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Abstract
Plant-herbivore interactions shape community dynamics across marine,
freshwater, and terrestrial habitats. From amphipods to elephants and from
algae to trees, plant-herbivore relationships are the crucial link generating
animal biomass (and human societies) from mere sunlight. These interactions
are, thus, pivotal to understanding the ecology and evolution of virtually any
ecosystem. Here, we briefly highlight recent advances in four areas of
plant-herbivore interactions: (1) plant defense theory, (2) herbivore diversity
and ecosystem function, (3) predation risk aversion and herbivory, and (4) how
a changing climate impacts plant-herbivore interactions. Recent advances in
plant defense theory, for example, highlight how plant life history and defense
traits affect and are affected by multiple drivers, including enemy pressure,
resource availability, and the local plant neighborhood, resulting in
trait-mediated feedback loops linking trophic interactions with ecosystem
nutrient dynamics. Similarly, although the positive effect of consumer diversity
on ecosystem function has long been recognized, recent advances using DNA
barcoding to elucidate diet, and Global Positioning System/remote sensing to
determine habitat selection and impact, have shown that herbivore
communities are probably even more functionally diverse than currently
realized. Moreover, although most diversity-function studies continue to
emphasize plant diversity, herbivore diversity may have even stronger impacts
on ecosystem multifunctionality. Recent studies also highlight the role of risk in
plant-herbivore interactions, and risk-driven trophic cascades have emerged as
landscape-scale patterns in a variety of ecosystems. Perhaps not surprisingly,
many plant-herbivore interactions are currently being altered by climate
change, which affects plant growth rates and resource allocation, expression of
chemical defenses, plant phenology, and herbivore metabolism and behavior.
Finally, we conclude by noting that although the field is advancing rapidly, the
world is changing even more rapidly, challenging our ability to manage these
pivotal links in the food chain.
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Introduction
Plant-herbivore interactions are important for understanding  
community dynamics and ecosystem function given that they 
are the critical link between primary production and food webs.  
Plant-herbivore studies are also the backbone of multiple fields 
within ecology and evolution, including co-evolution1,2, chemical 
ecology3–5, nutritional ecology6,7, and ecological stoichiometry8–10. 
The topic crosses ecosystem boundaries (freshwater, terrestrial,  
and marine)11, huge ranges of organismal size (aphids to elephants 
and phytoplankton to trees)12,13 (Figure 1), and vast productivity 
gradients (deserts to tropical rain forests)14–16, resulting in broadly 
applicable ecological theories.

Recent technological and statistical advances have resulted in 
a rapidly advancing field of study, including (1) the genetic and 
phylogenetic basis of plant-herbivore interactions and chemi-
cal defenses17–21, (2) DNA barcoding to elucidate herbivore  
diets22,23, (3) Global Positioning System (GPS) and remote sensing 

technology to understand landscape-level predator-herbivore- 
plant interactions24, and (4) statistical advances that allow for 
comprehensive analyses of multiple co-varying drivers in both  
observational and experimental studies25. Given the array of topics 
comprising the study of plant-herbivore interactions, our focus was 
not to exhaustively review this literature. Instead, we point out sev-
eral exciting and growing areas of research from the past 3 years. 
We focus on briefly highlighting four areas of plant-herbivore 
interactions: (1) plant defense theory, (2) herbivore diversity and  
ecosystem function, (3) the context dependency of herbivory and 
predation risk, and (4) how a changing climate impacts plant- 
herbivore interactions. We strived to include a broad array of  
examples from across ecosystems and, in the process, are likely 
to have missed many worthy studies. We conclude that the study 
of plant-herbivore interactions continues to be a leading driver 
for ecology and evolution in general and that these studies can  
be used to inform conservation but that efforts need to be redoubled 
to counter the rapidly changing dynamics of the Anthropocene.

