture. Neither regu-
lar hidden Markov models, nor various mixture models
produced satisfying results (data not shown). A similar
observation was made for the probabilistic model of
RNA structure mentioned previously [30].
It is important to note that the model as depicted in

Figure 2 represents a single amino acid. When assigning
side chains to an entire protein backbone, the model is
simply applied to each position in the chain. Sampling
conformations from BASILISK is fast: generating 50,000
arginine side chain conformations takes about two sec-
onds on an average desktop computer (Intel Core 2, at
2.4 GHz).

Probability distributions
The joint probability distribution encoded by the Baye-
sian network is

P H A P H P H A P A( , , , , ) ( , , | ) ( | ) (   )χ φ ψ χ φ ψ=

where χ is the sequence of c angles, A is the angle
index information which includes the amino acid type,
� and ψ are the backbone angles, and H is the sequence
of hidden node values.
For most purposes, the conditional and marginal dis-

tributions are of interest. BASILISK allows backbone
dependent sampling of the c angles by conditioning on
the � and ψ angles. The conditional probability distribu-
tion for this case is given by:

P A

P H P H A
H

P H P H A
H

( | , , )

( , , | ) ( |   )

( , | ) ( | )
χ φ ψ

χ φ ψ

φ ψ
=

∑

∑

where the sums run over all possible hidden node
sequences H.
The marginal, conditional probability distribution for

the backbone independent case is given by:

P A P H P H A
H

( | ) ( | ) ( | )χ χ= ∑
where the sum again runs over all possible hidden

node sequences H. The backbone angles are thus simply
disregarded in this calculation.

The marginal, conditional probabilities P(c|H) for a
single angle are represented by von Mises distributions
(see material and methods). The parameters of the von
Mises distribution are specified by the value of the
hidden node, H.
As BASILISK is a simple extension of a hidden Mar-

kov model, all relevant joint and marginal probabilities
can be calculated in a straightforward manner using the
forward algorithm [30,36].

Initial analysis
For generative probabilistic models, an obvious first
quality check is visual inspection. Accordingly, we start
by investigating whether BASILISK captures the angular
preferences found in the training data, before perform-
ing a more rigorous and in-depth analysis.
For these first tests, we generated over 300,000 sam-

ples with the same amino acid composition as the train-
ing set. Figure 3 compares the marginal angular
distributions of the training set with those of the BASI-
LISK samples for arginine and lysine. We show plots for
arginine and lysine because they are the only amino
acids with four c angles; they were most difficult to cap-
ture accurately with alternative models (data not
shown). A comparison of all remaining relevant amino
acids is available as additional material (Additional files
1, 2, 3, Figures S1-S3).
As a second test, we inspected pairwise histograms of

the c1 and c2 angles for all relevant amino acids. These
plots provide an indication of whether the model cap-
tures the correlation between two angles correctly.
Again we compare samples from BASILISK model with
the training data.
Figure 4 shows the pairwise histograms for isoleucine.

In the univariate, marginal plots for isoleucine, we
observe three peaks for each c angle. Hence, one might
expect nine peaks with varying density in the bivariate
plot. However, the training data only shows five major
peaks. The comparison of the plots indicate that these
features are indeed captured. Plots for the remaining
13 amino acid that have at least two c angles are avail-
able as additional material (Additional files 4, 5, 6,
Figures S4-S6).
The results of the visual inspections provide a strong

indication that the model behaves as desired. We now
move on to a more qualitative, in-depth analysis.

BASILISK concurs with a standard rotamer library
In the following tests, we compare BASILISK to several
rotamer libraries, as these are the method of choice to
explore the conformational space of amino acid side
chains for many purposes.
We use the Dunbrack backbone independent library

[6] (bbind02.May.lib) as a representative rotamer library,
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as it is widely used and based on rigorous statistical ana-
lysis of high quality protein structures. In the construc-
tion of the Dunbrack library, it was assumed that the
distribution of each angle in a rotamer follows a Gaus-
sian distribution. Accordingly, rotamers in this library
are reported as a sequence of Gaussian distributions -
one for each c angle. This allows us to evaluate the
probability density value for any given side chain confor-
mation according to the Dunbrack library.
For all calculations we used the BASILISK model with

the backbone angles marked as unobserved - which

results in a backbone independent likelihood - for fair
comparison with the backbone independent Dunbrack
rotamer library.
As a first test, we determine whether the Dunbrack

