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Abstract

We present a model that generalizes the apparent volume of distribution and half-life as
functions of time following intravenous bolus injection. This generalized model defines a
time varying apparent volume of drug distribution. The half-lives of drug remaining in the
body vary in time and become longer as time elapses, eventually converging to the terminal
half-life. Two example fit models were substituted into the general model: biexponential
models from the least relative concentration error, and gamma variate models using adap-
tive regularization for least relative error of clearance. Using adult population parameters
from 41 studies of the renal glomerular filtration marker '®®Yb-DTPA, simulations of extra-
cellular fluid volumes of 5, 10, 15 and 20 litres and plasma clearances of 40 and 100 ml/min
were obtained. Of these models, the adaptively obtained gamma variate models had longer
times to 95% of terminal volume and longer half-lives.

Introduction

The apparent volume of distribution (V) is an important pharmacokinetic parameter that
relates drug plasma concentrations to the amount of drug in the body and is important for
drug loading dose and maintenance dose calculations [1,2,3]. Following an intravenous bolus
of drug, the volume of distribution of a drug varies with time. This redistribution occurs in
two distinct phases with very different time scales, a vascular phase and a washout or dilution
phase. During the vascular phase, a drug mixes throughout the blood’s plasma volume with a
time scale of seconds or minutes. During the dilution phase, hydrophilic drugs distribute
into the body’s interstitial fluids with a time scale of hours or days. While most drugs are
actively redistributing from plasma into the body tissues, the decrease of plasma concentra-
tions is largely due to that redistribution as opposed to actual drug elimination [2]. In the fol-
lowing, we assume first order kinetics, i.e., that drug elimination is proportional to its
concentration, which is the most common drug kinetic. The most commonly calculated vol-
umes of distributions are the apparent volume of drug distribution immediately after bolus
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intravenous injection, i.e., at time zero, (V,), the terminal apparent volume of distribution
following bolus intravenous administration (V,,.,) and the expected volume of distribution,
called Vg here, and often called Vss in the literature. Vg for a constant infusion experiment is
the terminal apparent volume of distribution, analogous to V.., in a bolus model [2,3]. For
bolus experiments, in place of Vgs we use the term Vg for the expectation of a physical vol-
ume of distribution of drug, and unlike Vi, V5 is invariant between constant infusion and
bolus experiments.

Time varying apparent volume of distribution models based on exponential washout mod-
els for plasma concentration, have been developed previously [2,4,5]. Niazi [4] developed a
temporally variable, apparent volume of distribution model for sum of exponential (SET) func-
tions based on conservation of mass. This variable volume model implies an explicit relation-
ship between redistribution and the rate of volume of drug distribution expansion in time.
Such a model specifies when the drug volume reaches a particular size relative to its terminal
apparent volume of distribution. In so doing, such a variable volume model could potentially
provide unanticipated new information about time based tissue drug effects for tissue metabo-
lism and/or eliminations. This type of model also has implications for effects of drugs on body
tissues, i.e., therapeutic, toxic, or radiation exposure effects [3].

A variable volume model could be used to calculate the optimal instantaneous dose that
will produce a desired concentration at the effector site without an overload of the drug. Here
we present a general time-dependent apparent volume of distribution model, based on mass
conservation, which could be used with almost any concentration washout fit function. To
investigate how the implications of the general model relate to specific fit function models, we
substitute biexponentials (E2) and gamma variates (GV) [6,7,8] into the general washout
model.

Theory
The variable volume of distribution

Plasma clearance (CL) is a drug’s elimination rate, M'(¢), divided by its corresponding plasma
concentration, C(t), at any time ¢ [9],

_ M@
CL==" (1)

where M(t) is total drug mass in the body at time ¢ and the prime indicates differentiation.
Rearrangement of Eq (1) gives the drug’s elimination rate,

M(t) = —CL C(t). 2)

Integrating both side of Eq (2) from time 0 to t gives mass remaining in the body at time ¢ to
be

t o0

C(t)dr = CLJ C(t)dr, (3)

t

M@:M@-@J

0

where M(t—o00) = 0.When ¢ = 0 and M(t = 0) = D, the dose, from equality of the left and right
hand functions of Eq (3), one solves for CL to obtain the well-known area under the curve,
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AUC, definition of CL,

Conservation of mass for a concentration in an apparent (homogenous plasma concentra-
tion) volume of distribution, V,(f), at time ¢, is given by