Figure 1. Plant-herbivore interactions shape community dynamics across terrestrial, freshwater, and marine habitats. These 
interactions encompass a huge range of taxa and organismal size for both plants and herbivores. Common herbivores across these  
ecosystems are (A) spicebush swallowtail caterpillar (Papilio troilus) feeding on spicebush (Lindera benzoin); (B) impala (Aepyceros 
melampus) browsing shrubs in an African savanna; (C) white rhinoceros (Ceratotherium simum) grazing African grasses; (D) Daphnia 
dentifera, an important grazer on freshwater phytoplankton; (E) the white tuberculed crayfish (Procambarus spiculifer) consuming a freshwater  
macrophyte (Egeria densa); (F) Canada goose (Branta canadensis), an important herbivore on freshwater macrophytes and terrestrial 
grasses; (G) the isopod Erichsonella attenuata, a mesograzer of epiphytes and seaweeds in seagrass meadows; (H) blue parrotfish (Scarus 
coeruleus) grazing filamentous algae on a coral reef; and (I) West Indian manatee (Trichechus manatus) curiously eating a red mangrove plant 
(Rhizophora mangle). Photo credits: Eric Lind (A), John Parker (B, E, F, G, I), Deron Burkepile (C), Alan Wilson (D), Thomas Adam (H).
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Plant defense theory
The study of plant defense against herbivores is one of the  
cornerstones of ecology and evolution, underpinning the theory 
of co-evolution1, the field of chemical ecology26, and some of the 
most prominent mechanisms explaining the success of invasive  
species27–29. Recent work, however, has challenged some of the 
key paradigms in these fields, invigorating and broadening a vari-
ety of research perspectives. For example, invasive plants have 
long been thought to succeed via enemy loss (that is, the enemy 
release hypothesis), but direct evidence for this idea has been alter-
nately supportive30,31, conflicting32,33, and ambivalent34. Similarly,  
although chemical novelty from native species is one of the key 
mechanisms thought to drive enemy release35, limited experi-
mental tests show little relationship between novel chemistry and  
herbivore deterrence36. Furthermore, enemy release is often  
unassociated with either increased invasiveness37–39 or competi-
tive effects on neighboring plants40. In light of these results, recent 
work has emphasized that we should be examining whether enemy 
release interacts with other ecological drivers, including resource 
availability or disturbance31,41,42, and whether the complexity and 
integrity of the entire recipient food web are better predictors of 
invasion resistance than plant-herbivore interactions alone43.

Similarly, plant chemical defenses have long been regarded as a  
primary source of defense against herbivores44, and a host of  
articles have demonstrated the advantages of plant chemical 
defenses, particularly when examined in a comparative framework 
across model taxa (for example, 45). Nevertheless, when examined 
at the community scale across sympatric species, the relationships 
between chemical defense and herbivory are often weaker46,47. 
Some of this discrepancy might be due to the difficulty of com-
paring defense levels across disparate species with a diversity of 
chemical defenses that make direct comparisons problematic48. 
However, the ambiguity between comparative and community-
level studies highlights a recent re-emphasis of the importance 
of having mixed defensive strategies against a range of consumer  
types49,50. For example, variation in chemical defenses can inter-
act with life history traits, structural defenses, nutrient quality, and 
the relative distribution of above-versus-belowground chemical 
defenses to modulate herbivory51–56, highlighting the need to exam-
ine the efficacy of chemical defenses within the context of a shifting 
mosaic of plant traits.

For example, theory predicts that low nutrient quality should  
lead to linear reductions in herbivory57,58, but Wetzel et al.7 found 
that variance in nutrient traits (for example, protein and nitrogen 
content, among others), not low nutrient quality per se, deter-
mined the performance of 53 insect herbivore species. Insect  
performance increased when tissue nutrient levels were low 
but eventually declined when nutrients were high, likely due to 
either nutrient toxicity or even nutrient-toxin interactions (for  
example,59), whereas increasing defenses nearly always led to 
linear declines in insect performance. Interestingly, relatively  
homogenous nutrient levels could provide a mechanistic explana-
tion for why crops and some species-poor natural communities 
might be more prone to insect outbreaks when compared with 
diverse systems60,61. Moreover, these findings generally mirror those 
from research focusing on plant traits, as variance in plant traits 
appears to be just as important as mean trait levels if not more so62.