rotamer library and BASILISK report similar probabil-
ities for the same conformations. We calculated the log-
likelihood of the side chain conformations according to
the Dunbrack backbone independent rotamer library
and according to BASILISK for all side chains in the
test set (see Data sets for training and testing). The
results show that the two methods indeed correlate very
well (Pearson correlation coefficient is 0.88). Figure 5
shows a scatter-plot of the log-likelihood values for all
rotamer conformations in the Dunbrack library accord-
ing to the library itself, and according to BASILISK.
Again we find a very good correlation (Pearson correla-
tion coefficient is 0.91). Outliers, especially in the low
probability region, are limited to very rare rotamer con-
formations with little to no observations according to
the Dunbrack library.
In the following paragraphs we take a more detailed

look at the probability distributions encoded in the
BASILISK model, and compare with several standard
rotamer libraries. For this analysis we again use the
Dunbrack library, but also include two additional back-
bone independent libraries [7,37].
The Kullback-Leibler (KL) divergence is a standard

measure of the similarity between two probability distri-
butions [28,38]. Here, the KL divergence is used to com-
pare the quality of the rotamer libraries versus

Figure 3 Univariate histograms for lysine and arginine: The histograms marked “Training” represent the training set. The histograms marked
“BASILISK” represent BASILISK samples. For each amino acid, all histograms are plotted on the same scale.

Figure 4 c1 versus c2 histogram for isoleucine: The two-
dimensional histogram of c1 (x-axis) against c2 (y-axis) illustrates the
association between the two angles. Their univariate, marginal
distributions are shown as well, attached to the respective axes. The
histogram marked “Training” represents the training set, while the
histogram marked “BASILISK” represents BASILISK samples.
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BASILISK. We compare BASILISK and the rotamer
libraries with the experimental data in the test, which is
here used as a reference or truth model. We then calcu-
late the relative KL divergence between BASILISK and
each library (see Kullback-Leibler divergence). Table 1
shows the results for each amino acid. Positive numbers
indicate that BASILISK models the conformations in the
test set more accurately than the method compared to,
while negative numbers indicate that BASILISK is less
accurate.
Overall, BASILISK captures the conformational prefer-

ences of amino acid side chains more accurately than
any of the rotamer libraries, with few exceptions. For
example, the Dunbrack library performs better for tryp-
tophan. We speculate this is due to the relatively low
abundance of tryptophan in the training data (< 2%),
and the fact that we are training an all amino acid
model. An amino acid with few observed data points
will have a smaller impact on the estimated parameters
than an amino acid that was presented more often dur-
ing training. The relatively low performance of the
Lovell library can be explained by the small number of
rotamers in the library. Especially for long side chains
such as glutamine, lysine or arginine, too many rotamers
appear to be missing.
Note that only libraries reporting both mean and var-

iance for each c angle are suitable for this analysis.
Many rotamer libraries are mere discrete sets of possible
conformations [8,9]: they cannot be evaluated in the
same, rigorous way.

BASILISK captures the backbone’s influence
It is well known that there is a strong correlation
between backbone and side chain conformations [3].
This backbone dependency is captured by the BASILISK
model by incorporating the backbone’s two main
degrees of freedom: the j and ψ dihedral angles.
To the best of our knowledge, BASILISK is the first

model that captures this correlation in continuous
space; that is, without resorting to the usual discretiza-
tions of the conformational space. Comparison with
other models is therefore difficult. Notably, a compari-
son with backbone dependent rotamer libraries based
on the KL divergence is not possible due to their lack of
an expression for the joint probability of the backbone
and the side chain angles. However, we do present two
decisive tests. First, we resort to visual inspection, fol-
lowed by a quantitative evaluation based on the KL-
divergence between backbone dependent and indepen-
dent BASILISK. In the next section, we evaluate the
influence of the backbone information on side chain
sampling for a fixed backbone.
Figure 6 shows a comparison between the angular pre-

ferences observed in the training data and those found
in BASILISK samples. For this comparison, we gener-
ated BASILISK samples and binned them according to
their backbone angle values. The bins chosen in the plot
are well populated in the training set, and illustrate the

Figure 5 Comparison between BASILISK and a standard
rotamer library: We calculated the log-likelihood for every rotamer
in the Dunbrack backbone independent rotamer library according
to the Gaussian model of the library itself (y-axis), and according to
BASILISK (x-axis). The Pearson correlation coefficient is 0.91.

