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Abstract: Chronic alcohol consumption leads to disturbances in intestinal function which can be
exacerbated by inflammation and modulated by different factors, e.g., polyunsaturated fatty acids
(PUFAs). The mechanisms underlying these alterations are not well understood. In this study,
RNA-seq analysis was performed on ileum tissue from WT and fat-1 transgenic mice (which have
elevated endogenous n-3 PUFAs). Mice were chronically fed ethanol (EtOH) and challenged with a
single lipopolysaccharide (LPS) dose to induce acute systemic inflammation. Both WT and fat-1 mice
exhibited significant ileum transcriptome changes following EtOH + LPS treatment. Compared to WT,
fat-1 mice had upregulated expression of genes associated with cell cycle and xenobiotic metabolism,
while the expression of pro-inflammatory cytokines and pro-fibrotic genes was decreased. In response
to EtOH + LPS, fat-1 mice had an increased expression of genes related to antibacterial B cells (APRIL
and IgA), as well as an elevation in markers of pro-restorative macrophages and γδ T cells that was
not observed in WT mice. Our study significantly expands the knowledge of regulatory mechanisms
underlying intestinal alterations due to EtOH consumption and inflammation and identifies the
beneficial transcriptional effects of n-3 PUFAs, which may serve as a viable nutritional intervention
for intestinal damage resulting from excessive alcohol consumption.

Keywords: alcohol; acute systemic inflammation; polyunsaturated fatty acids; intestine; transcriptome

1. Introduction

The intestinal epithelium serves several important functions including maintenance
of the gut barrier and segregation of host tissue from bacteria and bacterial products [1].
To this end, the intestinal epithelium undergoes continuous breakdown and restoration, a
process which may be beneficially or detrimentally affected by external or internal factors,
such as dietary fatty acids and inflammation [1,2]. For example, n-3 polyunsaturated fatty
acid (PUFA) supplementation has beneficial effects with regard to intestinal health and
function and the gut microbiome in humans [2,3]. In animals, n-3 PUFA supplementation
improved intestinal tight junction integrity and reduced inflammation in a colitis model [4].
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Similarly, transgenic mice that endogenously produce n-3 PUFAs from n6 PUFAs (fat-1
mice [5]) have reduced intestinal permeability when fed a hypercaloric diet [6] and are also
protected from colitis [7]. Whereas n-3 PUFAs exert positive effects on intestinal health
and function, dietary n-6 PUFAs (specifically in combination with chronic ethanol [EtOH]
consumption) can disrupt intestinal barrier integrity, alter the gut microbiota [8–10], and
lead to intestinal inflammation and abnormal gut barrier defense [11]. A compromised
gut barrier allows bacteria and bacterial products such as lipopolysaccharide (LPS) from
gram-negative bacteria to translocate to the blood and other organs [12], causing systemic
inflammation and further exacerbating gut permeability and intestinal injury [13]. In
addition, chronic intestinal inflammation can also promote intestinal fibrosis, leading
to additional loss of gut barrier function [14]. We recently reported that fat-1 mice had
attenuated EtOH-induced alterations in intestinal homeostasis [15] that were associated
with a markedly plastic transcriptome response to EtOH as well as specific transcriptional
signatures [16]. Cell death, inflammation, and tuft cell markers were downregulated
in fat-1 mice in response to EtOH, while defense responses and PPAR signaling were
upregulated [16]. Importantly, however, the molecular mechanisms underlying EtOH and
EtOH + LPS-mediated intestinal pathology remain poorly understood.

Since EtOH consumption and acute systemic inflammation contribute to gut pathology,
we aimed to elucidate the associated transcriptional responses using an unbiased RNA-seq
based approach. Previously, we demonstrated improved intestinal health with n-3 PUFA en-
richment in fat-1 transgenic mice (the mice that endogenously convert n6 to n3 PUFAs [15])
and identified the associated ileum transcriptional responses to EtOH [16]. The current
study builds upon our previous work and aims to identify n-3 PUFA-regulated ileum
transcriptional responses to acute systemic inflammation in mice chronically fed EtOH.

2. Results
2.1. Chronic EtOH Consumption Followed by LPS Challenge Leads to Global Ileum Gene Changes
in Both WT and fat-1 Mice