M(t) = V,(t) C(t). (5)

The typical pharmacokinetic model specifies the washout of an impulse-response. The
impulse is the entire initial dose M(0) = D distributed in some initial volume no matter how
small. M(#) is monotonic non-increasing (mass conservation) and V4(¢) monotonic increasing.
Thus, C(#) is monotonic decreasing, and has a maximum value, no matter how large, at time is
zero. Substitution of Eq (5) into Eq (3) yields the volume of distribution at any time ¢t as

V,(t) = %r C(x)de. (6)

Expected volume of distribution

Expected volume of distribution (V%) is the expected value of physiological volume of distribu-
tion of drug in the plasma and tissues of a concentration model. Vy inherits the statistical prop-
erties for expectation from its distribution density function model, p(¢),

V, = CLE[T] (7)

For example, if the distribution density function, p(), has a mean value expectation,
E[T] = ¢, we can then calculate the expected volume of drug distribution from that mean,
which for a time series is called a mean residence time (MRT = ¢) [10,11]. MRT is the average
value or first moment of a time-series density function.

> % > J t C(t)dt
MRT:?:Jth:Jtp(t)dt:Jt xC(t) dt =0 , (8)

0 0 0 J C(t)dt JC(t)dt

where P is the cumulative density function of p. To be useful, Eq (8) assumes that drug elimina-
tion rate is first order, i.e., that elimination is not dose dependent [12]. If a density function has
no moments, MRT is undefined but there may still be a location that characterizes the data, for
example, a Cauchy distribution has a stable median[T]. Indeed, for a distribution the median
can be a better measure of location than the expected value, e.g., for some values of the beta dis-
tribution. For some density functions, E[T], is indeterminate for heavier tails, e.g., for the
Pareto distribution.

We suggest that E[T] for a constant infusion experiment is also from p(t), and Vy is from Eq

(7). However, p(t) is the impulse-response to an instantaneous bolus, i.e., to a Dirac delta, and
t

to obtain a p(f), we account for the integration of constant infusion as P(¢) = J p(t)dr, the
0
2 P(t) = Cy P(t) to constant infusion data,

cumulative density of p(t). We then suggest fitting
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where Dy, is the dose rate of constant infusion, Dr/CL is the terminal concentration of the infu-
sion experiment usually called Css. Once we have a p(#), its derivative is p(f).

Half-life of the drug, t4/»

The half-life of any drug’s mass in the body at time ¢ can be written as

2 _ g M) (9)

tp—M(t) = “TIaM(r) M(t)’

where for a marker cleared only by the kidney this half-life corresponds to the urinary clear-
ance half-life. Substituting Eqs (2 & 5) into Eq (9) yields an expression for half-life of a variable
apparent volume

In2

tl/Q_M(t) = a

V,(t). (10)

However, the urinary clearance of kidney marker half-life is not, as a function of time, the
same as the half-life of plasma concentration. To find the latter, we first substitute Eq (1) into
the derivative of Eq (5) and rearrange terms to obtain

C@) _ CL+V/(t)

OO (an

which allow the half-life of plasma concentration as a function of time to be written as

In2 C(t) In2
t,—C(t) = —+——~ = —In2 = -
y2=C(t) —41nC(t) C(t) CL+V/(t)

V,(¢). (12)

Given that V(—00) = V., (apparent volume at terminal phase), and V,/(t—00) = 0, a
unique terminal half-life, #,,,(c0), is the limiting value for both Eqs (10) and (12), i.e., for mass
(e.g., renal) clearance and plasma concentration half-lives

In2
t1/2(oo) = tl/Q_M(OO) = t1/2_c(oo) = avarem (13)

where at all other times, comparing Eqs (10 & 12), t;,,—M(t) > t;,,—C(t), such that before the
terminal half-life becomes established, plasma concentration dilutes faster than mass clearance.
To show this, Eqs (2, 5 & 11) are combined and terms rearranged to yield an explicit relation-
ship between plasma dilution rate and mass clearance rate,

cw M@, VW
T T M Vi 14

such that the relative rate of plasma dilution is the relative rate of mass clearance plus redistri-
bution, where redistribution is the relative rate of volume dilution. To see the effect sizes and
their timing, we next substitute specific fit functions into the general model equations above,
and later apply them to subject data.