Table 1 Kullback-Leibler divergence analysis

Amino acid Dunbrack Tuffery Lovell BASILISK backbone-
dependent

Cysteine 0.01 0.03 0.00 -0.13

Aspartate 0.27 0.53 0.79 -0.49

Glutamate 0.16 0.89 1.16 -0.16

Phenylalanine 0.04 0.49 0.20 -0.35

Histidine 0.88 1.98 1.56 -0.10

Isoleucine 0.13 0.02 1.15 -0.43

Lysine 0.38 0.72 6.55 -0.23

Leucine 0.10 0.32 2.38 -0.21

Methionine 0.00 0.22 2.91 -0.06

Asparagine 0.42 0.82 3.60 -0.41

Glutamine 0.28 1.00 6.41 -0.17

Arginine 0.15 0.80 2.59 -0.17

Serine 0.04 0.16 0.10 -0.22

Threonine 0.06 0.14 0.25 -0.48

Valine -0.07 0.13 -0.06 -0.45

Tryptophan -0.33 0.07 1.49 -0.04

Tyrosine -0.06 0.37 0.21 -0.33

Average 0.14 0.46 1.69 -0.28

Columns 2-4: the differences in the KL divergences between BASILISK without
backbone information and a set of standard rotamer libraries. Last column:
the differences in the KL divergences between backbone independent
BASILISK and BASILISK including backbone information. In both cases, positive
numbers indicate that backbone independent BASILISK captures the observed
preferences in the test set more accurately.
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drastic effect that the backbone conformation can have
on the side chain’s conformational space. Certain peaks
are almost entirely missing for certain regions of the
Ramachandran plot. These observations provide a first
indication that BASILISK captures the correlation with
the backbone well.
For a quantitative evaluation, we turn again to the KL-

divergence; this time, to compare BASILISK with and
without backbone dependency. As in the previous test,
where BASILISK was compared to different rotamer
libraries, this test determines which model is closer to
the theoretical truth model as embodied by the test set
(see Data sets for training and testing). Table 1 (last col-
umn) shows the differences between the KL divergences
for all relevant amino acids. The negative numbers indi-
cate that the backbone dependent model resembles the
experimental data most. This indicates that BASILISK
indeed captures the influence of the backbone, and that
incorporating backbone information improves the accu-
racy for all amino acids. This conclusion is also sup-
ported by the results described in the next section.

Application: side chain sampling for a fixed backbone
In the previous sections, we evaluated the probability
distributions encoded in BASILISK. We now proceed to
evaluate the applicability of the model. As a proof of
concept we implemented a side chain prediction algo-
rithm that assigns side chains to a fixed protein back-
bone. Xiang and Honig [8] showed that given a large
rotamer library, an MCMC approach leads to good
accuracy in predicting buried side chain conformations.
Following their study, we combine side chain sampling

from BASILISK with an MCMC method and an unmo-
dified Lennard-Jones potential [39]. The main purpose
of the potential is to avoid steric clashes between the
side chains. The parameters for the potential were
derived from the OPLS force field as implemented in
Tinker [40,41].
For the evaluation, we considered a c angle within ±

20° of its value in the crystal structure as correct [8,12].
We only included buried side chains in the protein core
in the evaluation, because exposed side chains often
have few steric restraints and we did not use any energy
term that accounts for the solvent interaction. However,
all side chains were included in the MCMC procedure
and none were fixed, in order not to bias the simulation
towards the native state. The test set contained 43 single
chain crystal structures that were used to evaluate side
chain prediction algorithms in other studies [8,9,42].
To avoid getting trapped in local minima, we

resampled three random residues at a time [11]. This
effectively enables side chains to swap their positions.
After a fixed set of MCMC steps, the lowest energy
structure was selected as the final prediction. For details
on the energies and the sampling see Sampling strategy
and energies.
BASILISK is a true probabilistic model: it can be used

as a proposal distribution to implement MCMC meth-
ods that respect detailed balance, since its exact contri-
bution can be taken into account. The first test uses a
Lennard-Jones potential as the only energy component,
and brings in BASILISK solely as a proposal function.
We use the BASILISK model to propose new side chain
conformations, which are subsequently accepted or

Figure 6 Backbone dependency of the c1 angle of aspartate: The c1 histograms for different areas of the Ramachandran plot indicate a
strong correlation between the backbone and the side chain conformations. For some regions certain peaks disappear almost entirely.
Histograms marked with “Training” represent the training set, and histograms marked “BASILISK” represent BASILISK samples. A, B and C show
the histograms for the areas indicated by the three boxes, while D shows the histogram over the entire space. Note that the indicated binning
of the backbone space is for visualization only, as BASILISK does not rely on discretization of the conformational space.
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Table 2 Side chain placement for a fixed backbone