To determine the effect of chronic EtOH consumption and LPS challenge on ileal
gene expression, WT and fat-1 mice were fed an EtOH-containing diet with or without
a single LPS challenge followed by ileum RNA-seq analysis (Figure 1A). There were
2276 differentially expressed genes (DEGs) in the ileum between WT EtOH+LPS vs. WT
EtOH mice, 1583 DEGs between fat-1 EtOH + LPS vs. fat-1 EtOH mice, and 743 DEGs
between fat-1 EtOH + LPS vs. WT EtOH + LPS (Figure 1B). There were 734 genes increased
and 794 decreased exclusively in WT mice, and 435 genes increased and 403 decreased
exclusively in fat-1 mice in response to EtOH + LPS vs. EtOH. There were commonly altered
genes by LPS (445 genes increased and 303 decreased) in both WT and fat-1 EtOH-fed mice
(Figure 1C). A Venn diagram of the number of significant genes between fat-1 EtOH + LPS
vs. fat-1 EtOH, WT EtOH + LPS vs. WT EtOH, and fat-1 EtOH + LPS is included as Figure S1.
The most upregulated genes in the WT EtOH + LPS vs. WT EtOH comparison included
Lcn2, Saa3, S100a8, Fabp1, and G6pc (568.8-, 166.6-, 140.1-, 88.3-, and 80.8-fold, respectively),
while the downregulated genes included Cyp2c55, Pla2g4c, Gsdmc4, Gsdmc2, and Car1
(-215-, -155.7-, -149.9-, -141.2-, and -84.4-fold, respectively) (Table S1 and Figure 1D). The
most upregulated genes in the fat-1 EtOH+LPS vs. fat-1 EtOH comparison included Lcn2,
Lct, Gata4, Gimd1, and Saa3 (496.8-, 402-, 134-, 123.9-, and 122.2-fold, respectively), while the
downregulated genes included Cyp2c55, Cypd34, Gsdmc2, Hao2, and Car1 (-197.9-, -143.9-,
-127.1-, -122.3-, and -99.1-fold, respectively) (Table S2 and Figure 1E). Gene Ontology (GO)
processes increased in EtOH + LPS vs. EtOH-treated WT mice included response to stress,
defense response, and inflammatory processes. In contrast, diminished GO processes
included lipid metabolism, muscle contraction, and response to hormones (Figure 1F). GO
processes enriched in fat-1 mice in response to EtOH + LPS vs. EtOH included immune
system response and defense responses. Diminished GO processes included transport,
development, and muscle contraction (Figure 1G).
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Figure 1. Chronic EtOH consumption followed by LPS challenge leads to global ileal gene changes in both WT and fat-1 
mice. (A) WT and fat-1 mice were either pair-fed (WT n = 4, fat-1 n = 4), EtOH-fed (WT n = 3, fat-1 n = 5), or EtOH-fed + a 

Figure 1. Chronic EtOH consumption followed by LPS challenge leads to global ileal gene changes in both WT and fat-1
mice. (A) WT and fat-1 mice were either pair-fed (WT n = 4, fat-1 n = 4), EtOH-fed (WT n = 3, fat-1 n = 5), or EtOH-fed + a
one-time injection of LPS 24 h before sacrifice (WT-EtOH + LPS n = 4, fat-1 EtOH + LPS n = 4).(B) Gross RNA-seq data from
WT EtOH + LPS vs. WT EtOH mice, fat-1 EtOH + LPS vs. fat-1 EtOH mice, and fat-1 EtOH + LPS vs. WT EtOH + LPS
mice. Nodes in the red gradient were increased for the given comparison and nodes in the blue gradient were decreased
for the given comparison, with the total number of genes listed to the side. (C) The number of gene expression changes
in response to EtOH + LPS, either exclusive or common to genotype. (D) Plot of log2 (Fold-change ranked genes) for the
WT EtOH + LPS vs. WT EtOH comparison (red increased, blue decreased). (E) Plot of log2 (Fold-change ranked genes) for
the fat-1 EtOH + LPS vs. fat-1 EtOH comparison (red increased, blue decreased). (F) Heatmap of GO processes for the WT
EtOH + LPS vs. WT EtOH comparison. (G) Heatmap of GO processes for the fat-1 EtOH + LPS vs. fat-1 EtOH comparison.
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2.2. Similarity in Transcriptional Responses of Ileum Tissue to EtOH+LPS in WT and fat-1 Mice

Analysis of gene expression changes between WT and fat-1 mice revealed a number of
similar changes in both. The most upregulated ileum genes in response to EtOH + LPS vs.
EtOH in both genotypes included Lcn2, Gata4, Gimd1, Saa3, and Plb1 (496.8-, 134-, 123.9-,
122.2-, and 117.5-fold, respectively), while the genes with the greatest decreases included
Car1, Cyp2c55, Hao2, Cyp2d34, and Gsdmc2 (-5168.5-, -197.9-, -143.9-, -127.1-, and -122.3-
fold, respectively) (Table S3). Cluster analysis identified gene groups that were similarly
affected in EtOH + LPS vs. EtOH-treated WT and fat-1 mice. The expression of genes
involved in cytokine signaling (Tnf, Il1b, Csf1), glucose metabolism (Aldob, Fbp1, Fbp2),
glutathione metabolism (Gpx3, Gsta1, Ggt5), and nicotinamide adenine dinucleotide (NAD)
metabolism (Nampt, Shmt2, Enpp1) were similarly enriched between genotypes (Figure 2A).
Gene clusters with diminished expression included those for fatty acid metabolism (Fasn,
Acaca, Scd1), smooth muscle contraction (Actg2, Myh11, Tpm2), xenobiotic metabolism
(Cyp2e1, Ugt2b5, Cyp3a44), cell cycle (Mki67, Foxo3, Parp1), and H2S metabolism (Flnc, Cbs,
Mpst) (Figure 2B).
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Figure 2. Similarity in transcriptional responses of ileum tissue to EtOH + LPS in WT and fat-1 mice. (A) Cluster analysis
of ileum genes increased by EtOH + LPS vs. EtOH in both WT and fat-1 mice. Node size indicates relative connectivity.
(B) Cluster analysis of ileum genes decreased by EtOH + LPS vs. EtOH in both WT and fat-1 mice.