Numerous studies have also demonstrated that plant-herbivore 
interactions are context-dependent, modulated by the surrounding 
plant community63–68, by local nutrient conditions69–71, by the local 
predator community72, and by plants’ fungal and bacterial microbi-
omes73. Taken together, the overall picture that emerges is a highly 
complex “phytochemical landscape” that dynamically shapes the 
co-evolution of plants and their herbivores74–76. Moving forward, 
this new appreciation of the integrative nature of trait-mediated 
plant-herbivore interactions suggests that plant functional traits  
are the key to understanding food-web interactions and ultimately 
ecosystem processes77.

Herbivore diversity and ecosystem function
The importance of species and functional diversity for maintain-
ing healthy, resilient ecosystems is now widely recognized78–80. 
Although the field of biodiversity-ecosystem function is still domi-
nated by plant-specific studies, consumer diversity is also clearly 
important for ecosystem function81–83. Herbivore diversity has strong 
impacts on many aspects of primary producer communities, such as 
primary production, plant diversity, and consumption of producer 
biomass84–89. Although it is not clear whether these patterns are due 
to complementarity among herbivore species or the idiosyncratic 
importance of individual species90, the loss of herbivore diversity 
clearly impacts a variety of ecosystem functions.

More recent work has tried to integrate diet with other aspects of 
herbivore ecology, including movement, population growth, and 
predation risk. This has led to a more integrative understanding of 
herbivore complementarity and often finds higher levels of func-
tional diversity among herbivore species than diet alone suggests. 
For example, herbivorous fishes on coral reefs often have similar 
diets but generally live in different habitats, feed from different 
substrates, and forage at different spatial scales91–94. These subtle 
differences in habitat selection and foraging range may influence 
how different herbivore species impact reef algal dynamics and 
competitive interactions between corals and algae, re-emphasizing 
that functional trait diversity is an important consideration in eco-
system-function studies95.

Furthermore, both synthetic analyses and empirical work suggest 
that biodiversity supports multifunctionality in ecosystems79,81. In 
other words, in addition to influencing primary production, diversity 
influences ecosystem processes such as nutrient retention, nutrient 
cycling, and decomposition rates, and it is important to consider as 
many of these interconnected processes as possible96. For example, 
Lefcheck et al.79 used data from 94 biodiversity-ecosystem func-
tion experiments to test how species diversity impacts ecosystem 
multifunctionality across a range of taxa, trophic levels, and habi-
tats. The authors showed that the effects of diversity on ecosystem 
multifunctionality (that is, the number of ecosystem processes sur-
passing a critical threshold of function) grew generally stronger the 
more functions that were considered, with consistent impacts across 
aquatic and terrestrial habitats. Perhaps most strikingly, the positive 
effects of plant diversity tapered off and even became negative at 
higher thresholds, whereas herbivore diversity had strong positive 
effects on multiple ecosystem processes even at the highest thresh-
old levels. This result may stem from the fact that consumers often 
use a greater variety of resources and likely exhibit more complex 
behavior than plants97 (but see 98). It also emphasizes conceptual 

Page 4 of 13

F1000Research 2017, 6(F1000 Faculty Rev):119 Last updated: 08 FEB 2017



predictions that consumer diversity might have stronger impacts  
on ecosystem function when compared with producer diversity99.

New technologies for understanding herbivore diversity: 
DNA metabarcoding
Determining herbivore diet breadth, and thus functional diversity, 
is challenging and difficult in many systems. Fortunately, this 
problem is becoming more tractable with recent technological  
advances. For example, dietary characterizations typically result 
from careful, time-consuming observations of herbivore feeding 
and behavior91,100,101. However, visual observations are often 
limited by the ability to discriminate the actual species being  
consumed in mixed plant communities, the ability to observe  
nocturnal foraging, and difficulty in determining whether plant 
use is related to diet or habitat or both101. To solve some of these  
problems, visual identification of plant fragments in either gut 
contents or dung is a common tool for a range of consumers102,103. 
However, identification of plants and other material is unequal 
across herbivores with different digestive physiologies, and 
smaller diet items often are resolvable only to functional group or  
family, and rare but potentially important diet items are typically 
missed entirely23.