Structure L, Ba Lennard-Jonesb BASILISKc BASILISK BBd IRECSe SCWRL 4e

c1(%) c2|c1 (%)f c1 (%) c2|c1 (%)f c1 (%) c2|c1 (%)f c1 (%) c2|c1 (%)f c1 (%) c2|c1 (%)f

1NAR 289, 45 77.78 76.92 73.33 87.50 93.33 87.50 84.44 70.37 86.67 79.31

5P21 166, 21 90.48 77.78 85.71 100.00 95.24 88.89 95.24 88.89 100.00 80.00

1BJ7 150, 12 91.67 75.00 100.00 77.78 100.00 77.78 91.67 75.00 83.33 85.71

1GCI 269, 40 95.00 86.67 97.50 81.25 100.00 81.25 95.00 85.71 97.50 93.33

2BAA 243, 30 86.67 60.00 83.33 86.67 90.00 82.35 86.67 81.25 90.00 94.12

1DHN 121, 15 93.33 100.00 100.00 85.71 86.67 100.00 93.33 100.00 93.33 100.00

1AMM 174, 22 90.91 100.00 100.00 92.86 100.00 92.86 100.00 85.71 86.36 90.91

1IC6 279, 47 89.36 73.68 91.49 70.00 93.62 75.00 91.49 73.68 93.62 85.00

1KOE 172, 26 80.77 92.86 73.08 84.62 80.77 84.62 92.31 92.86 88.46 84.62

2HVM 273, 43 83.72 74.07 95.35 82.76 90.70 89.66 90.70 85.19 90.70 84.62

3LZT 129, 10 80.00 83.33 70.00 83.33 80.00 83.33 100.00 83.33 100.00 83.33

1CEX 197, 24 95.83 89.47 100.00 100.00 95.83 100.00 87.50 94.74 100.00 100.00

1AGY 197, 25 92.00 84.21 96.00 100.00 96.00 100.00 84.00 94.74 92.00 100.00

1EDG 380, 76 85.53 65.85 85.53 85.00 90.79 81.82 85.53 80.49 89.47 86.05

1THV 207, 20 85.00 76.92 80.00 91.67 85.00 92.31 90.00 76.92 90.00 100.00

2CPL 164, 24 95.83 73.33 91.67 85.71 95.83 93.33 100.00 80.00 95.83 93.33

1NPK 150, 16 100.00 60.00 100.00 80.00 100.00 90.00 93.75 88.89 87.50 88.89

1MLA 305, 38 97.37 71.43 97.37 86.36 100.00 86.36 94.74 75.00 92.11 84.21

1ARB 263, 37 89.19 90.48 89.19 88.89 86.49 85.00 86.49 68.42 83.78 90.00

1MML 251, 19 78.95 81.82 84.21 75.00 89.47 91.67 94.74 83.33 94.74 91.67

1CHD 198, 26 96.15 68.75 96.15 81.25 100.00 76.47 92.31 73.33 92.31 80.00

1QQ4 198, 25 80.00 60.00 84.00 80.00 84.00 90.91 88.00 63.64 88.00 81.82

1QJ4 256, 36 83.33 75.00 91.67 81.48 94.44 81.48 91.67 85.71 94.44 81.48

1B9O 123, 14 78.57 50.00 71.43 57.14 78.57 50.00 92.86 66.67 92.86 44.44

1BYI 224, 30 80.00 86.67 100.00 100.00 96.67 94.12 90.00 87.50 93.33 100.00

1XNB 185, 22 90.91 91.67 100.00 91.67 95.45 100.00 100.00 66.67 95.45 91.67

2PTH 193, 19 94.74 100.00 100.00 100.00 94.74 100.00 94.74 100.00 100.00 100.00

1WHI 122, 12 91.67 100.00 100.00 75.00 100.00 75.00 91.67 100.00 100.00 100.00

153L 185, 26 84.62 93.33 96.15 93.33 88.46 86.67 100.00 87.50 100.00 100.00

1QTW 285, 35 94.29 84.00 91.43 91.67 91.43 83.33 88.57 70.83 97.14 80.77

2IHL 129, 12 66.67 75.00 75.00 75.00 83.33 75.00 100.00 75.00 100.00 75.00

1CZ9 139, 14 85.71 88.89 85.71 100.00 100.00 100.00 100.00 88.89 100.00 100.00

2RN2 155, 11 90.91 87.50 90.91 87.50 90.91 100.00 81.82 100.00 81.82 100.00

1RCF 169, 28 92.86 87.50 96.43 82.61 100.00 95.83 82.14 80.00 92.86 90.91

7RSA 124, 12 75.00 100.00 75.00 100.00 75.00 100.00 75.00 100.00 91.67 100.00

1A8Q 274, 39 87.18 70.00 71.79 93.75 89.74 80.95 94.87 87.50 92.31 95.65

1CEM 363, 55 89.09 64.52 83.64 77.42 94.55 79.41 89.09 80.00 89.09 80.00

1AAC 105, 13 100.00 75.00 100.00 100.00 100.00 100.00 92.31 87.50 100.00 87.50

1PLC 99, 10 100.00 85.71 90.00 66.67 100.00 71.43 90.00 85.71 100.00 71.43

1BD8 156, 11 81.82 100.00 90.91 85.71 90.91 100.00 100.00 100.00 90.91 85.71

1NLS 237, 23 78.26 85.71 86.96 87.50 86.96 81.25 86.96 80.00 91.30 81.25

1IXH 321, 44 81.82 72.00 84.09 84.62 88.64 85.19 93.18 75.00 88.64 84.00

1AKO 268, 35 77.14 72.73 85.71 91.30 85.71 91.30 100.00 81.48 97.14 88.46

Average 207, 27 87.44 80.65 89.32 86.25 92.08 87.49 91.92 83.43 93.13 88.26

