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Purpose: Previously, a 44 bp insertion in exon 2 of retinitis pigmentosa GTPase interacting protein 1 (RPGRIP1) was
identified as the cause of cone-rod dystrophy 1 (cord1), a recessive form of progressive retinal atrophy (PRA) in the
Miniature Longhaired Dachshund (MLHD), a dog model for Leber congenital amaurosis. The cord1 locus was mapped
using MLHDs from an inbred colony with a homogeneous early onset disease phenotype. In this paper, the MLHD pet
population was studied to investigate phenotypic variation and genotype-phenotype correlation. Further, the cord1 locus
was fine-mapped using PRA cases from the MLHD pet population to narrow the critical region. Other dog breeds were
also screened for the RGPRIP1 insertion.
Methods: This study examined phenotypic variation in an MLHD pet population that included 59 sporadic PRA cases
and 18 members of an extended family with shared environment and having six PRA cases. Ophthalmologic evaluations
included behavioral abnormalities, responses to menace and light, fundoscopy, and electroretinography (ERG). The
RPGRIP1 insertion was screened for in all cases and 200 apparently normal control MLHDs and in 510 dogs from 66
other breed. To fine-map the cord1 locus in the MLHD, 74 PRA cases and 86 controls aged 4 years or more were genotyped
for 24 polymorphic markers within the previously mapped cord1 critical region of 14.15 Mb.
Results: Among sporadic PRA cases from the MLHD pet population, the age of onset varied from 4 months to 15 years
old; MLHDs from the extended family also showed variable onset and rate of progression. Screening for the insertion in
RPGRIP1 identified substantial genotype-phenotype discordance: 16% of controls were homozygous for the insertion
(RPGRIP1−/−), while 20% of PRA cases were not homozygous for it. Four other breeds were identified to carry the insertion
including English Springer Spaniels and Beagles with insertion homozygotes. The former breed included both controls
and PRA cases, yet in the latter breed, cone ERG was undetectable in two dogs with no clinically apparent visual
dysfunction. Notably, the insertion in the Beagles was a longer variant of that seen in the other breeds. Fine-mapping of
the cord1 locus narrowed the critical region on CFA15 from 14.15 Mb to 1.74 Mb which still contains the RPGRIP1 gene.
Conclusions: Extensive phenotypic variations of onset age and progression rate were observed in PRA cases of the MLHD
pet population. The insertion in RPGRIP1 showed the strongest association with the disease, yet additional as well as
alternative factors may account for the substantial genotype-phenotype discordance.

Hereditary blindness caused by retinal degeneration is
among the best-characterized genetic conditions in the dog,
both clinically and genetically. Progressive retinal atrophy
(PRA) is a group of inherited diseases of the retina, causing
gradual vision loss leading to blindness in a variety of dog
breeds. Typically, each affected breed expresses a breed-
specific clinical phenotype with a characteristic mode of
inheritance, age of onset, rate of progression, and
pathogenesis [1]. The various phenotypes are related to
distinct breed-specific mutations in different genes involved
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in visual function. To date, 15 mutations in 11 genes causing
PRA in 34 dog breeds and breed subtypes have been
identified.

The dog retina has many similarities to the human retina.
It is a rod-rich eye but contains two types of cones, short (S)
and long wavelength (L) -cones with spectral peaks around
429 and 555 nm, respectively [2]. Together, these cone
populations represent around 2%–3% of cells in the periphery
of the retina, but >5% in an area centralis temporal to the optic
nerve head [3]. A cone-rich visual streak is also present
stretching horizontally from the area centralis, and is more
marked in dolicocephalic breeds [4]; L cones outnumber S
cones by about 10:1 [3]. There is no equivalent of the cone-
dominated foveola of humans.
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Although PRA in dogs usually manifests as a breed-
specific phenotype, instances of different but allelic mutations
leading to PRA have appeared independently in related breeds
[5,6], or the same PRA mutation may be shared by several
breeds. For instance, progressive rod cone degeneration
(prcd) occurs in 18 dog breeds and breed subtypes [7]. Some
breeds, such as the Poodle and the Miniature Schnauzer
among several others, appear to express more than one form
of PRA, complicating the interpretation of DNA testing
results.