The development of DNA metabarcoding of herbivore gut con-
tents may help quantitatively resolve herbivore diets, revealing 
previously cryptic aspects of functional diversity, complemen-
tarity, and niche partitioning104,105. DNA metabarcoding outper-
forms many traditional analyses in resolving diet identification23,106  
and provides quantitative estimates of relative consumption of 
different foods and captures rare diet items23,107,108. Furthermore,  
DNA metabarcoding has revealed previously cryptic functional 
differences among sympatric herbivore species using largely the 
same habitat. For example, Kartzinel et al.22 used metabarcod-
ing to examine diet niche partitioning for seven large mammalian  
herbivores—the African savanna elephant, impala, two species 
of zebra, buffalo, domestic cattle, and dik-dik—all co-occurring 
in a Kenyan savanna with over 100 plant species as potential diet  
items. Barcoding revealed that diets differed considerably across 
all levels of comparison. For example, grazers such as zebra con-
sumed more than 99% grasses, mixed-feeding impala consumed 
about 35% grasses, and strict browsers such as dik-dik consumed 
less than 1% grass. Barcoding even revealed relatively fine-scale 
differences across ecologically similar grazer species (for exam-
ple, the Grevy’s versus Plains zebra and African buffalo versus  
domestic cattle). Remarkably, although the two species of zebra 
consumed nearly identical proportions of grasses, they relied on 
very different suites of grass species, a finding that would have been 
difficult to detect using traditional methods of diet analysis.

Barcoding technology could be especially important for unpack-
ing the ecology of previously intractable species, including large 
generalist herbivores with broad home ranges across a variety of 
habitats (for example, terrestrial ungulates), for herbivores that 
feed on visually cryptic species (for example, algal-feeding fishes), 
for morphologically similar herbivores (for example, rolled-leaf  
beetles109,110), and for revealing spatiotemporal patterns in diet. 
Given the continually shrinking cost of high-throughput, next- 
generation sequencing, these types of large-scale, long-term  
projects will hopefully become increasingly common.

Too scared to eat? context-dependent effects of 
predation risk on plant-herbivore interactions
Risk of predation can alter herbivore foraging behavior and  
subsequently impact the abundance, distribution, or diversity of 
primary producers. This cascade is evident across a variety of  
ecosystems, including rocky intertidal habitats111, seagrass beds112, 
coral reefs113,114, freshwater ponds and streams115,116, old fields117,118, 
temperate grasslands and forests72,119–121, and African savannas122. 
Ultimately, predation risk may even drive patterns of carbon 
sequestration in heavily vegetated habitats123,124, as the mere risk 
of predation alters levels of plant consumption and the standing  
stock of carbon trapped in plant biomass.

More recent work has focused on how context-dependent  
factors such as habitat complexity, predator identity, herbivore  
identity, body size, and prey hunger level can influence the  
cascading effects of risk aversion125,126. For example, a study of 
herbivorous fishes on a coral reef showed that decoy predatory 
fishes suppressed herbivory by parrotfishes and surgeonfishes 
significantly more in high-complexity areas and at distances far-
ther from the decoy when compared with low-complexity areas  
(Figure 2), likely due to decreased visibility and perceived escape 
ability in more complex areas127. Furthermore, smaller herbivo-
rous fishes were more willing to forage closer to the decoys than 
were larger fishes, especially in more complex areas, possibly 
because they were less of a target for the much larger predators and  
because complex areas provided more small refuges for smaller 
individuals. Thus, there may be strong interactions in habitat com-
plexity and body size in shaping patterns of risk-driven herbivory.