2.3. Increased Transcriptional Responses to EtOH + LPS Challenge Specific to WT or fat-1 Mice

There were many transcriptional changes that were unique to each genotype. The
most highly upregulated ileum genes exclusive to WT EtOH + LPS vs. WT EtOH-treated
mice included Fabp1, S100a8, Igkv3-1, Ptx3, and Fga (166.6-, 80.7-, 47.5-, 44.6-, and 43.7-
fold, respectively) (Table S4). Ileum genes significantly upregulated exclusively in fat-1
EtOH + LPS vs. fat-1 EtOH mice included Lct, Ugt2a3, Cyp2b10, Enpp3, and Fpr1(402-,
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91.6-, 64.6-, 53-, and 33.8-fold, respectively) (Table S5). Next, cluster analysis of genotype-
exclusive gene sets in WT and fat-1 mice exposed to EtOH + LPS vs. EtOH was performed.
Gene clusters upregulated in EtOH + LPS vs. EtOH-treated WT mice included those for im-
mune response (Lilrb4, Cd14, Tyrobp), chemokine signaling (Cxcl1, Anxa1, Ccl9), peroxisome
proliferator-activated receptor (PPAR) signaling (Pparα, Hmgcs2, Acaa1b), extracellular
matrix (ECM) receptor interaction (Timp1, Thbs1, Adamts4), cytokine signaling (Il1a, Il1r1,
Myd88), and ribosome biogenesis (Wdr12, Tdrd12, Utp23) (Figure 3A). Gene sets that were
exclusively upregulated in EtOH + LPS vs. EtOH-treated fat-1 mice included those for lipid
metabolism (Nr1h3, Apoc3, Srebf1), antigen presentation (Fpr1, H2-Q1, H2-Q2), amino acid
(AA) metabolism (Cyp2b10, Cyp4a29, Gstm6), toll-like receptor (TLR) signaling (Ccl3, Ccl4,
Nos2), innate immune response (Uba7, Adar, Atf3), and protein transport (Sec16b, Sar1b,
Sec22b) (Figure 3B).
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Figure 3. Exclusive transcriptional responses increased due to EtOH + LPS in WT and fat-1 mice. (A) Cluster analysis of the
expression of genes increased exclusively in WT mice in response to EtOH + LPS vs. EtOH. (B) Cluster analysis of ileum
genes increased exclusively in fat-1 mice in response to EtOH + LPS vs. EtOH. Node size indicates relative connectivity.
Node color indicates relative log2(Fold-Change) of genes.
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2.4. Decreased Transcriptional Responses to EtOH+LPS Challenge Specific to WT or fat-1 Mice

There were also genes whose expression was decreased by EtOH + LPS vs. EtOH
exclusively in WT and fat-1 mice. The most highly downregulated genes exclusive to
WT EtOH + LPS vs. WT EtOH-treated mice included Mme, Igkv2-109, Igkv4-53, Ighv14-4,
and Rn7sk (-33.1-, -31.2-, -24.5-, -19.8-, and -17.8-fold, respectively) (Table S4). Genes that
were highly downregulated exclusively in fat-1 EtOH + LPS vs. fat-1 EtOH mice included
Nov, Grin3a, Ighg2c, Npy4r, and Gm11346 (-86.8-, -45-, -32.8-, -29.2-, and -28.9-fold, respec-
tively) (Table S5). Ileum gene clusters with decreased expression in WT mice in response
to EtOH + LPS vs. EtOH included those for cell cycle (Top2a, Aurkb, Pola1), xenobiotic
metabolism (Cyp3a11, Cyp2c68, Cyp3a44), Wnt signaling (Axin2, Fzd2, Nkd2), cyclic adeno-
sine monophosphate (cAMP) signaling (Creb1, Pde5a, Fosb), and muscle contraction (Myl7,
Mylk, Vcl) (Figure 4A). Gene clusters with decreased expression exclusively in fat-1 mice in
response to EtOH + LPS vs. EtOH included those for T cell signaling (Thy1, Ccr7, Cd8b),
small molecule metabolism (Acly, Acaa1b, Pygb), mitogen-activated protein kinase (MAPK)
signaling (Mapk10, Igf1r, Map2), phospholipase D signaling (Grp, Plcb1, Dhkh), protein
glycosylation (B3gnt6, St3gal3, St6gal1), and ubiquitin proteolysis (Nedd4, Ubr2, Wwp1)
(Figure 4B).
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ileum genes decreased exclusively in WT mice in response to EtOH + LPS vs. EtOH. (B) Cluster analysis of ileum genes
decreased exclusively in fat-1 mice in response to EtOH + LPS vs. EtOH. Node size indicates relative connectivity. Node
color indicates relative log2(Fold-Change) of genes.
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2.5. Differential Transcriptional Responses between fat-1 EtOH+LPS and WT EtOH +
LPS-Exposed Mice