Similar phenotypic heterogeneity, as well as extensive
genetic heterogeneity, is seen in human retinopathies, such as
retinitis pigmentosa (RP) [8,9] and Leber congenital
amaurosis (LCA) [10,11]. Inter- and intrafamilial phenotypic
variation, including age of onset and disease progression, have
been commonly described in human retinal degenerations
[12]. To date, 143 genes have been implicated in human
inherited retinopathies at RetNet. In humans, DNA testing is
possible but is more complicated and larger in scale than in
dogs due to the numerous mutations that have to be screened
for, the outbred population structure, and the common
occurrence of compound heterozygosity [13-15].

Since the 1990s, The MLHD dog has rapidly gained
popularity in Japan with more than 100,000 annual Miniature
Dachshund registrations to the Japan Kennel Club (JKC)
between 2001 and 2006. Consequently, conditions that allow
higher incidence of genetic diseases have emerged.

The PRA phenotype in MLHDs has been studied in an
inbred research colony. Initially, the disease was examined
clinically and histologically by Curtis et al. [16] and was
described as an autosomal recessive early-onset form of PRA
with all affected cases becoming blind by the time they were
2 years (2y) old. Turney et al. [17] performed an
electroretinography (ERG) study that identified an initial
reduction of the cone photoreceptor function, which was
classified as cone-rod dystrophy 1 (cord1). More recently,
Lhériteau et al. [18] studied affected MLHDs derived from
dogs used in previous studies [16,17,19] to explore
potentiality for gene therapy. Their observations agreed with
previous descriptions that the PRA condition in MLHDs is an
early-onset cone-rod dystrophy reaffirming the need for an
early initiation of therapies. It was also identified that the
thinning of the retina was caused by apoptotic photoreceptor
cell death.

Using the same colony dogs as in previous studies [16,
17], Mellersh et al. mapped the cord1 locus to a 14.15 Mb
region on dog chromosome 15 (CFA15), which contained a
strong candidate gene: retinitis pigmentosa GTPase regulator-
interacting protein 1 (RPGRIP1) [19]. A 44 bp insertion of a
polyA29 tract flanked by a 15 bp duplication (A29GGA AGC
AAC AGG ATG; RPGRIP1 insertion) was identified in the
presumptive exon 2 of RPGRIP1. This insertion causes a
frameshift that truncates the gene early in exon 3. The

RPGRIP1 insertion segregated completely with the cord1
phenotype in that colony.

The RPGRIP1 protein was initially identified through the
interaction with RPGR [20,21], which is responsible for an X-
linked retinopathy in humans as well as X-linked PRA in
Samoyed and Siberian Husky dogs [22]. Although its role in
visual function has not been established, RPGRIP1 has been
proposed to anchor regulatory complexes at the photoreceptor
connecting cilium [21]; it is also thought to be essential for
RPGR function [23] and to have functions in disk
morphogenesis [24] and in the structure of the ciliary axoneme
[25]. Moreover, mutations in RPGRIP1 have been identified
as causing human LCA type 6 [26], cone-rod dystrophy
(CRD) [27], and RP [28]. Also, RPGRIP1 knockout mice
show retinal abnormalities [24], an indicator of the importance
of RPGRIP1 in visual function. Recently, Wiik et al. identified
a mutation in NPHP4, truncating a domain known to interact
with RPGRIP1 as a cause for cone-rod dystrophy in Standard
Wirehaired Dachshunds (SWHDs) [29]. RPGRIP1 is a
common causative gene in human cases of LCA, CRD and RP
and clinical phenotypes in the two species closely mimic each
other (early-onset for LCA, cone-led photoreceptor
degeneration for CRD). Hence cord1 in MLHDs has been
described as an ideal naturally occurring animal model for
human treatment and for the understanding of the disease
pathology [18]. The use of canine models of human retinal
degenerations in therapeutic development has been
widespread and successful [30-32].