Species identity is likely also an important context-dependent 
driver of how predation risk impacts patterns of herbivory across 
the landscape. For example, in the species-rich guild of ungulate 
herbivores in African savannas, different species such as giraffe, 
zebra, and impala exhibit different responses to increased density of 
woody vegetation, typical hiding spots for predators like lions and 
leopards128,129. This differential habitat selection due to risk aversion 
interacts with forage quality and quantity, resulting in heterogene-
ous impacts of herbivores across the landscape. Wildebeest and 
impala, for example, exert strong top-down control on plant com-
munities in different parts of the savanna on the basis of how preda-
tion risk and food resources shape their habitat selection130. Interest-
ingly, increasing climate variability may alter the fear landscape. In 
normal rainfall years, herbivores such as zebra and gazelles favored 
areas with fewer trees and higher visibility to detect predators. But, 
during a drought, these same herbivores frequented areas with more 
grass regardless of tree density and predation risk131. Thus, these 
herbivores were trading safety for food during stressful times, show-
ing that variations in climate and resource levels strongly influence 
the landscape of fear.

The role of predator foraging behavior (for example, sit-and-wait 
versus roving) has also emerged as an important topic for under-
standing the impact on herbivore behavior and ultimately their 
impact on plant communities. Schmitz118 used a three-year experi-
ment in grassland mesocosms to show that actively hunting spi-
ders reduced grasshopper abundance, resulting in increased plant 
species diversity and enhanced aboveground net primary produc-
tion and nitrogen mineralization rate. In contrast, sit-and-wait 
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Figure 2. The impact of risk of predation on plant-herbivore 
interactions often depends on many context-dependent factors 
such as habitat complexity. Catano et al.127 used taxidermy decoy 
black grouper to manipulate risk in areas of low and high complexity 
on a Caribbean coral reef. They measured rates of herbivory 
and quantified bites of common parrotfishes and surgeonfishes 
at increasing distances from the decoy grouper. In areas of low 
complexity (A), overall rates of herbivory by parrotfishes and 
surgeonfishes are lower than in control areas without grouper decoys 
(not shown) but are significantly higher than in areas of higher 
complexity (B). In areas of higher complexity, rates of herbivory are 
significantly lower at closer distances to the decoy grouper than in the 
low-complexity areas. However, feeding by the smallest herbivorous 
fishes was greatest at closer distances in the higher-complexity 
areas, potentially due to the smaller fishes being less vulnerable to 
large grouper and also due to having more refuge from predation in 
the complex habitats. Illustration courtesy of Laura Catano.

ambush spiders mostly impacted grasshopper behavior, not density, 
which had the opposite effect on plant communities and ecosystem  
processes. Sit-and-wait predators often result in larger shifts in 
herbivore behavior than do more mobile, yet more unpredictable, 
predators, but it is unclear how strongly and how often this effect 
filters down to influence plant communities132–134.

Advances in technology, specifically in telemetry, satellite 
imagery, and remote sensing, have opened up myriad ways to  
better document and understand the cascading effects of predation  
risk24,135. For example, in an African savanna, Ford et al.122 used 
GPS telemetry, satellite imagery, and elegant small-scale experi-
ments to show that the risk of predation from leopard and wild  
dog drove impala into areas with lower woody cover and thus a 
lower probability of encountering predators. In turn, this led to 
a suppression of the palatable tree Acacia brevispica in areas of  

high impala abundance while facilitating the abundance of  
Acacia etbacia, a well-defended, thorny species. Interestingly, 
the effects of predation risk can even be seen from space. For  
example, in coral reef ecosystems, the halos of bare space that  
herbivorous fishes create around patch reefs, in large part due to 
predation risk in the open water, are clearly evident even in rela-
tively low-resolution Google Earth images136. These halos tend 
to be smaller in areas of high predation risk but lower, or even  
nonexistent, in areas of low predation risk. Further development 
and cost reductions of these technologies will help reveal aspects  
of risk-driven trophic cascades that have been hidden to date.