Cluster analysis of ileum genes differentially expressed between fat-1 EtOH + LPS
vs. WT EtOH + LPS mice revealed several significant groups (Figure 5A). The cytokine
signaling gene cluster was overrepresented for this comparison, which included the fol-
lowing genes: Il15, Il33, Serpine1 (increased), Cxcl13, Il6, and Itga5 (decreased). Ileum gene
clusters enriched in fat-1 EtOH + LPS vs. WT EtOH + LPS mice also included genes for
xenobiotic metabolism (Cyp2b10, Cyp3a11, Ugt2a3), phagosome (Mme, H2-Q10, H2-Q2),
innate immune response (Oas2, Isg15, Cmpk2), and lipid metabolism (Agpat9, Dgat1, Soat2).
The neuroactive ligand activation gene cluster had decreased expression of many genes
in fat-1 EtOH + LPS vs. WT EtOH + LPS-treated mice, including Grp, Cck, and Gal. The
most upregulated genes in fat-1 EtOH + LPS vs. WT EtOH + LPS-treated mice included Lct,
Slc28a1, Cyp2b10, Mme, and Enpp3 (202.9-, 100.9-, 96.7-, 46.4-, and 45.9-fold, respectively)
with the most downregulated genes being Ighg1, Hal, Fa2h, Igkv4-69, and Zfp865 (-18.6-,
-14.6-, -8-, -7.1-, and -6.7-fold, respectively) (Table S6) (Figure 5B). GO processes enriched
in fat-1 EtOH + LPS vs. WT EtOH + LPS mice included response to stress, response to
hypoxia, and signaling receptor activity, while the diminished processes included anion
transport, organophosphate metabolism, and carboxylic acid metabolism (Figure 5C).

2.6. Targeted Analysis of Selected Transcriptional Responses Involved in EtOH + LPS-Mediated
Alterations of Intestinal Immunity and Intestinal Tissue Integrity

Specific gene sets were investigated to further delineate the effects of chronic EtOH
administration in combination with acute inflammation, as well as the role of n-3 PUFA
enrichment, on processes related to intestinal immunity and fibrotic intestinal tissue alter-
ations, which are key drivers of intestinal homeostasis and pathology, respectively [1]. To
this end, Butyrophilin-like (Btnl) genes, gene markers of intestinal γδ T cells, macrophages,
IgA + B cells, and drivers of intestinal tissue fibrosis were evaluated in fat-1 and WT mice
challenged with EtOH + LPS. We also evaluated effects of chronic EtOH exposure alone on
specific mediators and pathways involved in intestinal immunity and fibrotic processes by
comparing the pair-fed (PF) and EtOH-fed WT and fat-1 mice; these data are presented in
Supplemental Materials Figures S2–S4.

2.6.1. Ileum Gene Expression of Butyrophilin-Like (Btnl) Genes and Markers of γδ T Cells
and Pro-Restorative Macrophages Were Enhanced in fat-1 vs. WT
EtOH + LPS-Exposed Mice

Butyrophilin-like (Btnl) genes have recently been demonstrated to be expressed by
intestinal epithelial cells (IECs) where they act as tethers to enhance the γδ T cell population
and heighten defense response and tissue homeostasis [17,18]. The expression of Btnl1/2
and Tcrg-C1 (a γδ T cell marker) was decreased by EtOH in both WT and fat-1 mice
(Figure S2A,B). Interestingly, all Btnl and γδ T cell signature genes (other than Btnl2) were
decreased in EtOH + LPS vs. EtOH-treated WT mice. In contrast, the same genes (other
than Btnl9) were increased by EtOH + LPS vs. EtOH in fat-1 mice (Figure 6A). Notably, the
Btnl genes (Btnl1/2/4/6/9), Tcr-G1, and Tcrg-V7 were all elevated in fat-1 EtOH + LPS mice
as compared to WT EtOH + LPS mice (Figure 6B). Th1, Treg, and Th17 cell gene markers
were evaluated, but there were no statistical differences noted for WT EtOH + LPS vs. WT
EtOH, fat-1 EtOH+LPS vs. fat-1 EtOH (Figure 6C) or fat-1 EtOH + LPS vs. WT EtOH + LPS
mice (Figure 6D).

Pro-restorative macrophages contribute to favorable intestinal tissue homeostasis
and host immune responses [19]. Pro-restorative macrophage gene signatures were eval-
uated in the ileum of EtOH and PF WT and fat-1 mice. The expression of Cx3cl1 and
Ltb4r1 was decreased by EtOH in both genotypes but Slpi was only decreased in WT mice
(Figure S2C). The expression of pro-restorative macrophage gene signatures was elevated
in the EtOH + LPS vs. EtOH group in both WT and fat-1 mice (except for Tek and Mertk)
(Figure 6E). The expression of these pro-restorative macrophage genes was also increased
in fat-1 EtOH + LPS vs. WT EtOH + LPS mice with Slpi, Mertk, and Ltb4r1 being significant
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(Figure 6F). Taken together, these data demonstrate that enhanced n-3 PUFAs increased
ileum Btnls, γδ T cells, and pro-restorative MertK+ macrophages in EtOH + LPS treated
mice (Figure 6G).
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2.6.2. Increased n-3 PUFAs Enhanced APRIL Gene Expression and IgA + B-Cell Markers