Exponential solutions to the variable volume and half-life equations

In the exponential model, plasma concentration is given by sum of exponentials,

Cop(t) = E ce ', G, (1) =~ E e ¢, >0and A, > 0, (15)
i—1

i=1
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where ¢; and 4, are the coefficients of i™ exponential term. Substituting the sum definition of
Cexp(t) from Eq (15) into Eq (3) yields a sum of exponential terms solution to drug mass

remaining in the body at time ¢,
M(t) = CL E il
i=1 &

— At
i

i

. (16)

Similarly, substitution of the C.,,(¢) sum, Eq (15) into the general form for V(t),Eq (6),
yields,

Vi) = e )

Substitution of t = 0,00 into this equation allows us to specify the initial (V}) and final
apparent volumes of distribution V..,

CL "¢ D
Vo= Vi(t=0) = e > e (18)
E ¢, i=l i E c;
i=1 i=1
CL
Varea = Vd(t - OO) = /1_ (19)

n

In a compartmental model from sums of exponential terms, V}, is identical to the volume of
the central compartment V..
Substitution of Eq (15) into Eq (4) yields the CL for SET model,

D

E G
i=1 "

Substitution of Eq (15) into Eqs (7 & 8) and performing the integration yields a steady-state
volume of distribution (V) for SET models, which in our more general context, we call Vg,

n
Z Ci
7z
i=1"%
i
Z A
i=1"

Substituting of the SET V,(¢), Eq (17), into general half-life Eq (10) yields the mass clearance
half-life for SET functions at time ¢,

V, =CL (21)

In2 c.e it
t,—M(t) = S g . (22)

§ : ) A
Cief/"it —1 i
i=1

The mass clearance half-life would equal the renal clearance half-life for a GFR marker.

A gamma variate solution to the variable volume and half-life equations

Regularized GV functions are of interest because they have been previously shown to require
one-half the sampling time (4 h) needed for numerical integration (8 h) to obtain precise and
accurate CL-values in a large retrospective series [6]. The plasma concentration as a function of
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time can be modelled by gamma variate (GV) function,

a_
t

1
Coy(t) = Kt" e, CGV/(t):( - ﬁ) Coy(f): O<a<landp >0, (23)
where @, 8 and K are the three parameters of a GV function. Note that & < 1 is not a constraint,
and there is so far only one published method of consistently obtaining o < 1 values without
using constraints [6,7,8,13]. Substitution of Cgy(#) Eq (23) into general Eq (3) yields the
gamma variate solution to drug mass remaining in the body at time ¢,

(e, pt)
T(o)

M(t) = CL%F(O(,[%) _D

where I'(r) and I'(e, Bt) are respectively, the gamma function and the upper incomplete
gamma function. Substitution of Cgy(#) Eq (23) into Eq (6) and performing the indicated inte-

(24)

gration yields

V,(t) :gw; 0<a<l. (25)
B (Bt) et
This equation is monotonically increasing only when o < 1, which is not a constraint for
obtaining a-values, rather the meaning is that the upper limit for physicality of a-values is one.
In that case, the initial (Vy) and final (V,.,) apparent volume of distribution in the limit as
time goes to 0 and to infinity are respectively given by

Vo= Vit = 0) =0, (26)

CL
5

Substitution of Eq (23), the Cgy/(#), into general Eq (4) and performing the indicated inte-
gration yields an expression for CL of a GV model

Dp*
KT (x)

Viea = Vy(t — 00) =

area

(27)

CL =

: (28)

Substitution of Eq (23) into Eqs (8 & 7) yields the physical volume of distribution for GV
model,

o
V, = CLB. (29)

Note that from this and Eq (27), the GV model V., = aVg. Moreover, from Eqgs (24, 25 & 27)

M(t K r t
lim _ Ml = — lim 7(“;_[{ )
t—oo V. — Vd(t) ﬁa pt—oo ] — _T(ept)

area (/J’t)“’le’m

—0, (30)

This limit exists except for o = 1, while 8 > 0. This latter does not occur for the GV solutions
used here, which yield f—0+ when a—1-, i.e., concentration flatlines rather than become
exponential [6]. When 0 < a < 1, V4 is monotonic increasing and denominators of Eq (30) are
positive valued. insures that M(f) < € for V,(t. < t < T), where T is a sufficiently large but
finite time. Thus, V() becomes as mass depleted as desired for ¢ sufficiently large but less than
some T-large, i.e., before V,; converges to V., at infinite time. Consequently, the single bolus
experiment GV model’s drug depleted physical volume is written V. That is, the GV washout
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model steady state is trivial and empty. The restriction on Eq (30) is that the GV not be an
exponential. Readers who use hazard rates to classify tail heaviness of distributions may find
this confusing. Hazard rate classification of tail heaviness is inexact and actual terminal tail
areas compare as survival functions. From survival function ratios, gamma distributions with
o > 1 have lighter than exponential tails, and for & < 1, i.e,, the general case here, gamma dis-
tributions tails are heavier than exponential.