MLHDs are known to be predisposed to PRA [33], but
no comprehensive study has been done in dogs from the pet
population to date. We therefore investigated the correlation
between the RPGRIP1 insertion—the mutation that fully
correlated with cord1 in the research colony dogs—and
hereditary blindness in pet MLHDs. We also studied other dog
breeds since the mutation in exon 2 of RPGRIP1 was observed
recently in the English Springer Spaniel (ESS) by Johnson and
coworkers (personal communication, Dr. Gary S. Johnson,
College of Veterinary Medicine, University of Missouri,
MO). This paper describes substantial variations in phenotype
among RPGRIP1−/− dogs as well as PRA in cases with other
genotypes, suggesting that the genetic etiology of the disease
in MLHD and other breeds may be more complex than
initially thought.

METHODS
Animals:

MLHDs—Samples were collected from three different
MLHD sources: 1) Privately owned MLHDs were referred to
Veterinary Medical Center (VMC), University of Tokyo
either for blindness related to retinopathy (n=64; 0.3–15y) or
for nonophthalmologic reasons (n=200; 0.4–13.1y). These
dogs were bred and born in Japan and where pedigree
certificates were available, it was confirmed that they were
unrelated to each other according to a three-generation
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pedigree issued by the JKC. 2) There were 18 related MLHDs
from an extended family (Family K) with a PRA case that was
initially presented to VMC. The dogs were born at the same
kennel, and had since been housed together in a common
environment and with the same diet. The proband was adopted
after the initial examination and had been kept separately from
his kin during the course of the follow-up examinations for
the other family members. 3) The last MLHD source came
from nine privately owned MLHDs with PRA whose DNA
samples were submitted to the Animal Health Trust (AHT),
UK from various countries. These cases were used only for
the fine-mapping of the cord1 region.

Non-MLHD breeds—This set consisted of 510 dogs of
66 different breeds which had no obvious visual deficits at
sample collection with the exceptions mentioned in the
following lines. Dogs from Japan included 78 healthy dogs of
different breeds, one Miniature Schnauzer PRA case from the
pet population, and 79 laboratory Beagles (mean age±SD:
3.0±2.4y). From the UK, we recruited 278 pet dogs who were
referred to the Queen’s Veterinary Hospital, University of
Cambridge with nonophthalmologic complaints, four Lhasa
Apso PRA cases, and one PRA-affected Newfoundland.
Finally, there was a group of 69 pet ESSs whose samples were
submitted to the AHT from within and outside of the UK;
these ESSs consisted of 15 PRA cases, 28 controls, and 26
dogs of unknown phenotype.

All tests on Japanese dogs were performed either on
patients with consent from the owners or on laboratory
Beagles kept under the regulations of the Animal Care and
Use Committee of Faculty of Agriculture, University of
Tokyo. All DNA testing performed in the UK was done on
DNA samples collected as surplus from buccal swabs or blood
specimens submitted for routine cord1 tests or clinical
biochemistry. All samples were kept anonymous for research
purposes after owner consent had been obtained.
Clinical diagnosis: The phenotype of MLHDs from the
Japanese pet population was determined by the same
veterinary ophthalmologist (KK); other PRA cases were
diagnosed by each referring veterinarian. Nine members of
Family K were examined at three occasions, with the follow-
ups at 2.8 and 4.2 years after initial examination, and eight
other dogs were examined at the last two occasions; the
proband was examined once. The age of the dogs at each
examination is shown in Table 1.

Criteria for the diagnosis of PRA were clinical histories
of progressive and not sudden visual impairment, and
fundoscopic evidence of bilateral progressive retinal
degeneration. Clinical histories concerning the onset and
development of behavioral evidence of visual deficit such as
bumping into objects, inability to chase moving objects,
decreased activity were carefully reviewed and the age of
onset was determined as the age when the earliest possible
sign of visual deficit was noticed by the owner. A general

ophthalmologic examination for visual function included
menace response, pupillary light reflex (PLR), and dazzle
reflex. Indirect fundoscopy was performed with 14, 20, and
28 diopter lenses (Nikon, Tokyo, Japan) and, in some cases,
fundic photographs were taken with a fundus camera
(Genesis-D; Kowa, Tokyo, Japan). Slit lamp biomicroscopy
and intraocular pressure measurements was also performed to
examine other ophthalmologic abnormalities.