Next, we evaluated APRIL signaling, an important pathway in intestinal B cell-
mediated anti-bacterial response [20]. Activation of intestinal B cells by APRIL (Tnfsf13)
signaling leads to the production of IgA which functions to mitigate bacterial expansion in
the gut [21]. APRIL signals through its receptors TACI (Tnfrsf13b) and BCMA (Tnfrs17),
which, in turn, switches B cells to IgA producing B cells [21]. The expression of Tnfrsf17,
Igha, and Jchain was decreased by EtOH feeding in both genotypes while Tnfsf13 was only
decreased in WT EtOH mice (Figure S3). The expression of Tnfrsf13b was increased in fat-1
EtOH vs. WT EtOH mice (Figure S3). Tnfsf13, Tnfrsf13b, Tnfrsf17, Igha, and Jchain gene
expression was decreased by EtOH + LPS in both genotypes, except for Igha and Jchain,
which were elevated in fat-1 EtOH + LPS vs. fat-1 EtOH mice (Figure 7A). When directly
comparing the expression of these genes between fat-1 EtOH + LPS vs. WT EtOH + LPS-
treated mice, all were increased in fat-1 mice (with Tnfsf13, Igha, and Jchain being significant)
(Figure 7B). Collectively, these data suggest that enrichment of n-3 PUFAs increased IgA-
producing B cells and APRIL signaling markers in the intestine of EtOH + LPS treated fat-1
mice (Figure 7C).
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Figure 7. Increased n-3 PUFAs enhanced APRIL-signaling gene expression and IgA + B-Cell markers. (A) Heatmap
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2.6.3. Increased n-3 PUFAs Attenuated the EtOH+LPS-Mediated Intestinal Pro-Fibrotic
Gene Expression

Chronic intestinal injury and inflammation may result in intestinal fibrosis [22]. Thus,
we evaluated the expression of the pro-fibrotic receptors Pdgfrα, Tgfbr2, and Igfr1, which
was increased by EtOH independent of genotype (Figure S4A), along with Acta2, an
established marker of fibrosis (Figure S4B). Next, when comparing EtOH + LPS vs. EtOH
in WT and fat-1 mice, the expression of Pdgfra, Tgfbr2, Tgfbr3, Mmp3, and Lox was increased
in both genotypes. The expression of Igf1r and Acta2 was decreased by EtOH + LPS in
both genotypes. Fgfr1 and Ctgf were increased in WT mice but decreased in fat-1 mice in
response to EtOH + LPS vs. EtOH (Figure 8A). When directly comparing fat-1 EtOH + LPS
vs. WT EtOH + LPS mice, the expression of the pro-fibrotic receptors (Fgfr1, Pdgfra, Tgfbr2,
Tgfbr3, Igf1r) was decreased in fat-1 mice (Figure 8B). Pro-fibrotic gene signatures (Mmp3,
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Ctgf, Lox, Acta2) were downregulated in fat-1 EtOH + LPS vs. WT EtOH + LPS-treated
mice (Figure 8C). To histologically assess ileum fibrosis, Sirius red staining was performed,
which revealed a lower extent of fibrotic scarring (although not significantly so) in fat-1
EtOH + LPS relative to WT EtOH + LPS-treated mice (Figure 8D,E). In WT EtOH fed
mice there was a significant increase in Sirius red staining relative to WT PF that was not
observed in fat-1 EtOH vs. fat-1 PF mice (Figure S4C,D). Collectively, these data demonstrate
that endogenous elevation of n-3 PUFAs diminished the expression of EtOH + LPS-induced
intestinal fibrosis markers (Figure 8F).
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3. Discussion

The detrimental effects of chronic alcohol exposure on intestinal tissue integrity and
function are well known [11,23]. Specifically, excessive alcohol consumption is often as-
sociated with endotoxemia [24] as a result of increased gut permeability and leakage of
gut-derived pathogens, including LPS, into circulation, affecting multiple tissues and
organs including the gut. However, the underlying mechanisms of EtOH and EtOH + LPS-
mediated gut alterations are not well understood. In this study, we aimed to identify global
transcriptional changes in the intestine following chronic EtOH exposure and LPS-induced
systemic inflammation. In order to examine the effects of n3 PUFAs in modulating the
transcriptional responses, we utilized fat-1 transgenic mice with endogenously elevated n-3
PUFA levels in all tissues. We observed that in response to EtOH + LPS vs. EtOH alone, WT
mice experienced the greatest differential change in gene expression (2276 DEGs for WT vs.
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1583 for fat-1). WT and fat-1 mice had some similar transcriptional responses to EtOH + LPS
vs. EtOH, including elevated Lcn2 (the most induced gene in both genotypes), which is
pro-inflammatory and recruits immune cells to sites of inflammation [25]. The expression
of other inflammatory mediators was similarly increased in both genotypes, including
Tnf, Il1b, and Csf1 in the EtOH + LPS vs. EtOH group. Csf1 is required to maintain the
resident intestinal macrophage population [26], and these data suggest that in an EtOH-
acute systemic inflammation model there is an increase in resident intestinal macrophages,
independent of genotype. Further, the expression of smooth muscle contraction genes,
including Actg2, was decreased in EtOH + LPS vs. EtOH mice in both genotypes as well.
Loss of function mutations of Actg2 lead to reduced intestinal peristalsis and correlate
with disease severity in chronic intestinal pseudo-obstruction syndromes [27]. These data
indicate that EtOH + LPS can reduce the expression of intestinal motility markers indepen-
dent of n-3 PUFA enrichment; therefore, EtOH and LPS may promote a loss of intestinal
peristalsis. LPS has been shown to disturb intestinal motility in a JNK dependent manner
through upstream TNFα signaling [28]. The TNFα-JNK pathway may be less active in fat-1
mice in response to EtOH + LPS, restoring intestinal motility, but future investigation is
required to validate this concept.