Substituting V() from Eq (23) into Eq (10) yields the half-life of the drug mass remaining
in the body

In2 I'(«, ft)

t1/2*M(t) = /3 (ﬂt)a—leim' (31)

Methods

To test the time varying volume of distribution model, concentrations verses time curves for
four Vg values (10, 15, 20 and 25 L) at CL of 40 and 100 ml/min were simulated for biexponen-
tial (E2) and the gamma variate (GV) models. E2 and GV parameters were computed by using
prior published data as follows.

Data were used here from a prior study of 41 plasma concentration time samplings following
intravenous bolus '**Yb-DTPA (ytterbium diethylenetriaminepentaacetate) [14]. In this popu-
lation, patients were given an antecubital IV bolus injection of 1.85 MBq of '**Yb-DTPA. Eight
blood samples were taken at 10, 20, 30, 45, 60, 120, 180 and 240 min after injection. Plasma
clearance CL and Vg for E2 and GV functions were calculated for all 41 patients. E2 functions
were random search fit using relative-concentration weighted regression that preferentially fits
longer times giving better results than from the use of ordinary least squares [15,16]. The Tk-
GV algorithm uses Tikhonov regularization to increase covariance between the GV function
and the time-samples by minimizing the AUC error over the entire interval from ¢ = 0 to oco.
This minimizes the relative error of plasma clearance [6]. The GV functions’ three parameters
were obtained from the Tk-GV method. An important point is that the Tk-GV method uses
adaptive smoothing and without this feature the resulting PK parameter GV model results will
be erratic [6,8]. A Windows compatible Tk-GV software application is available to individual
researchers (i.e., not institutions) free of charge from the corresponding author.

Parameters for desired Vi and CL values were obtained by interpolating parameters
obtained from above fitted curves. Using computed parameters, volume of distribution, drug
mass remaining in the body and drug half-lives as a function of time were plotted for four V-
values at CL of 100 and 40 ml/min. We have ignored some of the different morphological
implications of the different modelling in order to generate comparison curves. That is, CL and
Vi were assigned the same specific values, e.g., 100 ml/min and 20 litres, respectively, for both
the E2 and Tk-GV models. For actual cases, that will not occur within the same hypothetical
subject, and the same case between model CL- and Vg-values differ slightly. A statistical analy-
sis of the parameters for the reference population used appears in the Result Section below.

Results
Biexponential (E2) model

Fig la and 1b illustrate concentration verses time curves for E2 models for four Vg values at CL
of 100 and 40 ml/min, respectively. Fig 2 shows the volume of distribution, percentage dose
remaining in the body and half-lives for the E2 model as functions of time for the four Vy val-
ues at CL of 100 and 40 ml/min. The time to achieve V., (Fig 2a and 2d) is increased with the
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Fig 1. Concentration versus time curve for E2 and GV models for four Vg values at CL of 100 ml/min (left panel) and 40 ml/min (right panel).

doi:10.1371/journal.pone.0158798.g001

increase of volume of distribution. On the other hand, Fig 2b and 2e show that dose in the
body reduces at a faster rate for higher CL. In both Fig 1c¢ and 1f, half-life is increased with the
increase of the fluid volume. Furthermore, comparing same two figures (Fig 1c and 1f) at each
V& shows that decrease of clearance tends to increase of the half-life.
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Gamma variate (GV) model

Fig 1c and 1d illustrate concentration verses time curves for GV models for four Vg values at
CL of 100 and 40 ml/min, respectively. Fig 3 shows the volumes of distribution, percentage
dose remaining in the body and half-life calculated from GV model as a function of time.
When we consider the time to achieve 95% of V..,, increase of Vy increases the time to achieve
95% of Vpea- Fig 3b and 3e show that decreased dose remaining in the body occurred sooner
for the larger CL-values, while smaller CL-value patients took more time to clear drugs from
the body with an additional delay to achieve a given mass excretion seen with the increase of
V. Fig 3¢ and 3f show that half-lives were longest for the smaller CL-values. Furthermore,
half-life increased for increasing V.