The table shows the percentage of correctly predicted c angles for the different MCMC experiments. a number of residues (L), number of buried residues (B), b

using the Lennard-Jones energy and BASILISK as a proposal distribution, c using BASILISK without backbone information, d using BASILISK with backbone
information (BB), e using IRECS or SCWRL with default parameters, f percentage of correctly predicted c2 angles given a correctly predicted c1 angle.
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rejected based on their energy (see Sampling strategy
and energies). Table 2b shows that already with this
very simple approach, we reach a quite reasonable per-
formance: more than 87% of the c1 angles were cor-
rectly predicted (Table 2b).
In a second test, we use the BASILISK likelihood as a

pseudo-energy component [43], combined with the Len-
nard-Jones potential. Table 2c shows that the prediction
quality increases (by about 2% for c1). Incorporating
backbone information in BASILISK (Table 2d) increases
the performance compared to the backbone independent
(by more than 2%) and the Lennard-Jones only case (by
more than 4%). It should be noted that none of these
tests include energies that evaluate key features such as
hydrogen bonds, salt-bridges or electrostatic interactions.
For comparison, Table 2e also reports the prediction

accuracy of IRECS [12] and SCWRL 4 [14], which are
two leading programs in the field. In both cases, the
results are on a par with BASILISK. SCWRL 4 and
IRECS are specialized programs optimized for both pre-
diction accuracy and speed: they use fine tuned and
optimized force fields combined with backbone depen-
dent rotamer libraries. The comparison serves to illus-
trate the quality of BASILISK as a probabilistic model;
with respect to computational performance, SCWRL 4
and IRECS (whose runtime is typically seconds to min-
utes) are clearly superior to the unoptimized application
of BASILISK (where we sampled for several hours to
ensure convergence).

Conclusions
In this paper, we introduce a generative, probabilistic
model of the conformational space of side chains that
allows sampling of realistic, native-like side chain angles
in continuous space. BASILISK incorporates a continu-
ous backbone dependency, which to the best of our
knowledge is entirely novel. Another unique feature is
that BASILISK represents all relevant natural amino
acids within one model. This powerful approach is
known as multitask or transfer learning in the field of
machine learning, and comes with several advantages.
In the first tests we showed that BASILISK is able to

accurately capture the angular preferences found in pro-
teins. Using the KL divergence, we confirmed that the
model compares favorably with several standard rotamer
libraries.
BASILISK also captures the effect of the backbone

conformation on the side chain, and samples realistic
angular distributions for various areas of the Ramachan-
dran plot. Again using the KL divergence, we confirmed
that including backbone information leads to more
accurate results.
As a proof of concept, we implemented a simple side

chain prediction method that assigns side chains to a

fixed protein backbone, using an MCMC sampling
scheme and an unmodified Lennard-Jones potential as
energy function. The results show the applicability of
combining a continuous description of conformational
space with a detailed energy function. Adding BASILISK
as an explicit pseudo-energy term improves the predic-
tion results. Best results are obtained when the back-
bone conformation is taken into account.
Specialized side chain prediction programs combine