WT and fat-1 mice also had differential responses to EtOH + LPS vs. EtOH alone,
including increased expression of chemokine and cytokine signaling genes in WT mice.
Inflammation of the gut is common with chronic alcohol consumption, inflammatory bowel
disease (IBD), and colitis. For example, Cxcl1, a chemokine that recruits neutrophils and is
highly expressed in IBD [29], was highly expressed in WT but not fat-1 mice in response
to EtOH + LPS. Similarly, both IBD-associated pro-inflammatory mediators, Il1a and its
receptor Il1r [30], were increased exclusively in WT EtOH + LPS-treated mice. These data
indicate that n-3 PUFAs may function to dampen the intestinal immune response to EtOH
and LPS. In contrast, the expression of lipid metabolism transcription factors such as Nr1h3
and Srebf1 were increased in only fat-1 mice in response to EtOH+LPS vs. EtOH. Deficient
intestinal lipid metabolism has previously been described in IBD [31]. Recently, the loss of
Nr1h3 was shown to exacerbate experimental colitis, and NR1H3 expression was found
to be reduced in IBD patients [32]. Therefore, endogenous enrichment of n-3 PUFAs may
transcriptionally regulate lipid metabolism in the intestine via increased expression of
Nr1h3 which in turn elevates the expression of its target gene Srebf1.

There were also genesets decreased exclusively in the EtOH + LPS vs. EtOH groups
in each genotype. The expression of genes involved in Wnt signaling were exclusively
decreased in WT mice in response to EtOH + LPS, including Axin2, a transcriptional readout
of Wnt signaling. Wnt signaling in intestinal stem cells is required for damage-induced
regeneration of the intestinal epithelium (as in this EtOH-acute systemic inflammation
model), but not for normal intestinal homeostasis [33]. Our data would suggest that n-3
PUFAs enhance the proliferative capacity of the intestinal epithelium during an EtOH-
acute systemic inflammation model. Other ileum genes were exclusively decreased in fat-1
EtOH + LPS vs. EtOH-treated mice. The expression of cytotoxic T cell markers, including
Thy1 and Cd8b was decreased exclusively in EtOH + LPS vs. EtOH fat-1 mice. Cytotoxic T
cells are elevated in IBD [34] and may exacerbate intestinal inflammation. Enrichment of
n-3 PUFAs may function to reduce cytotoxic T cells stimulated by EtOH and LPS.

When directly comparing fat-1 EtOH + LPS vs. WT EtOH + LPS-treated mice, we
found an increase in the expression of xenobiotic metabolism genes in fat-1 mice, including
Cyp2b10, Cyp3a11, and Nr1i3. Cyp2b10 and Cyp3a11, both of which are target genes for
Nr1i3, are decreased in expression in ulcerative colitis [35]. Enrichment of n-3 PUFAs
may increase the expression and transcriptional activity of Nr1i3, providing a robust
xenobiotic metabolism response during EtOH and LPS-induced injury and inflammation.
The expression of intestinal Serpine1 was decreased in fat-1 EtOH + LPS vs. WT EtOH + LPS
mice as well. SERPINE1 is elevated in IBD patients and links intestinal inflammation to
coagulation, both of which are both factors involved in fibrosis [36]. Consumption of n-3
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PUFAs in humans has been demonstrated to reduce SERPINE1 in whole blood [37], but it
may have similar effects on the intestine, as suggested by these data.

Previously we demonstrated that n-3 PUFA enrichment in fat-1 mice reduced pro-
inflammatory cytokine levels in the ileums of EtOH + LPS-exposed mice [15]. Here we
report that the expression of pro-inflammatory markers was reduced in fat-1 mice in
contrast to pro-restorative immune cell markers, which were increased. Intraepithelial γδ
T cells play a pro-restorative role in intestinal immune responses and tissue homeostasis.
The expression of γδ T cells markers (Tcrg-C1, Tcrg-V7) was increased with elevated n-3
PUFAs after EtOH + LPS treatment. The effect of fat-1 appears to be specific to ileum γδ T
cells markers as other T cell population markers (Th1, Th17, Treg) were not altered. Btnl
gene expression was also elevated by n-3 PUFA enrichment. BTNLs are expressed by
IECs and enhance the recruitment of intraepithelial γδ T cells [17]. Intestinal mucosa γδ
T cells regulate immunotolerance to pathogenic bacteria and promote intestinal wound
healing [38]. Metabolites of n-3 PUFAs have been demonstrated to impact T cell functions
but not γδ T cells specifically [39]. The increased expression of γδ T cell markers may be
due to a n-3 PUFA effect on IEC Btnl gene expression. The transcriptional regulation of Btnl
genes is understudied, but n-3 PUFAs may transcriptionally regulate Btnl gene expression
through nuclear receptor activation [40]. IECs expressing more Btnls due to n-3 PUFA
enrichment could explain the retention of γδ T cells. Enriched intestine γδ T cells may
contribute to intestinal integrity and diminished inflammation. The expression of markers
of monocyte-derived macrophages (MoMFs), which are pro-restorative immune cells, was
increased in fat-1 mice. MoMFs contribute to intestinal homeostasis and resolution of
inflammation. Recently, a dysfunction in monocyte differentiation to MoMFs has been
demonstrated in IBD [19]. Infiltrating monocytes can receive external signaling cues and
differentiate to MoMFs at sites of inflammation; one such cue is SLPI. SLPI increases
the number of MERTK+ pro-restorative macrophages [41]. The expression of both Slpi
and Mertk was elevated in fat-1 EtOH+LPS vs. WT EtOH+LPS-treated mice. It has been
demonstrated that both Mertk-/- [42] and Slpi-/- [43] mice develop exacerbated intestinal
inflammation. Our data suggest that n-3 PUFAs may enhance the pool of pro-restorative
macrophages to help maintain tissue homeostasis and integrity.