Full-field ERG was performed with a custom-built,
computer-based ERG acquisition system (ERG for Windows
95 Ver. 1.05, © 1995; Loew Lab at Cornell University) [34]
with procedures based on methods described by others [34,
35] and modified as follows. Note that PRA in the MLHD was
regarded as rod-cone degeneration until the ERG study by
Turney et al. [17]. Therefore, MLHDs which underwent ERG
at the initial stage of this study were examined only for the
scotopic response as part of a routine clinical ERG for MLHDs
suspected for PRA, and the photopic ERG procedure was
omitted in these subjects. General anesthesia was induced
with 6 mg/kg intravenous propofol (Rapinovet®; Schering-
Plough Animal Health, Tokyo, Japan) and 0.5 mg/kg
rocuronium (Eslax®; Schering-Plough, Tokyo, Japan). After
intubation, anesthesia was maintained with constant infusion
of 25–30 mg/kg/h propofol, and 1.5 mg/kg/h rocuronium was
used to prevent down rotation of the eye. Pupils were dilated
with 5 mg/ml tropicamide (Mydrin®P; Santen
Pharmaceutical, Osaka, Japan). After 20 min of dark
adaptation, each eye was tested separately with stimuli from
a white-light LED at four increasing intensity steps, with
intervals of four minutes in between each step. The light
intensity was increased by 1 log cd/m2, and the highest
intensity was approximately 18,400 cd/m2, as measured with
a luminance meter (LS-100; Konica Minolta Sensing, Inc.,
Osaka, Japan). In most of the MLHDs, a fifth higher intensity
stimulus was recorded. The dogs were then light-adapted for
20 min, and photopic ERGs were recorded at 31 Hz with the
light intensity of approximately 35,900 cd/m2 as measured
with a luminance meter. Amplitude of the a-wave was
measured from baseline to the peak of the negative deflection,
whereas the b-wave amplitude was measured from the peak
of the a-wave to the first positive peak of the ERG.

With the 10 MLHDs of Family K, scotopic ERG was
performed once at the time of first examination when they
showed no apparent visual defect. Both scotopic and photopic
ERGs were performed in four laboratory Beagles: two dogs
with a longer homozygous insertion at the RPGRIP1 insertion
site (RPGRIP1−L/−L) and two controls (RPGRIP1+/−L and
RPGRIP1+/+). Scotopic ERG with or without photopic ERG
was also performed shortly after the onset of PRA in cases
which had become blind suddenly and showed no fundoscopic
abnormality at presentation. In these cases, sudden acquired
retinal degeneration (SARD) was diagnosed when there was
undetectable ERG despite only minor or no detectable
abnormalities were present at fundoscopy.
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DNA extraction: DNA was extracted from whole blood or
buffy coat samples in EDTA or heparin, using the DNeasy
Blood (Qiagen, West Sussex, UK) or the EZ1 DSP DNA
Blood kits (Qiagen, Tokyo, Japan).
Genotyping of the RPGRIP1 insertion: The genotype of the
locus containing the insertion in exon 2 of RPGRIP1 was
determined by sizing fluorescently labeled PCR products. The
10 μl PCR reaction contained 4 ng of genomic DNA, 1.5 mM
MgCl2, 1.5 pmol of a fluorescent-labeled forward primer
(Sigma-Proligo, Dorset, UK), and 1.5 pmol of the unlabeled
reverse primer (MWG, Ebersberg, Germany), 0.2 mM of each
dNTP (Invitrogen, Paisley, UK), and 0.625 U of Taq
Polymerase (Invitrogen). Primer sequences are shown in
Table 2. PCR amplification was performed with an initial
denaturation at 94 °C for 5 min, followed by 12 cycles of
touch-down PCR (denaturation at 94 °C, 20 s; annealing at
70 °C, descending 1 °C/cycle to 59 °C for 20 s; and extension
at 72 °C for 20 s), and 30 cycles of 94 °C, 20 s; 58 °C for 20
s, and 72 °C for 20 s, with a final extension at 72 °C for 10
min. PCR products were sized by capillary electrophoresis
using the CEQ8000 Genetic Analysis System (Beckman
Coulter, High Wycombe, UK), and the results were analyzed
with the Fragment Analysis software that came with the
instrument.