highly tuned energy functions with an efficient exploita-
tion of the discrete nature of rotamers. This makes
them very fast, yet accurate. BASILISK as such does not
compete with those programs, but provides a solution
where a detailed, continuous description of conforma-
tional space is required. The possibility to combine an
unmodified, standard force field with BASILISK opens
great possibilities for applications such as docking,
structure prediction or protein design. For example, the
calculation of side chain entropies is important for tasks
such as protein quality assessment or protein design
[44-46]. BASILISK can facilitate these calculations -
which are now often performed with discrete rotamer
libraries - in continuous space.
BASILISK, when combined with our previously

described probabilistic model of the protein backbone
(TorusDBN [33]), can be used to sample protein struc-
tures in continuous space and in full atomic detail. An
obvious potential application is to sample protein con-
formations by combining TorusDBN and BASILISK
with a physical force field, with applications in protein
structure prediction, simulation and design.
BASILISK illustrates the enormous potential and

increasing importance of probabilistic models and prob-
abilistic machine learning methods in structural bio-
informatics [19,30,33,44,47,48]. We believe that
BASILISK is an excellent solution for problems that
require going beyond discrete representations of amino
acid side chains in protein structure simulation, predic-
tion and design.

Methods
Data sets for training and testing
For training, we used a high quality dataset obtained
from the PISCES server [49]. The PISCES server can be
used to select a set of structures from the Protein Data
Bank that respect quality thresholds regarding resolution
or R-value. We imposed a resolution of 1.6 Å or better,
an R-value of 0.25 or better, and a pairwise sequence
similarity cutoff of 25%. Subsequently, all structures
were removed that had a sequence similarity higher
than 25% with any of the structures used in the fixed
backbone prediction test (see next paragraph).
The resulting set consisted of 1703 crystal structures.

All structures were processed using the REDUCE
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program [50], which automatically corrects some com-
mon errors in protein structures (such as histidines with
a flipped ring). From this initial set retrieved from the
PISCES server, we randomly picked 10% of the struc-
tures and reserved these for testing. The test set con-
tained 31,229 side chains from 171 structures. The
training set contained angles from 277,975 residues
from 1532 structures. The angles were calculated using
Biopython’s Bio.PDB module [51,52].

Data set for fixed backbone prediction
The data set for the fixed backbone prediction consisted
of crystal structures that were previously used in three
other studies for the same purpose [8,9,42].
We removed structures with a very small core (less

than 10 fully buried residues) and structures with multi-
ple chains or chain breaks, resulting in 43 remaining
structures. The input files for the test only retained the
backbone atoms; all side chain atoms and hetero-atoms
were removed.
We used DSSP [53] to calculate the relative accessible

surface area in order to determine the solvent exposure
state of a residue. We only included fully buried resi-
dues for which the accessible surface area is zero in our
analysis, as we did not use any energy term accounting
for the solvent interaction. However, all side chains
were included in the experiments, in order to avoid bias
towards the native structure.

Model training
The BASILISK model was implemented and trained
using our freely available Mocapy ++ toolkit [54]. The
model’s parameters were estimated using the stochastic
expectation maximization (EM) algorithm [55].
The number of hidden node values (that is, the size of

the hidden node) is a hyperparameter that has to be
determined separately. For that purpose, we trained
5 models for each hidden node size (15, 20, 25, 30, 35,
40 and 45) and choose the model with the lowest
Akaike information criterion (AIC) score [56]. The AIC
score is defined as

AIC = − +log( ( | ))L D kΘ 22

where | ( | )ΘL D is the likelihood of the trained model
Θ given the observations �D and k is the number of
free parameters. The AIC is a measure of the esti-
mated KL divergence between the trained model and a
fictitious truth model which generated the training
data [56]. In our case, the AIC points towards a model
with 30 hidden node states (see Figure 7). The number
of relevant, none-zero parameters for the selected
model is 9871.

The model also includes backbone information, which
usually leads to a quick explosion of parameters due to
discretization. For example, dividing the Ramachandran
plot in bins of 10° by 10° creates 1296 bins, which com-
bined with 18 rotameric amino acids and several rota-
mers per amino acid can quickly lead to data sparseness
in training. This problem is avoided by treating the data
in a natural, continuous space.

