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Abstract

Hepcidin is a peptide hormone that targets the iron exporter ferroportin, thereby limiting iron

entry into the bloodstream. It is generated in hepatocytes mainly in response to increased

body iron stores or inflammatory cues. Iron stimulates expression of bone morphogenetic

protein 6 (BMP6) from liver sinusoidal endothelial cells, which in turn binds to BMP receptors

on hepatocytes and induces the SMAD signaling cascade for transcriptional activation of

the hepcidin-encoding HAMP mRNA. SMAD signaling is also essential for inflammatory

HAMP mRNA induction by the IL-6/STAT3 pathway. Herein, we utilized human Huh7

hepatoma cells and primary murine hepatocytes to assess the effects of iron perturbations

on signaling to hepcidin. Iron chelation appeared to slightly impair signaling to hepcidin.

Subsequent iron supplementation not only failed to reverse these effects, but drastically

reduced basal HAMP mRNA and inhibited HAMP mRNA induction by BMP6 and/or IL-6.

Thus, treatment of cells with excess iron inhibited basal and BMP6-mediated SMAD5 phos-

phorylation and induction of HAMP, ID1 and SMAD7 mRNAs in a dose-dependent manner.

Iron also inhibited IL-6-mediated STAT3 phosphorylation and induction of HAMP and

SOCS3 mRNAs. These responses were accompanied by induction of GCLC and HMOX1

mRNAs, known markers of oxidative stress. We conclude that hepatocellular iron overload

suppresses hepcidin by inhibiting the SMAD and STAT3 signaling pathways downstream of

their respective ligands.

Introduction

Hepcidin is a hormonal regulator of systemic iron traffic [1, 2]. It is highly expressed in hepa-

tocytes as pre-pro-hepcidin, which undergoes proteolytic processing to yield a mature peptide

of 25 amino acids. Hepcidin operates by binding to the iron exporter ferroportin in target

cells, such as tissue macrophages, duodenal enterocytes and hepatocytes. The binding of hepci-

din directly inhibits iron efflux from ferroportin into plasma, and also targets ferroportin for

lysosomal degradation. Hepcidin-mediated inhibition of iron entry into plasma serves as a
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homeostatic response to increased body iron stores, or as an innate immune response to infec-

tion [3, 4].

Expression of hepcidin-encoding HAMP mRNA is primarily induced in response to iron

or inflammatory signals. The underlying mechanisms are fairly well characterized; however,

critical aspects of iron sensing remain elusive [2, 5]. Hepatic iron loading triggers expression

and release of bone morphogenetic protein 6 (BMP6) from liver sinusoidal endothelial cells

[6]; these cells also constitutively express BMP2 [7]. BMP6 binds as homodimer to ALK2 and

as heterodimer with BMP2 to ALK3 [8], which are type I BMP receptors on hepatocytes. Bind-

ing of the ligand activates SMAD signaling via a mechanism that is enhanced by hemojuvelin

(HJV), a BMP co-receptor and other auxiliary factors. The signaling cascade involves phos-

phorylation of SMAD1/5/8, recruitment of SMAD4 and formation of a complex that translo-

cates to the nucleus for binding to the HAMP promoter and activation of HAMP mRNA

transcription.

The inflammatory cytokine IL-6 is another potent inducer of hepcidin. The binding of IL-6

to its receptor on hepatocytes triggers phosphorylation of STAT3 by JAK1/2 kinases, which in

turn translocates to the nucleus to transcriptionally induce hepcidin [9, 10]. It is well estab-

lished that this pathway requires active BMP/SMAD signaling [11, 12].

Treatment of hepatoma cells or primary murine hepatocytes with BMP6, BMP2 or IL-6

recapitulates hepcidin induction [8, 12–14]. However, while dietary, genetic or pharmacologi-

cal iron loading readily induce hepcidin expression in vivo [15–17], exposure of cells to iron-

loaded transferrin or iron salts was shown to rather suppress hepcidin [14, 18, 19]. Herein, we

explore the mechanisms by which iron affects hepcidin expression in cultured cells. We dem-

onstrate that iron loading suppresses HAMP mRNA levels by inhibiting basal SMAD signaling.

Moreover, excess iron inhibits ligand-induced SMAD and STAT3 signaling and antagonizes

HAMP mRNA induction by BMP6 or IL-6.