Sequencing of the RPGRIP1 insertion site: The region
spanning the RPGRIP1 insertion site was amplified by touch-
down PCR as described except that the primers were
unlabeled. PCR products were purified with the QIAquick
PCR purification kit (Qiagen, West Sussex, UK) and then
sequenced bidirectionally with the GenomeLab DTCS-Quick
Start Kit (Beckman Coulter, High Wycombe, UK) following
the manufacturer’s protocol. Sequencing products were run
and analyzed on a CEQ8000 Genetic Analysis System.
Microsatellite typing: Fine-mapping of the cord1 critical
region on CFA15 (16.54–30.68 Mb; coordinates as in
CanFam2.0) was performed by identifying microsatellite
markers by analyzing the appropriate canine contig sequences
with Tandem Repeat Finder [36], followed by primer design
around those microsatellites using Primer3 [37]. The list of
primers for these microsatellites is presented in Table 2.
Microsatellites were sized with a fluorescently labeled
forward primer and an unlabeled reverse primer, and
amplified with touch-down PCR. Genotypes were determined
by sizing the products on a CEQ8000 Genetic Analysis
System.
Association analysis: The distribution of microsatellite allele
frequencies in the PRA cases was compared against the
distribution in the controls aged 4 or older by using the T2 chi-
square test in the program CLUMP [38]. Since contingency
tables for microsatellite data may be sparsely populated, the
T2 test collapses the columns of those alleles with low
frequencies, thus preventing the distortion of computed chi
square values. The level of significance was estimated by

computing the chi-square value of 1011 randomly generated
contingency tables having the same conditional marginals as
each one of the input tables.

The T2 test was also used to compare the distribution of
RPGRIP1 alleles between controls of MLHD examined
before 4y and those examined at 4y or later. At the marker
density used here, genome-wide significance was achieved in
the dog at p<5×10−6 (Sidak test) [39].

RESULTS
Variability of the onset of visual impairment in sporadic PRA
cases: Owners of 64 unrelated MLHD with sporadic
retinopathy from the Japanese pet population were
interviewed, to review clinical histories of the onset of visual
deficit. These dogs were also given ophthalmologic
examinations (Figure 1).

Of these 64 cases, 59 were PRA and 5 were SARD, an
acquired retinopathy. Of the PRA cases, the age of onset could
not be determined for 11 cases due to ambiguity or lack of
information. For the rest of the cases (n=48) the age of onset
could be identified. Half of the cases appeared before 4y with
the highest peak at 2y, while the other half were spread
between the ages of 4y and 10y with a single outlier with an
age of onset of 15y (Figure 2). This last individual showed no
fundoscopic abnormality at a previous examination aged 10y.
Phenotypic variety in an extended MLHD family: Eighteen
members of an extended MLHD family (Family K) including
the proband affected with PRA (dog MLD21) were examined
for the PRA phenotype (Figure 3, Table 1). Nine dogs were
examined on three occasions, subsequent examinations taking
place 2.8y and 4.2y after the first examination. The other nine
dogs were examined on the last two occasions only. The
proband had been raised separately from the other dogs since
the diagnosis of PRA, and phenotype from a single
examination is shown. Only the proband and one other sibling
(MLD2) initially appeared to have impaired vision as
examined by behavior, menace response, PLR, and dazzle
reflex. Four other members of this family developed visual
impairment during the course of the study. The other 12 dogs
showed no apparent visual dysfunction.

All the dogs were housed together and shared the same
environmental conditions, but within the family, even
between sibs, there were marked differences noted in the age
of onset and disease progression (Figure 4, Table 1). MLD2,
5, and 7 were siblings, but the onset of visual deficit appeared
much earlier in MLD2 at 2.7y, while MLD7 showed no visual
dysfunction at 7.9y, becoming blind at 9.4y; the third dog
(MLD5) retained eyesight throughout the study (last
examined at 9.4y), although fundus abnormality
(hyperreflectivity and retinal vessel attenuation) developed
gradually, starting at 7.9y.

Scotopic ERG was performed in 10 of these dogs at their
initial presentation (Figure 5). None of these dogs showed
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apparent deficit of visual function as examined by behavior,
menace response, PLR, and dazzle reflex (Table 1). A
moderate (>25%) to marked reduction of ERG response (a-
and b-waves) was observed in all of the RPGRIP1−/− MLHDs
when compared with an RPGRIP1+/− dog (MLD13); note that
the reduction was not always proportionate to the age of the
dog tested. In particular, the ERG response was almost

undetectable in MLD4 and was also severely reduced in
MLD1, 7, 9, and 10. Thus, by ERG criteria, all RPGRIP1−/−

dogs tested had some degree of retinal function deficit,
although they retained sufficient vision to appear “normal” to
the owner.