Modeling the angles
We use the von Mises distribution [31] to model both
the backbone and the side chain angles. This distribu-
tion can be considered as the circular equivalent of the
univariate Gaussian distribution. As an angle can be
represented as a point on the circle, it is the correct
approach to use a probability distribution that takes the
circularity of the data into account. The probability den-
sity function of the von Mises distribution has the fol-
lowing form:

f x
e x

I
( | , )

cos( )

( )
μ κ

κ μ

π κ
=

2 0

where x Î [- π, π[ is the random angle, μ is the mean,
� ≥ 0 is a concentration parameter and I0 is the modi-
fied Bessel function of the first kind and of order zero.

Probability densities from rotamer libraries
For the calculation of the KL divergences, we need the
probability density of a conformation according to the
different rotamer libraries. According to a typical rota-
mer library, the probability density of a given angle
sequence is:

P A P R P R
RA

A A( | ) ( | ) ( )χ χ=∑

Figure 7 Selecting the optimal model: The Akaike information
criterion (AIC) is used to determine the optimal number of hidden
node values. The AIC score (y axis) points towards a model with 30
hidden node values (x-axis). The optimal model is shown as a filled
circle.
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where χ is the sequence of c angles, A is the amino
acid type, P(RA) is the probability of the rotamer R of
amino acid type A, and P(χ |RA) is the probability of the
sequence of c angles for rotamer R of amino acid type
A. The sum runs over all defined rotamers for the
amino acid A in a rotamer library.
Each individual angle cn in a rotamer RA is distributed

according to a Gaussian distribution N , with mean
μ( , )n RA

and standard deviation σ ( , )n RA
. Hence, in the

above expression, the conditional probability density of
the sequence of angles is equal to the product of the
probability densities of the individual angles:

P RA

n

n n R n RA A
( | ) ( | , )( , ) ( , )= ∏ N

The product runs over all n c angles.

Kullback-Leibler divergence
In the evaluation of the model, we used the KL diver-
gence [38] to compare BASILISK with various rotamer
libraries. For two probability density functions, the KL
divergence is defined as

KL( )=p q p x
p x

q x
dx|| ( ) log

( )
( )∫

where p is usually the empirical data or a truth model
and q usually represents a probabilistic model that
approximates p. The KL divergence is non-negative and
only becomes zero if p = q.
In order to evaluate whether BASILISK captures the

angular preferences more accurately than a standard
rotamer library, we calculate the difference between the
KL divergence from the experimental data to a rotamer
library, and the KL divergence from the experimental
data to BASILISK:

KL KL( || ) ( || ) ( ) log ( ) ( ) log ( )p qR p qB P x qR x dx P x qB x dx− = − +∫ ∫
where qR is the probability distribution associated with

the rotamer library, qB is the BASILISK model and p is
given by the experimental data. In order to calculate
this difference, we use the fact that the relative KL
divergence can be expressed as a statistical expectation
[30,56] leading to:

KL KL( || ) ( || ) (log( )) (log( ))p qR p qB qR qB− = − + pp

where E p is the expectation with respect to p. In our
case, the empirical distribution p is a set of n observa-
tions x1, x2, ... xn. Hence, we can calculate the expecta-
tion by averaging over these observations:

KL KL( || ) ( || ) log ( ) log ( )p qR p qB
n

qR x qB xi i

i

n

− = − +
=
∑1

1

For the backbone dependent case, a fair evaluation
based on the KL divergence is not possible: rotamer
libraries do not allow the calculation of the joint prob-
ability of the x , � and ψ angles.

Sampling strategy and energies
For the fixed backbone test, we used a Lennard-Jones
6-12 potential. The energy for an atom pair is:

E dLJ( ) = ⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

12 6

2
dd

where d is the distance between two atoms, ε is the
depth of the attractive well and s is the optimal distance
between two atoms based on their van der Waals radii.
The atom dependent ε and s values were taken from
the OPLS/Tinker parameter set [40,41]. Subsequently,
we used Boltzmann’s law to turn the energies into prob-
abilities:

P sLJ( ) exp∝
E

RT
LJ− s(  )

where ELJ(s) is the Lennard-Jones energy of conforma-
tion s , R is the ideal gas constant and T is the tempera-
ture. We set the temperature to room temperature,
which results in RT = 0 6. kcal

mol for all calculations.
For sampling, we use the classic Metropolis-Hastings

MCMC approach [28]:

P s s
P s P s s
P s P s sacc( ) min ,

( )
( )