Materials and methods

Cell culture

Human Huh7 hepatoma cells were cultured in Dulbecco’s modified Eagle’s medium supple-

mented with 10% heat-inactivated fetal bovine serum (Wisent), non-essential amino acids, 100

U/ml penicillin and 100 μg/ml streptomycin. Primary hepatocytes were isolated from livers of

C57BL/6 wild type mice (22–25 g) by using a two-step collagenase perfusion technique as pre-

viously described [12]. The experimental procedure was performed at the animal facility of the

Lady Davis Institute for Medical Research and was approved by the Animal Care Committee

of McGill University (protocol 4966). The cells were seeded onto tissue culture dishes (26,000

cells/cm2) in Williams’ medium E (Gibco) supplemented with 10% heat-inactivated fetal

bovine serum, 2 mM L-glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin, and allowed

90 min to attach before washing and overnight culture. The serum-containing medium was

removed the next morning, and the cells were subjected to different culture conditions in

serum-free Williams’ medium E. In control groups, cells were incubated with medium alone

for the indicated time of the experiment.

Materials

Deferoxamine (DFO), FeSO4 and ferric ammonium citrate (FAC) were purchased from

Sigma-Aldrich. Following recombinant proteins were used: murine IL-6 (#5216, Cell Signal-

ing), human IL-6 (#I1395, Sigma-Aldrich), human BMP6 (#507-BP, R&D Systems), and

human holo-transferrin (#T4132, Sigma). Salicylaldehyde isonicotinoyl hydrazone (SIH) was a

PLOS ONE Iron suppresses hepcidin in vitro

PLOS ONE | https://doi.org/10.1371/journal.pone.0253475 June 23, 2021 2 / 12

PJT-159730). EC was funded by a fellowship from

the Natural Sciences and Engineering Research

Council of Canada (NSERC) and is currently a

recipient of a fellowship from the Fonds de
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gift of the late Dr. Prem Ponka. Fe-SIH was prepared by mixing SIH with ferric citrate in 2:1

ratio [20].

Quantitative real-time PCR (qPCR)

The cells were washed twice with phosphate-buffered-saline and RNA was extracted by using

the RNeasy kit (Qiagen). cDNA was synthesized from 1 μg RNA by using the OneScript

cDNA Synthesis Kit (ABM). Gene-specific primers pairs (S1 Table) were validated by dissocia-

tion curve analysis and demonstrated amplification efficiency between 90–110%. SYBR Green

(Bioline) and primers were used to amplify products under following cycling conditions: initial

denaturation 95˚C 10 min, 40 cycles of 95˚C 5 s, 58˚C 30 s, 72˚C 10 s, and final cycle melt anal-

ysis between 58˚-95˚C. Relative mRNA expression was calculated by the comparative Ct

method. Data were normalized to human ribosomal protein RPS18 for Huh7 cells or murine

Rpl19 for primary murine hepatocytes. Data are reported as fold changes compared to

untreated control cells. Original Ct values can be found in S1 Dataset.

Western blotting

Following 2x wash with phosphate-buffered-saline, the cells were lysed as previously described

[21]. Cell lysates containing 30 μg of proteins were analyzed by SDS-PAGE on 10% gels and

proteins were transferred onto nitrocellulose membranes (BioRad). The blots were blocked in

10% bovine serum albumin or 10% fat-free skim milk in tris-buffered saline (TBS) containing

0.1% (v/v) Tween-20 (TBS-T), and probed overnight with 1:1000-diluted (unless otherwise

indicated) primary antibodies against pSMAD5 (phospho-S463/465, #92698 rabbit monoclo-

nal; Abcam), SMAD1 (#9743 rabbit polyclonal; Cell Signaling), pSTAT3 (phospho-Y705,

#9138, mouse monoclonal; Cell Signaling), STAT3 (#9139, mouse monoclonal; Cell Signaling),

ferritin heavy chain (1:500-diluted, #NB600-920, Novus), or β-actin (Sigma). Following a 3x

wash with TBS-T, the membranes were incubated with 1:5000-diluted anti-mouse or 1:20000-

diluted anti-rabbit peroxidase-coupled secondary antibodies for 2 h. Immunoreactive bands

were detected by enhanced chemiluminescence with the Western Lightning ECL Kit (Perkin

Elmer). Original Western blot images can be found in S1 Raw images.

Statistical analysis

Statistical analysis was performed by using the Prism GraphPad software (version 7.0e). Multi-

ple groups were subjected to analysis of variance (ANOVA) with Tukey’s post-test comparison

(one-way ANOVA) or Sidak’s multiple comparison (two-way ANOVA). A probability value

p<0.05 was considered statistically significant.