Enrichment of n-3 PUFAs also affected other intestinal immune cell responses. Intesti-
nal immune cells generate many antibodies, such as IgA, to mitigate bacterial overgrowth
and maintain immune tolerance [44]. Secretory IgA is produced by B cells [45], which then
undergoes transcytosis to reach the gut mucosal layer where it functions through immune
exclusion to keep bacteria within the mucosa. Along with B cell-mediated prevention
of bacterial translocation, the intestinal epithelial layer also maintains a physical barrier
limiting gut permeability (e.g., ZO-1, and other tight junction proteins). Previously we
found no prominent differences in intestinal tight junction genes or a reduction of plasma
endotoxin in fat-1 EtOH fed mice relative to WT EtOH fed mice [15]. In the current model
mice were fed an EtOH containing diet and LPS was administered systemically, which
can on its own disrupt gut barrier function [13]. In this study there were no differences in
ileum tight junction genes (Tjp1, Cldn, Ocln) between fat-1 EtOH + LPS vs. WT EtOH + LPS
mice (data not shown). Here, we demonstrated that n-3 PUFA enrichment increased the
expression of Igha and Jchain (the secretory IgA dimer linker) in the ileum. The expression
of IgA + B cells is enhanced by APRIL (Tnfsf13) signaling [21]. APRIL is released by IECs
following TLR activation (e.g., LPS activation of TLR4), leading to B cell proliferation and
IgA secretion [21]. In this study, we found that the expression of APRIL (Tnfsf13) was
increased by n-3 PUFA enrichment, which may contribute to the observed effect on Igha
expression. Previously, it has been shown that the dietary n-3 PUFAs eicosapentaenoic acid
and docosahexaenoic acid can enhance cecal IgA levels [46], consistent with the findings of
this study. It has also been demonstrated that chronic EtOH consumption reduces fecal
levels of secretory IgA in mice [47]. In an alcohol-associated liver disease mouse model,
Igha-/- mice did not develop exacerbated liver injury, which was partly explained by a
compensatory upregulation of IgM [48], although intestinal pathology was not evaluated
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in this study. These data suggest that n-3 PUFAs enhanced expression of APRIL signaling
components (ligand and receptors), which leads to enhanced IgA + B cell levels. This in
turn would combat bacterial overgrowth and reduce bacterial-induced inflammation in
the intestine.

In our study, fibrotic scarring of the ileum was increased by EtOH + LPS to a greater
extent in WT vs. fat-1 mice. Further, the expression of ileum pro-fibrotic receptors Tgfbr2/3,
Pdgfrα, Fgfr1 and Igf1r was decreased in fat-1 EtOH + LPS vs. WT EtOH + LPS-treated
mice along with Ctgf, Mmp3, Lox, and Acta2. LPS- and microbe-induced intestinal fibrosis
has been demonstrated previously [14], and here we demonstrate that elevation of n-3
PUFAs can reduce this effect. Intestinal fibrosis occurs after repeated intestinal injury and
inflammation leading to a buildup of scar tissue [22]. This in turn stiffens the intestinal tract
reducing gut motility, while simultaneously exacerbating permeability and GI bleeds [22].
Myofibroblasts in the intestine proliferate during intestinal fibrosis due to pro-fibrotic
growth factors such as CTGF [49]. Interestingly, Ctgf expression was reduced with elevated
n-3 PUFAs which could contribute to the decreased expression of other myofibroblast
markers (Acta2, Lox, and Mmp3). In hepatic stellate cells, n-3 PUFAs reduce Ctgf expression
induced by EtOH [50]; here we show that this effect may also be present in intestinal
stellate cells. Taken together, these data demonstrate that n-3 PUFAs are anti-fibrotic in the
intestine during EtOH + LPS-mediated intestinal inflammation.

4. Materials and Methods
4.1. Experimental Study Design

Animal studies were approved by and performed in accordance with the guidelines
of the University of Louisville Institutional Animal Care and Use Committee (IACUC). The
IACUC protocol numbered 15423 was approved on 12 January 2016 by the IACUC ethics
committee. Mice were housed in a temperature-controlled room with a 12 h light-dark
cycle in a pathogen-free animal facility accredited by the Association for Assessment and
Accreditation of Laboratory Animal Care. The fat-1 transgenic mouse line [5] was used to in-
vestigate the effect of n-3 PUFA enrichment on EtOH and LPS-induced intestinal pathology.
These mice express the C. elegans fat-1 n-3 fatty acid desaturase in all tissues and therefore
have increased n-3 PUFAs in the absence of dietary modification [15]. 8–10-week-old fat-1
and WT male littermates were placed on a control (maltose dextrin) or EtOH-containing
Lieber-DeCarli liquid diet (catalog numbers F1259SP and F1258SP, respectively. BioServ,
Flemington, NJ, USA). Mice were fed for 6 weeks with an initial stepwise increase in EtOH
concentration (0%, 1%, and 2% for two days each, 4% and 5% for one week each and then
6% for 3 weeks). EtOH-fed WT and fat-1 mice were subjected to a one-time i.p. injection of
LPS (5 mg/kg) 24 h before sacrifice to induce systemic inflammation (Figure 1A). RNASeq
analysis of ileum tissue from WT PF (n = 4), fat-1 PF (n = 4), WT EtOH fed (n = 3), fat-1
EtOH fed (n = 5), WT EtOH + LPS (n = 4), and fat-1 EtOH + LPS (n = 4) experimental mice
was conducted and analyzed in this study.