Genotype-phenotype discordance in the MLHD pet
population: For this study, we screened 59 sporadic PRA

Figure 1. Facial and fundoscopic
characteristics of PRA. A: Typical
PRA-affected cases show mydriasis and
increased reflection from the fundus. B-
D: MLHD fundus photographs of a
control without visual dysfunction (B,
5y), moderately (C, 3.4y) and severely
(D, 5y) affected PRA cases with
blindness. Note the tapetal
hyperreflectivity (C), the attenuation of
the retinal vessels, the pale optic disk,
and the pigmentation of the nontapetum
(D).

Figure 2. Distribution of the age of PRA
onset in sporadic MLHD cases.
Presented are 48 sporadic PRA cases of
MLHDs from the Japanese pet
population. These are shown according
to the age of onset. The dogs were
already blind at the time of presentation
and the age of onset was determined by
the earliest possible sign of visual
impairment noticed by the owner. An
additional 11 sporadic PRA cases from
Japan, used for mapping purposes, are
not shown here since the information on
the age of onset was uncertain or
unknown. RPGRIP1 genotypes are
denoted as follows: wildtype
homozygote (+/+); heterozygote (+/−);
insertion homozygote (−/−).
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cases, five SARD cases, and 200 controls of MLHDs from the
Japanese pet population for the insertion in exon 2 of
RPGRIP1; this insertion has previously been associated with
PRA (cord1) in this breed [19]. Several discordances between
the clinical phenotype and the genotype were observed.
Among 200 randomly sampled control MLHDs without
apparent clinical signs, 32 dogs (16.0%) were RPGRIP1−/−,
while 12 out of 59 PRA cases (20.3%) were non-RPGRIP1−/

− (Table 3). All except two of 24 PRA cases with known onset
before 4y were RPGRIP1−/− (Figure 2). The two exceptions
were RPGRIP1+/− and, perhaps surprisingly, they had the
earliest ages of onset among all PRA cases, at 3 and 4 months
of age. Of 24 PRA cases with known onset at or after 4y, seven
were non-RPGRIP1−/− (four RPGRIP1+/− and three
RPGRIP1+/+). Among the 200 control dogs, there was no
significant difference in the distribution of the RPGRIP1

Figure 3. Pedigree of an extended family
of MLHDs with shared environment.
The family tree of Family K shows the
proband (arrow), the dog’s three
siblings from another pregnancy, and 14
other related members for which the
retinal phenotype was examined over a
period of 1.4 to 4.2 years. In the PRA
affected cases, the age (y, years) under
each symbol indicates the age of onset
of behavioral (bold symbols) or
fundoscopic (hatched symbols)
abnormalities. In the dogs with no
apparent visual dysfunction, the age
corresponds to that at the last
fundoscopic examination. Some
members of the family were not
examined in this study and are omitted
from the pedigree. The following
symbols are used: square, male; circle,
female; bold, blind; hatched, abnormal
fundus with no apparent visual
dysfunction; white, no fundoscopic
abnormality with no apparent visual
dysfunction. RPGRIP1 genotypes are
denoted as follows: wildtype
homozygote, in blue (+/+);
heterozygote, in yellow (+/−); insertion
homozygote, in red (−/−).

Figure 4. Progression of the PRA
phenotype in nine RPGRIP1−/− MLHDs
an extended family with shared
environment. The nine dogs shown are
all RPGRIP1−/− with shared
environment and were examined three
times over a 4.2 year period. PRA
phenotypes over a 4.2-year period are
scored according to ophthalmologic
abnormalities determined by
fundoscopy, menace response, PLR,
and dazzle reflex. A decreasing score
indicates disease progression. Animals
with scores below 3 are functionally
blind and were included in the PRA
affected group in the association
analysis. MLD2, 5, and 7 and MLD4 and
9 are siblings.
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insertion alleles when comparing 60 dogs under 4y against
140 older dogs (p=0.507, chi-square test; Table 4).