Results and discussion

Iron overload abrogates BMP/SMAD and IL-6/STAT signaling to hepcidin

in Huh7 cells

We have reported that iron-depleted mice fail to mount an appropriate inflammatory

induction of hepcidin and this response can be restored by iron supplementation [12]. This

prompted us to evaluate the potential role of hepatocellular iron status on hepcidin regulation.

Human Huh7 hepatoma cells were treated with IL-6 and/or BMP6 for 4 h following pre-treat-

ment (or not) with the iron chelator deferoxamine (DFO) for 18 h. The conditions for IL-6

and BMP6 treatments in terms of dose and duration were optimized in previous experiments

[12]. Likewise, conditions for iron chelation were based on previous literature [22, 23]. DFO

did not affect IL-6-mediated induction of HAMP mRNA or STAT3 phosphorylation but
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modestly mitigated BMP6-mediated HAMP mRNA induction and SMAD5 phosphorylation

(Fig 1A and 1B). Moreover, it negatively affected levels of ID1 mRNA (Fig 1C), a known target

of BMP6/SMAD signaling [24]. Surprisingly, administration of ferric ammonium citrate

(FAC) together with IL-6 and/or BMP6 (following DFO wash) did not restore but rather

strongly suppressed HAMP and ID1 mRNA induction, as well as SMAD5 phosphorylation by

BMP6. In addition, FAC abolished HAMP mRNA induction by IL-6. FAC is widely used as an

iron donor in cell culture experiments [25, 26]. The underlying iron transport pathway is not

fully understood but experiments in primary rat hepatocytes suggested a facilitated diffusion

mechanism [27, 28].

As expected, the DFO treatment resulted in increased expression of TFRC mRNA (Fig 1D),

which encodes transferrin receptor 1 (TfR1), and serves as marker of iron deficiency [29]. Fur-

thermore, FAC administration for 6 h prevented TFRC mRNA induction by DFO, suggesting

that it terminated cellular iron deficiency. Notably, under these experimental conditions, ferri-

tin expression remained suppressed (Fig 1B), in spite of excess iron. Increased ferritin steady-

state levels are only evident after longer (48 h) treatments with FAC (S1 Fig). Considering that

ferritin operates by storing and detoxifying excess iron [30], the lack of ferritin induction after

a relatively short (6 h) treatment with FAC (Fig 1B and S1 Fig), and the reported rapid kinetics

(25x106 atoms/cell/min) of FAC uptake by hepatocytes [27] are consistent with accumulation

of redox-active “free” iron in the cells that can trigger oxidative stress [31]. In support to this

interpretation, the FAC treatment increased expression of GCLC mRNA (Fig 1E), an oxidative

stress marker that encodes glutamate-cysteine ligase catalytic subunit [32, 33]. Moreover, FAC

also induced expression of the heme oxygenase 1-encoding HMOX1 mRNA (Fig 1F), another

established marker of oxidative stress [33, 34]. The above data suggest that hepatocellular iron

overload acts as a potent inhibitor of HAMP mRNA induction by the BMP6/SMAD and also

IL-6/STAT signaling pathways.

The inhibitory effects of FAC could be reproduced with FeSO4, an additional source of

inorganic iron (Fig 2A). Holo-transferrin was less efficient in inhibiting BMP6-mediated

HAMP mRNA induction (Fig 2A), possibly because it elicits modest iron loading compared

to inorganic iron salts. Similar results with FAC and FeSO4 were obtained by using the iron

donor Fe-SIH (Fig 2B), which is generated by mixing ferric citrate with the iron chelator SIH

[20]. Notably, SIH inhibited induction of HAMP by either BMP6 or IL-6 (Fig 2B), even though

DFO did not significantly antagonize the effects of IL-6 (Fig 1A). SIH acts fast and is a cell per-

meable iron chelator [35]; by contrast, DFO is a slow-acting chelator that enters cells via fluid-

phase endocytosis [36].