→ ′ =
′ ′→

→ ′
⎛
⎜

⎞

⎠
⎟1

(         )
(         )

where P s sacc → ′(           ) is the probability of accepting to
replace s with ′s ; P s(  ) and P s′(   ) are the probabilities of s

and ′s according to the target distribution; and P s s(           )′ →
and P s s(           )→ ′ are the probabilities to move to state ′s
from state ′s and to state ′s from state s according to the
proposal distribution.
In the first test, we use the Lennard-Jones term as the

only energy component, and use BASILISK solely as a
proposal distribution:

P s s
P s P s

P s P sacc
LJ B

LJ B
( ) min ,

( ) ( )

( ) ( )
→ ′ =

′
′

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟1

where PLJ s(  ) is the Lennard-Jones derived probability
of s as before, and PB s(  ) is the product of the probabil-
ities of the side chains in P s(  ) according to BASILISK.
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Note that in this case, we sample according to the Len-
nard-Jones potential in an unbiased way.
For the second test, we included BASILISK as an

explicit pseudo-energy term. We approximate the prob-
ability of seeing a certain state P s(  ) as the product of
the Lennard-Jones derived probability, PLJ s(  ), with the
probability of the side chain conformation according to
BASILISK, PLJ s(  ):

P s P s P s( ) ( ) (  )∝ LJ B

Because BASILISK is used both as a proposal distribu-
tion and a pseudo-energy term, the Metropolis-Hasting
expression reduces to:

P s s
P s P s P s

P s P s P sacc
LJ

LJ

B B

B B
( ) min ,

( ) ( ) ( )

( ) ( ) ( )
→ ′ =

′ ′
′

⎛

⎝
⎜⎜

⎞

⎠
⎟1 ⎟⎟ =

′⎛

⎝
⎜⎜

⎞

⎠
⎟⎟min ,

( )

( )
1

P s

P s
LJ

LJ

For the backbone dependent experiments, PB s(  ) is
replaced in the above expressions by P sB( | , ), where
and are the (fixed) backbone angles of s .
We proposed three new side chain conformations at

random sequence positions in every iteration. This effec-
tively enables side chains to swap places, which is
important to solve the combinatorial problem in the
densely packed protein core. The backbone independent
sampling is done using ancestral sampling [28]. In the
backbone dependent case, sampling is done using the
forward-backtrack algorithm [30,32,33,57].
In the fixed backbone experiments, we used 500,000

MCMC iterations. For the final prediction, we selected
the structure with the highest probability (or, equiva-
lently, lowest energy). In the evaluation, we considered a
c angle within 20° of the angle observed in the crystal
structure as correct.

Availability
A Python implementation of BASILISK, including all the
parameters of the optimal model, is freely available for
download at https://sourceforge.net/projects/basilisk-
dbn/. The source code provides a class that implements
the main features of BASILISK, namely sampling side
chain angles and evaluating the probability of a given
set of angles. The package also includes example scripts
that show how to use the BASILISK module. The first
script parses a Protein Data Bank file [58] using Biopy-
thon’s Bio.PDB package [51,52], retrieves all the side
chains and calculates the likelihood of their c angles. A
second script samples side chain angles for a given
amino acid type and optionally a set of backbone angles.
For a full description of the features, please refer to the
provided manual.

Additional material

Additional file 1: Univariate histograms for all amino acids with one
c angle. Histograms marked “Training” were generated from the training
set; histograms marked “BASILISK” were generated from BASILISK
samples.

Additional file 2: Univariate histograms for all amino acids with two
c angles. Histograms marked “Training” were generated from the
training set; histograms marked “BASILISK” were generated from BASILISK
samples.

Additional file 3: Univariate histograms for all amino acids with
three c angles. Histograms marked “Training” were generated from the
training set; histograms marked “BASILISK” were generated from BASILISK
samples.

Additional file 4: c1 versus c2 histograms for histidine,
phenylalanine, glutamate, aspartate and proline. Histograms marked
“Training” were generated from the training set; histograms marked
“BASILISK” were generated from BASILISK samples.

Additional file 5: c1 versus c2 histograms for asparagine, leucine,
methionine and lysine. Histograms marked “Training” were generated
from the training set; histograms marked “BASILISK” were generated from
BASILISK samples.

Additional file 6: c1 versus c2 histograms for arginine, tyrosine,
tryptophan and glutamine. Histograms marked “Training” were
generated from the training set; histograms marked “BASILISK” were
generated from BASILISK samples.
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