For comparison of the E2 and GV methods, Table 1 lists the time for V4 to reach 95% of Ve,
and drugs terminal half-life following intravenous boluses. Both time values shown in the Table 1
increase with the increase of the Vg as well as with the decrease of the CL. Even though we selected
equal CL and Vg parameter values for our demonstration E2 and GV models, the GV models still
predicted longer times for V4 to reach 95% of V.., as well as longer terminal half-lives.

For same-case concentration data, it has been shown that the E2 and GV (Tk-GV) models
will predict significantly, if slightly different CL and Vg values [6,7,8]. To see the errors for
these differences for the subject cases herein, bootstrap was used to avoid exaggerating the E2
model 95% confidence interval (CI) and standard deviation (SD) results that would occur if
one spuriously assumed normal distribution conditions especially for the early exponential
function’s population parameters, which latter were found to be not normally distributed. For
the Tk-GV method, the resulting gamma variate parameters were quasi-normally distributed,
which allowed for the routine Tk-GV program SD-values to be used for calculating the CIs
from their more normal distribution properties. Table 2 shows that the Cls are larger for E2
than for Tk-GV.

Some of the (many) parameters that were significantly different between models are sum-
marized in Table 3. Note that Vg, Varea, t1/2 and MRT are greater for Tk-GV than for E2, and
that CL and CV(Vg) are lesser and as well 8 < A,. Thus, although for easy comparison of fami-
lies of curves in the figures, CL and Vg, were assigned the same specific values for both the E2
and Tk-GV models, we were, in effect, contrasting two hypothetical subjects with slightly dif-
ferent body morphologies.

Fit quality for the Tk-GV and E2 models has been presented elsewhere for this adult data set—
see Fig 1 and surrounding text of [6]. Herein, normalized covariances, i.e., correlations, between
the logarithms of the time-samples and of each model evaluated at those times were considered
indexed to the fidelity of trending between the data and the two models. These correlations had a
median r-value for Tk-GV of 0.99840 and of 0.99832 for E2, with a two-tailed Wilcoxon p = 0.27
suggesting no significant difference in the overall quality of how each model trended with the
data. However, even comparing r-values is somewhat misleading. The Tk-GV algorithm smooths
its model curve to stabilize AUC on the 0 to infinite time interval, which time interval is unrelated
to calculation of its r-value with the data, whereas the weighted-E2 models were fitted to concen-
tration in a fashion numerically identical to the time-sample treatment used to compute r-values,
such that the lack of significant improvement of r-values for weighted-E2 versus Tk-GV fitting
does not increase our confidence in E2 model behaviour; weighted-E2 modelling was given an
unfair advantage to outperform Tk-GV modelling, and did not do so.

Discussion

In both the biexponential (E2) and gamma variate (GV) variable volume models, smaller val-
ues of Vg approached 95% of their terminal V;-values sooner than those with relatively greater
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Table 1. Time to achieve apparent volume of distribution to 95% of V., after the intravenous bolus of the drug and terminal half-life of the drug

from E2 and GV models.

Ve (L) 10 15 20 25

E2 GV E2 GV E2 GV E2 GV
CL =100 ml/min
time for V4 to reach 95% Veq (Min) 50 242 86 646 123 1053 160 1460
terminal half-life of drug 80 81 120 133 160 185 200 238
CL =40 ml/min
time for V4 to reach 95% Vreq (Min) 126 604 215 1616 307 2632 399 3650
terminal half-life of drug 200 203 300 333 400 462 500 592
doi:10.1371/journal.pone.0158798.t001
Table 2. Pharmacokinetic parameters from the weighted biexponential (E2) and the Tk-GV models. Comparable measures boxed.
E2 o1 Ay c A cL Ve tye
2.5% tail of median @ 0.00413 0.03321 0.00470 0.00334 61.0 13.21 116
Median ° 0.00484 0.05020 0.00555 0.00459 79.0 15.48 151
97.5% tail of median # 0.00891 0.10517 0.00611 0.00596 82.8 17.39 208
Median CV 2 17.3% 27.6% 5.5% 11.1% 5.5% 6.3% -°
Minimum ° 0.00207 0.01362 0.00090 0.00023 2.6 7.18 67
Maximum ® 0.05185 0.21546 0.01260 0.01040 166.4 26.46 2999
TkGV Ik a B cL Ve tie
2.5% tail of median ° -4.456 0.7264 0.00301 70.1 15.07 166
Median ° -4.288 0.7556 0.00360 76.1 16.15 193
97.5% tail of median © -4.143 0.8027 0.00418 79.7 17.26 230
Median CV ° -1.8% 2.7% 8.3% 4.1% 2.7% -°
Minimum © -5.364 0.5945 0.00011 1.2 7.40 76
Maximum P -3.386 0.9895 0.00908 157.6 31.12 6559
Median SD P 0.071 0.0222 0.00027 2.3 0.47 -