Iron inhibits basal and BMP6-mediated SMAD signaling to hepcidin in

Huh7 cells in a dose-dependent manner

The SMAD pathway is a central node for signaling to hepcidin in response to iron, inflamma-

tory stimuli and other cues. Having established that iron overload suppresses BMP6-mediated

hepcidin induction in Huh7 cells, we performed dose-curve experiments to determine the

minimal inhibitory iron concentrations. The data in Fig 3A show that FAC inhibits BMP6-de-

pendent HAMP mRNA expression even at low (2–5 μM) doses. Similar results were obtained

with ID1 mRNA (Fig 3B), while inhibition of BMP6-dependent SMAD5 phosphorylation was

evident at 50 μM FAC (Fig 3C).

Interestingly, FAC also inhibited basal HAMP (Fig 3D) and ID1 (Fig 3E) mRNAs in a dose-

dependent manner, which is indicative of inhibition in basal SMAD signaling. The data in Fig

3F show that GCLC mRNA was very sensitive to FAC treatment and was maximally induced
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Fig 1. Iron overload inhibits SMAD and STAT signaling downstream of BMP6 and IL-6 in Huh7 hepatoma cells. Huh 7 cells were

treated with 100 μM DFO for 18 hours before washing and supplementation with 50 μM FAC. After 2 hours, cells were treated with 20

ng/ml human IL-6, 5 ng/ml BMP6, or both over 4 hours. (A) qPCR analysis of HAMP mRNA. (B) Western blot analysis of pSTAT3,

STAT3, pSMAD5, SMAD5, ferritin and β-actin. (C-F) qPCR analysis of ID1, TFRC, GCLC and HMOX1 mRNAs. All data in graphs are

presented as the mean ± SEM from three independent experiments for (A) and two independent experiments for (B-F). Statistical

analysis was performed by one-way ANOVA. Statistically significant differences (p<0.05) across iron treatments (compared to respective

values from iron-unperturbed cells shown in black bars) are indicated by �.

https://doi.org/10.1371/journal.pone.0253475.g001
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under these experimental conditions independently of the iron dose. This further supports the

notion that exposure of Huh7 cells to FAC triggers oxidative stress.

Iron-dependent inhibition of BMP/SMAD and IL-6/STAT signaling to

hepcidin in primary murine hepatocytes

We used primary murine hepatocytes to address whether the sensitivity of hepcidin signaling

pathways to iron perturbations is preserved in another cell model from a different species.

Iron chelation by DFO did not significantly affect basal or stimulated expression of hepcidin

or other markers of Bmp/Smad or IL-6/Stat signaling in this setting (Fig 4). The data in Fig 4A

recapitulate the potent inhibitory effects of FAC on Hamp mRNA induction via BMP6 and/or

IL-6. Moreover, FAC inhibited basal, as well as BMP6- and IL-6-dependent phosphorylation

of Smad5 and Stat3, respectively (Fig 4B). In line with these findings, FAC drastically sup-

pressed BMP6-mediated induction of Id1 (Fig 4C) and Smad7 (Fig 4D) mRNAs, both targets

of Bmp/Smad signaling [24]. Additionally, FAC antagonized IL-6-mediated induction of Socs3
mRNA (Fig 4E), a target of IL-6/Stat signaling [37].

We noted that the induction of Hamp mRNA in primary hepatocytes by BMP6 (Fig 4A)

was more potent compared to the respective HAMP mRNA induction in Huh 7 cells (Fig 1A);

this may be related to the different doses used, species-specific variations, and/or differences

between primary hepatocytes and hepatoma cell lines. We did not examine the effects of iron

perturbations on signaling to Hamp2, a second hepcidin-encoding gene that is expressed in

rodents and fish, because Hamp2 does not appear to significantly affect systemic iron homeo-

stasis [38, 39]. Furthermore, Hamp2 expression does not respond to inflammatory stimuli

[40].

As expected, exposure of primary murine hepatocytes to the iron chelator DFO elicited

strong induction of Tfrc mRNA, while subsequent administration of FAC neutralized this

response (Fig 4F). By contrast, the FAC treatment failed to induce ferritin, or even neutralize

Fig 2. Iron salts but not transferrin-bound iron inhibit hepcidin induction by BMP6 and/or IL-6 in Huh7 hepatoma cells. (A) Huh 7 cells were

pretreated with either 50 μM FAC, 50 μM FeSO4, or 30 μM holo-transferrin (HTF) for 2 hours and then treated with BMP6 for 4 hours; HAMP mRNA

was measured by qPCR. (B) Huh 7 cells were treated with 100 μM SIH for 18 hours before washing and supplementation with 50 Fe-SIH. After 2 hours,

cells were treated with 20 ng/ml IL-6, 5ng/ml BMP6, or both over 4 hours. HAMP mRNA was measured by qPCR. All data in graphs are presented as

the mean ± SEM from three independent experiments. Statistical analysis was performed by one-way ANOVA. Statistically significant differences