Of the 18 members of Family K, 13 dogs were
RPGRIP1−/−, two were RPGRIP1+/−, and three were
RPGRIP1+/+ (Figure 3, Table 1). Of the RPGRIP1−/− dogs, two
had become blind by the beginning of the study (one at 2.7y
and another, much earlier than 5y), while the other dogs
initially showed no apparent sign of visual dysfunction
according to their behavior, menace response, PLR, and
dazzle reflex. All RPGRIP1−/− dogs became blind or expressed

typical fundoscopic abnormalities at some point of the study
except MLD8 and 12 (4.2y and 4.3y at last examination).
However, scotopic ERG of dog MLD8 had shown 40%
reduction in a-wave and 25% reduction in b-wave at 2.8y
compared to a RPGRIP1+/− dog (MLD13; Figure 5). Of the
nine RPGRIP1−/− dogs examined by scotopic ERG, eight
showed reduced response while one case had no detectable
response (MLD4). Dog MLD13 (RPGRIP1+/−), the only non-
RPGRIP1−/− dog studied by ERG, showed no abnormality in
the scotopic response despite evidence of a slight fundoscopic

Figure 5. Scotopic ERG in related
MLHDs with no obvious sign of visual
impairment. Scotopic ERG intensity
series of 10 MLHDs from Family K at
initial examination is shown. ERG
recordings show scotopic responses
with five increasing light intensity from
top to bottom differing by 1 log cd/m2.
The age in years (y) corresponds to the
age when ERG was performed; at that
time, none of the dogs showed apparent
visual deficit. All dogs represented are
RPGRIP1−/−, except MLD13
(RPGRIP1+/−). The data of the highest
light intensity was not recorded in
MLD5 or in the right eye (OD) of
MLD8. OS indicates left eye.

TABLE 3. GENOTYPE-PHENOTYPE- CORRELATION IN MLHDS OF SPORADIC RETINOPATHY CASES AND CONTROLS.

Phenotype
RPGRIP1 genotype Total number

of dogs+/+ +/− −/−
Control 81 (41%) 87 (44%) 32 (16%) 200

PRA 6 (10%) 6 (10%) 47 (80%) 59
SARD 4 (80%) 0 (0%) 1 (20%) 5
Total 89(33%) 93 (35%) 82 (33%) 264

Correlation of the retinal phenotype and the RPGRIP1  insertion genotype were studied in dogs of the Japanese MLHD pet
population. Sporadic cases of PRA and sudden acquired retinal degeneration (SARD), and controls with no apparent visual
dysfunction showed substantial discordance seen in controls dog with RGPRIP1−/− and PRA cases that were not RPGRIP1−/−.
RPGRIP1 genotypes are denoted as follows: wildtype homozygote (+/+); heterozygote (+/ −); insertion homozygote (−/−).
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abnormality in the tapetal region. The other four non-
RPGRIP1−/− dogs (MLD14, 15, 18, and 19) showed no clinical
signs of retinal degeneration.
Four other breeds carry the insertion in RPGRIP1: To
determine whether the insertion in exon 2 of RPGRIP1 was
present in other breeds, we studied 510 dogs from 66 breeds
(Table 5). No eye problems were apparent at sample collection
in 489 of these dogs. Fifteen out of 69 ESSs, four Lhasa Apsos,
one Newfoundland and one Miniature Schnauzer had PRA.
The insertion was observed in four additional breeds. In three
French Bulldogs and in one Labrador Retriever the insertion
was present in heterozygous state. In 15 ESSs affected with
PRA, a third of the cases were RPGRIP1−/−, four were
RPGRIP1+/−, and six were RPGRIP1+/+ (Table 6). Of the 28
control ESSs, two were RPGRIP1−/−, while the majority were
RPGRIP1+/−. The age at examination for these samples was
unavailable.

In the Beagles, the fourth breed in which the insertion was
found, 79 laboratory animals with no apparent clinical signs
were studied. A longer variant of the insertion was observed
in the homozygous state (RPGRIP1−L/−L) in six dogs (7.6%)
and in the heterozygous state (RPGRIP1+/−L) in 32 dogs
(40.5%). Overall, this allele had a frequency of 0.28 in the
Beagle.