SD is standard deviation and CV is coefficient of variation or SD divided by the mean.
& Median of 41 cases with each case result from the distribution of 1000 bootstrap simulations attempts per case.
P Result from 41 cases and not requiring simulation.
¢ Reciprocal normal. Comparative CV values can be taken from A, and 8 CVs.

doi:10.1371/journal.pone.0158798.t002

Vg values, see Table 1. Figs 2b and 3b show that an increased fluid volume was associated with

prolonged drug-levels at late time. These results are generally consistent with the known delays
in redistribution from excess body fluid and in advanced renal insufficiency [7,17,18]. Further-
more, both the E2 and GV models demonstrated that drug body burden decreased sooner for

Table 3. Wilcoxon tests with median parameter comparisons.

Parameter Tk-GV Result (H4) E2 p-one tail Significant

CL 76.1 < 79.0 <0.0001 Yes

Bz 0.00360 < 0.00459 <0.0001 Yes

CV(Vg) 2.7% < 6.3% <0.0001 Yes

Ve 16.15 > 15.48 0.0003 Yes

Varea 21.46 > 16.28 <0.0001 Yes

tio 193 > 151 <0.0001 Yes

MRT 213 > 194 <0.0001 Yes
doi:10.1371/journal.pone.0158798.1003
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studies having larger CL-values. Figs 2¢, 2f, 3¢ and 3f show that for both model types, longer
half-lives occurred for larger Vi value patients in both CL of 100 and 40 ml/min. Drug elimina-
tion depends on the amount of drug delivered to the organs where excretion occurs. Therefore,
the fraction of the drug residing in the plasma is a determinant of drug elimination. When V¢
is large, much of the drug is in extraplasmic space and is largely unavailable to feed any excre-
tory organs. This is consistent with the herein observed increased Vg values associated with
increased drug half-lives such that drug remained in the body for longer times.

For all four Vg values at CL of 100 and 40 ml/min of the families of curves shown, the time
to achieve a high percentage of the terminal apparent volume of distribution and terminal half-
life were longer for the GV models than for the E2 models (Table 1). In this study, the E2 mod-
els achieved their terminal apparent volumes of distribution as well as terminal half-lives of
drug mass within 2 hours for CL of 100 ml/min and within 16 hours for CL of 40 ml/min. On
the other hand, GV model had not been reached the terminal half-life of mass even within 24
hours following the intravenous bolus of drug for all CL and Vg values. The results in the
Table 1 also show that GV model predicted longer terminal half-lives than the terminal half-
lives from the E2 model. A sum of exponential terms model reduces to a monoexponential for
late time, and monoexponentials inherit their rate constants from the local data region fit while
GV model extrapolate a terminal function by inheriting only a shape from a local data region.

Time samples of unmixed blood before arrival of a bolus in the sampling site are not used
for washout modelling. Rather, the concentration fit function’s area under the curve of a wash-
out model is obtained by back-extrapolation from peripheral vein samples obtained when vas-
cular mixing is already advanced. The variable volume approach used here allows any number
of summed exponential terms to be directly substituted into the single variable volume model
without invoking compartments, and, the compartmental approach is merely another explana-
tion for the same SET fit equations. The physical ambiguity for SET models is nothing new, for
example, Niazi admixed mammalian compartmental and variable volume models without dis-
tinguishing between them and Zierler identified 10 different physical configurations for any E2
model [4,19]. Using a variable volume model, an apparent volume of uniform drug concentra-
tion that increases in time becomes possible. That is, the variable drug volume represents the
apparent volume, containing drug at any particular time, which contrasts starkly with the cor-
responding compartmental concept of a constant V,,.,, that only corresponds to the apparent
volume of distribution at infinite time in a variable apparent volume of distribution model. In
washout modelling, E2 model usage implies instant mixing of drug in the central compartment,
generally composed of plasma and additional spaces into which the drug distributes extremely
rapidly and therefore, E2 models predict a finite apparent volume of distribution at time zero.
Subsequently, the drug distributes from the central compartment to the other body spaces, e.g.,
into a peripheral compartment, and drug elimination commences simultaneously with the
drug administration. In E2 models, the distribution process completes after a few hours [20].
For a two-compartment model, there is always a time at which V, transiently coincides with
the value Vss and the further decrease of the plasma concentration of the drug is usually
assumed to be only from drug elimination. The top of Fig 4 shows a schematic diagram of E2
model of drug distribution following bolus injection of a drug.