(p<0.05) across iron treatments (compared to respective values from iron-unperturbed cells shown in black bars) are indicated by �.

https://doi.org/10.1371/journal.pone.0253475.g002
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Fig 3. Dose-dependent inhibitory effects of iron on basal and BMP6-mediated SMAD signaling and hepcidin

expression in Huh7 hepatoma cells. Huh7 cells were treated with increasing doses of FAC over 2 hours. When indicated,

the experiment was either terminated or the cells were washed and further incubated with 25 ng/ml BMP6 (A and C) or 5

ng/ml BMP6 (B, D-F) for 4 hours. (A and B) qPCR analysis of HAMP and ID1 mRNAs. (C) Western blot analysis of

pSMAD5, SMAD5 and β-actin. (D-F) qPCR analysis of HAMP, ID1 and GCLC mRNAs. All data in graphs are presented

as the mean ± SEM from three independent experiments. Statistical analysis was performed by one-way ANOVA (A, B, D

and E) two-way ANOVA (F). Statistically significant differences (p<0.05) across iron treatments (compared to respective

values from iron-unperturbed cells shown in black bars) are directly shown or indicated by �.

https://doi.org/10.1371/journal.pone.0253475.g003
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Fig 4. Iron overload inhibits Smad and Stat signaling downstream of BMP6 and IL-6 in primary murine hepatocytes. Primary murine

hepatocytes were maintained in serum-free William’s Medium E over the course of experiments. The cells were pretreated with 100 μM DFO

for 18 hours and then washed and supplemented with 50 μM FAC over 2 hours. The cells were then treated with 20 ng/ml murine IL-6, 25

ng/ml BMP6, or both over 4 hours. (A) qPCR analysis of Hamp mRNA. (B) Western blotting of pSTAT3, STAT3, pSMAD5, SMAD1,

ferritin, and β-actin. (C-F) qPCR analysis of Id1, Smad7, Socs3 and Tfrc mRNAs. All data in graphs are presented as the mean ± SEM from

two independent experiments. Statistical analysis was performed by one-way ANOVA. Statistically significant differences (p<0.05) across

iron treatments (compared to respective values from iron-unperturbed cells shown in black bars) are indicated by �.

https://doi.org/10.1371/journal.pone.0253475.g004
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its suppression by DFO (Fig 2B). Thus, under these experimental conditions, excess iron was

apparently not scavenged and remained redox-active.

Conclusions

We show herein that pharmacological iron chelation slightly impaired hepcidin induction by

BMP6 and/or IL-6 primarily in human Huh7 hepatoma cells. Nevertheless, iron supplementa-

tion completely abolished BMP6- and/or IL-6-mediated induction of hepcidin in Huh7 cells

and primary murine hepatocytes. None of these treatments affected cell viability. The data

in Figs 1 and 4 reveal that cellular iron inhibits both BMP/SMAD and JAK/STAT signaling

pathways. Considering the relatively short time frame of the experiments that did not allow

accumulation of the iron storage protein ferritin, and consequently iron detoxification, we

speculate that the inhibitory effects are caused by iron-induced oxidative stress. Experimental

support is provided by the induction of GCLC and HMOX1 mRNAs, markers of oxidative

stress [32–34], in cells exposed to FAC (Figs 1 and 2). Our findings are consistent with the

known sensitivity of both BMP/SMAD and JAK/STAT signaling pathways to oxidants [41,

42], and the previously described suppression of hepcidin in iron-loaded [14, 18, 19] and iron-

loaded/IL-6-treated [43] cultured hepatic cells. Moreover, they provide evidence that the iron-

mediated suppression of hepcidin in cultured cells is caused by inhibition of basal SMAD sig-

naling. The in vivo relevance of these findings remains to be explored.

Supporting information

S1 Fig. Prolonged treatment with FAC increases ferritin steady-state levels. Huh7 cells

were treated with either 100 μM DFO for 18 hours or 50 μM FAC for the indicated time inter-

vals. Ferritin and β-actin expression in cell lysates were assessed by Western blotting. Western

data are representative of two independent experiments.

(TIF)

S1 Table. List of primers used for qPCR.

(DOCX)

S1 Dataset.

(XLSX)

S1 Raw images.

(PDF)
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