Plant-herbivore interactions in an era of climate 
change
Recent evidence suggests that climate change is happening  
10 times faster than at any time in the last 65 million years137,  
having profound consequences for life on earth. The pace of  
climate change varies considerably across ecosystems138, but one 
of the most striking aspects of numerous recent studies is the  
relatively rapid ecological and evolutionary responses of plant- 
herbivore interactions to our warming climate. Hundreds of  
species of crop pests and pathogens, for example, have moved 
poleward at an average of 2.7 km/year since 1960 in the  
Northern Hemisphere139, essentially matching the observed tem-
perature increases140. In many cases, herbivores appear to be  
responding faster to climate change than their host plants141,142, 
leading to altered selective pressures and novel ecological  
interactions in their new ranges. The habitat specialist mangrove 
crab (Aratus pisonii), for example, is moving northward on the 
eastern Atlantic coastline by 6.2 km/year143, far outpacing esti-
mated mangrove migration rates of 1.3 to 4.5 km/year144. In man-
grove habitats, A. pisonii is an important herbivore and closely tied  
to mangrove trees145, but the lack of their hosts in salt marshes  
leads to altered behavior and habitat selection, diet, size, and  
reproductive traits146,147.

Similarly, climate change has strengthened the flow of ocean 
currents, leading to “oceanic hotspots” and the expansion of the 
ranges of many tropical fish species into more temperate regions. 
The “tropicalization” of these temperate ecosystems has already 
resulted in overgrazing on temperate macroalgal communities 
in the Mediterranean, Japan, the Gulf of Mexico, Australia, and  
South Africa148. Indeed, the sudden arrival of tropical herbivorous 
fishes has essentially eliminated kelp recruitment on some temper-
ate Australian reefs, leading to potentially persistent phase-shifts 
away from fleshy-kelp communities toward algal turf-dominated 
reefs149. A similar process of “phenological mismatch” has hap-
pened in the temperate boreal zone, where warmer winters have 
reduced snowpack, leading to increased herbivory on aspen and 
other woody species150. Interestingly, warmer winters have the 
opposite effect in the High Arctic, where increasing amounts of  
rain during extremely warm winters have hardened the snowpack 
and reduced availability of winter forage availability for over-
wintering vertebrate herbivores. As a consequence, these extreme 
events can cause widespread herbivore population crashes that  
ripple through to predator populations151,152.
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In most of these cases, changes in herbivore behavior allow for 
rapid responses to climate change (for example,153), but there is 
some question over whether there is subsequent genetic changes 
that could allow for adaption to climate change. One example 
of rapid evolution to climate change is that of the winter moth  
(Operophtera brumata), in which egg hatching date has closely 
tracked phenological changes in budburst of its host, the oak  
Quercus robur154. However, herbivores with longer generation  
times may be less able to respond adaptively to a rapidly chang-
ing climate. For example, roe deer in Western Europe are experi-
encing earlier springs, but because they have relatively inflexible  
mean birthing dates, fawns are increasingly born when high- 
quality early-spring vegetation is becoming less abundant155,  
having potential long-term consequences on their abundance and 
distribution.

The main drivers of climate change—increasing carbon dioxide 
(CO

2
) and temperature—also fundamentally alter the physiol-

ogy and metabolism of both herbivores and plants156. Metabolic 
theory predicts that warmer temperatures should lead to elevated 
metabolism in ectothermic consumers resulting in increased feed-
ing rates157,158. Yet experimental work shows that feeding rates of 
insect herbivores can increase, decrease, or remain unchanged 
at higher temperatures159–162 and that responses vary even for a  
single herbivore species among different host-plant species161,162  
(Figure 3). In other cases, there is a striking interaction with  
elevated temperatures and the intake of plant secondary com-
pounds, and there is some evidence for enhanced toxicity of  
compounds at higher temperatures163, but again with considerable 
variability among different species162.