For GV models, the initial volumes of distribution are zero from Eq (26). The assumption of
vanishingly small actual volume for the drug at the time of drug administration is realistic, V,
is approximately zero at time zero, after which the drug distributes throughout the body. Other
evidence to this effect is that back-extrapolated early concentrations of >’Cr-EDTA, a GFR
marker, have been observed to be more frequently of a linear logarithm of time shape, which
functions set C(0) = 0o, than of monoexponential shape, which do not [21]. Bottom Fig 4
shows a schematic diagram of GV model of drug distribution after bolus injection of a drug.
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Fig 4. Schematic diagram showing E2 compartmental and GV variable volume models of drug distribution. The E2 model could also be drawn as
a variable volume model in which case a scale factor de,,, = Ve/Vg(oo) < 1 would define the physical volume at time t to be ae,,Vy(t). Similarly, for the
variable volume adaptively obtained GV model, one can define a = Vg/Vy(co) < 1, and an expanding physical volume aV(t). Note, both ae,, and a are
constants at all times for their respective models. The term Vsg can be confusing because 1) Vss implies that Vg is always a steady state volume, which is
not the case as the GV model aV,(t) < Vg is concentration depleted at late time, see Eq (30). 2) Vss implies that Vg only exists at t = co, whereas Vg is
defined all of the time, i.e., on t = [0,00) by Eqs (8 & 7). Finally, 3) Vss implies an expected physical volume of distribution for sums of exponential term
bolus models, and the apparent volume of distribution for a constant infusion experiment, whereas Vg applies to more models as the expected volume of
physical distribution of a drug for both the bolus and constant infusion experiments.

doi:10.1371/journal.pone.0158798.g004

In prior work, in a 412 case series with both children and adults, some of us showed more
precise and accurate CL-values for Tk-GV versus the less accurate E2 model compared to 8 h
numerical integration controls for the slightly different GER marker **™Tc-DTPA [8]. In par-
ticular, the 4 h four sample E2 CL-values were significantly inflated by 4.9% compared to con-
trols, and 4 h four sample Tk-GV CL-values were 0.5% (insignificantly) greater than eight
sample, 8 h controls, for a net 4.2% CL difference between the 4 h E2 and Tk-GV experiments.
In the current series, the 4 h, eight sample E2 CL-values were (significantly) 3.8% greater than
the 4- h eight sample Tk-GV CL-values.
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In this series, the expected volumes of distribution results were significantly less variable—
see Tables 2 and 3—for Tk-GV than for E2. Indeed, for all the tested quantities, there were no
result groupings for the Tk-GV parameters that were more variable than those for the E2 mod-
els, although there are many possible comparisons and admittedly not all possible parameter
comparisons were calculated, and some tested differences were not highly significantly differ-
ent. Thus, it would appear that in so far as we were able to test that assertion, the Tk-GV model
PK parameter results were more precise than the E2 model. Given this finding and prior better
accuracy results [8], the 5 to 9 times fold longer 95% of V., times seen for the Tk-GV models
are plausible. This may have important implications for future pharmacokinetic work.

Conclusion

We have presented initial examples of the power of the general approach to variable volume
modelling using a general time dependent volume of distribution model based on mass conser-
vation that sets time varying drug body mass as proportional to volume of distribution.
Terminal half-life depends on both expected drug distribution volume and the clearance. Fur-
thermore, two commonly used model functions were used to illustrate behaviour of the general
model. Exploration of other yet-undescribed fit function models and the modelling of drugs
having more complicated pharmacokinetics is left for future work.
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