4.2. Ileum Tissue Sample Acquisition and Histological Analysis

Mice were anesthetized with ketamine/xylazine (100/16 mg/kg) and ileum tissue
was collected and either snap-frozen in liquid nitrogen and stored at −80 ◦C for further
RNA isolation, or immediately fixed in 10% neutral buffered formalin and embedded
in paraffin for Picrosirius red staining as a measure for intestinal fibrosis according to
a standard protocol. Ileum sections were sectioned at 5 µm. Images were captured at
200× via an Olympus BX43 microscope and CellSens Software package (Olympus America,
Breinigsville, PA, USA). Quantitation of ileum fibrosis was assessed by two independent
investigators quantifying percent area of Sirius red staining relative to percent area of ileum
tissue section in Image J as has been previously described [51]. 5 randomized images per
ileum section were used for the Image J analysis.
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4.3. Ileum Tissue RNA Isolation and Quality Analysis

Total ileum RNA was isolated using Trizol reagent (Thermo Fisher, Waltham, MA,
USA) from murine ileal segments. This was followed by removal of any contaminating
genomic DNA with DNase I (TURBO DNA-free kit, Thermo Fisher). RNA was further
purified using the GeneJET RNA cleanup and concentration micro kit (Thermo Fisher).
RNA integrity was determined by analysis on the Agilent Bioanalyzer 2100 (Agilent, Santa
Clara, CA, USA) and only RNA samples with integrity values ranging from 7 to 9 were
used for RNA-seq analysis.

4.4. Intestinal Tissue RNA-Sequencing

RNA sequencing was performed by the University of Louisville Center for Genetics
in Molecular Medicine core facility using the TruSeq Stranded mRNA library preparation
kit (part no. 20020594). The full RNASeq methodology has been reported previously [15].

4.5. RNA-seq Bioinformatics, Statistical Analysis, and Data Visualization

RNA-seq analysis was conducted by the NIH-funded Kentucky Biomedical Research
Infrastructure Network Bioinformatics Core. The full details for this method have been
published previously [15], but pertinent details are described below. The sequences were
directly aligned to the Mus musculus reference genome assembly (mm10) using TopHat2
(version 2.0.13) [52] guided by Ensembl build 82 mouse transcripts. DEGs between exper-
imental groups were identified using the Tuxedo suite of programs including cuffdiff2
(version 2.2.1) [53,54]. A p-value cutoff ≤ 0.05, q-value cutoff ≤ 0.05 with a fold change
(FC) ≥2 was used to determine differential expression. DEGs that met this threshold
were used for further analysis. Visualization of gene clusters and gene interactions for
DEGs was conducted in Cytoscape [55]. Heatmap gradient coloration denotes log2 (FC)
for the respective comparison and node size depicts relative connectivity from the Search
Tool for the Retrieval of Interacting Genes/Proteins (STRING) database [56]. Similarly,
Gene Ontology: Biological Processes (GO:BPs) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) Pathways that included the DEGs were conducted in Cytoscape [55].
Cytoscape analysis identified enriched GO:BPs (representative of DEGs increased), di-
minished GO:BPs (representative of DEGs decreased) for their respective comparisons.
The top ten enriched and diminished GO:BPs were reported along with their associated
false-discovery rate (FDR < 0.05). Similarly, STRING Analysis and gene clustering were
conducted in Cytoscape followed by KEGG Pathway enrichment (FDR < 0.05). Gene
clusters and their associated KEGG Pathway were used for DEGs increased and decreased
for the respective comparisons. The GEO accession number for the RNAseq data reported
in this paper is GSE133253.

5. Conclusions

The ileal transcriptional responses in an EtOH-acute systemic inflammation model
were described in WT and fat-1 mice. Many transcriptional responses were similar between
WT and fat-1 mice in response to EtOH + LPS vs. EtOH, but others were distinct. This study
identified ileum APRIL signaling and IgA + B cell gene signatures as being positively upreg-
ulated by n-3 PUFA enrichment in this model. In addition, the expression of pro-restorative
macrophage and γδ T cell genes was increased by n-3 PUFA enrichment in contrast to
pro-fibrotic genes, which were decreased in fat-1 mice. Reduced fibrosis was confirmed
by Sirius red staining. Follow-up studies are required to further validate these findings
and to determine the implications in alcohol and acute inflammation- mediated intestinal
pathology in humans. These data demonstrate that n3-PUFAs can significantly modify
the transcriptional response to EtOH + LPS, which may mitigate many of the deleterious
effects on the gut and therefore may be a therapeutic strategy to treat intestinal damage.
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