Climate change, particularly increasing CO
2
 levels, may also 

impact how plants allocate resources to growth, defense, and  
reproduction, which may profoundly influence herbivore feeding 
behavior. Elevated CO

2
 may lower plant nutritional quality,  

particularly nitrogen density, slowing herbivore growth and  

reproduction and forcing herbivores to increase consumption  
rates or shift diets164–166. However, the responses of insect herbiv-
ores to elevated CO

2
 vary widely, and some taxa like Lepidoptera 

decline in performance, on average, with increased CO
2
 while 

Homopteran performance increases166. Increasing CO
2
 also alters 

the production of chemical defenses in plants, although the changes 
in defensive chemistry are often idiosyncratic depending on the 
plant taxa and chemical compounds167. Flavonoids, phenolics, and 
condensed tannins increase, on average, with elevated CO

2
 while 

terpene production declines166. For example, elevated CO
2
 caused 

reduction in the production of cardenolide defensive chemicals 
in the milkweed (Asclepias syriaca), yet CO

2
 stimulated produc-

tion in physical defenses (for example, leaf toughness and latex  
production), which could have balanced the effect of reduced 
chemical defenses on herbivores168. In the future, work examin-
ing interactions between temperature and increased CO

2
 on plant- 

herbivore interactions at meaningful ecological scales is sorely 
needed, as is work that examines the evolutionary consequences of 
climate change.

Conclusions: conservation of plant-herbivore 
interactions in the Anthropocene
Species are being lost from many ecosystems at an alarming  
rate, and large vertebrates often are the first to go169,170. Although 
predator loss is often emphasized, herbivores are also being  
continually lost to extinction171,172, having cascading impacts on 
the integrity of entire ecosystems173–176. Sadly, parallels can be 
drawn between the contemporaneous loss of herbivores with 
the vast changes that occurred following the Pleistocene mega-
faunal extinction, when many continents lost most of their large  
consumers, resulting in “no-analog” plant communities with  
novel suites of interactions and presumably altered ecosystem  
functionality177–179.

In contrast, the opposite effect is also a prevailing problem in  
many ecosystems. For example, explosive population growth of 

Figure 3. Climate warming may have idiosyncratic effects on plant-herbivore interactions, depending on the species involved. 
Lemoine et al.162 showed that increasing temperature affects growth rates of Japanese beetles (Popilla japonica, at right skeletonizing an 
Oenothera biennis leaf) differently depending on the plant species they are feeding on. For example, Japanese beetle growth increased with 
temperature on plants such as Platanus occidentalis (purple points) but declined on species such as Viburnum prunifolium (pink points). 
These data highlight the difficulty in predicting the impact of climate warming on plant-herbivore interactions. Data redrawn after Lemoine  
et al.162. Image from Dejeanne Doublet.
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white-tailed deer (Odocoileus virginianus) resulting from loss 
of predators and human-altered habitat has led to widespread  
overbrowsing and loss of plant diversity in temperate forests in 
North America179–183, a situation that may take decades to reverse184. 
White-tailed deer are particularly emblematic of the difficul-
ties inherent in managing plant-herbivore interactions within the 
context of ecosystem conservation. For example, numerous stud-
ies show that the negative effects of deer can be ameliorated and 
even reversed at densities approaching their historical levels (for  
example,180,185,186), but there remains significant opposition to  
implementing meaningful hunting and culling programs aimed 
at reducing deer densities187. These intransigent problems  
demonstrate that in many cases we do not lack the scientific  
information to exert meaningful differences, only the collective 
willpower.

Finally, we note that the study of plant-herbivore interactions  
continues to be a leading light in ecology and evolution, demon-
strating the power of applying new technologies and multiple 
perspectives to resolving long-standing uncertainties. These new-
found approaches show that in many cases the world is even more 
complex than we once thought22,109. Thus, our challenge is to find 
conservation solutions that accurately reflect the pervasive impacts 
of plant-herbivore interactions across broad temporal and spatial 
scales, preserving ecosystem multifunctionality and sustainability 
for future generations.
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