The insertion in ESSs, French Bulldogs, and in the
Labrador Retriever was the same length as that in MLHDs, as
determined by capillary electrophoresis of PCR products
containing it (data not shown). The MLHD insertion contains
a homopolymeric sequence of 29 adenines [19]. In the
Beagles, however, the polyA tract was found to be
approximately 15 bp longer as determined by sizing the PCR
products (Figure 6) and sequencing them. The exact length of
the polyA tract could not be determined due to slippage during
the PCR reaction that generated a heterogeneous population
of molecules. However, its length was deduced by comparing
the size of the major products in Beagles and in other breeds.
The duplicated sequences immediately flanking the polyA
tract were identical to those reported previously for the MLHD
in all the breeds with insertion.

RPGRIP1-L/-L Beagles showed reduced ERG without apparent
visual deficits: As part of an ophthalmologic examination,
fundoscopy and both scotopic and photopic ERGs were
performed in four Beagles: two RPGRIP1−L/−L dogs (both aged
2.8y) and two control Beagles (RPGRIP1+/−L and RPGRIP1+/

+, both aged 5y). All four dogs had no visual dysfunction as
determined by maze test in light and in dim light, as well as
by menace response, PLR, and dazzle reflex. Indirect
fundoscopy of the four dogs indicated a slight but not obvious
attenuation of the retinal vessels in the RPGRIP1−L/−L dogs
(Figure 7). With ERG, cone response was undetectable in both
RPGRIP1−L/−L dogs; one dog showed nearly normal rod
response with clear reduction in the right eye only, while the
other dog showed no rod response in the right eye and severely
reduced response in the left.

Fine mapping showed the highest association with the disease
at the RPGRIP1 insertion: A previous study with an inbred
research colony mapped the cord1 locus to CFA15 and
determined a region of homozygosity shared by all the cases
and spanning 14.15 Mb [19]. Here, we further mapped this
region with 24 polymorphic markers, using 74 PRA cases (59
sporadic Japanese cases, six cases from Family K, plus nine
cases from other countries) and 86 controls aged >4y from the
MLHD pet population. For each marker, allele distributions
were compared between cases and controls. The strongest
evidence of association (p<1x10−11) was observed with the
RPGRIP1 insertion itself (21.34 Mb) followed by the
association with loci at 19.48 Mb (p=3×10−11) on CFA15
(Figure 8).

The cord1 critical region was reduced to 1.74 Mb: Of the 74
PRA cases, 12 Japanese MLHDs were non-RPGRIP1−/−.
Onset age was known in only nine of these (Figure 2). Among
these 12 cases, no marker within the published cord1 critical
region [19] was shared as homozygous (Figure 9). Since PRA
of some or all of these 12 cases might be associated with loci
other than the cord1 locus, they were excluded. Analyzing the
genotypes of the rest of the 62 PRA cases, a region of
homozygosity was identified between 21.05 and 22.79 Mb
(Figure 10). This 1.74 Mb region contains RPGRIP1 in

TABLE 4. RPGRIP1 GENOTYPE OF CONTROL MLHDS FROM DIFFERENT AGE GROUPS.

           Age at 
examination (years)

RPGRIP1 genotype Total number
of dogs+/+ +/− −/−

<4 28 (47%) 24 (40%) 8 (13%) 60
≥4 53 (38%) 63 (45%) 24 (17%) 140

Total 81(41%) 87 (44%) 32 (16%) 200
RPGRIP1  genotypes in control MLHDs without apparent visual dysfunction were compared between two age groups. those
younger than 4 years, and those 4 years or older at clinical examination. There was no significant difference of the distribution
of the RPGRIP1  genotypes between the two age groups. RPGRIP1  genotypes are denoted as follows: wildtype homozygote (+/
+); heterozygote (+/−); insertion homozygote (−/−).
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addition to 24 known genes and eight predicted ones (CanFam
2.0). None of these genes, apart from RPGRIP1, has been
implicated in retinopathies in humans, dogs, or mice. Two
markers, at 21.56 and 21.89 Mb, did show some variation in
RPGRIP1−/− dogs. The marker at 21.56 Mb is particularly
variable with 17 alleles across the whole MLHD population
(74 PRA cases and 86 controls) tested in this work, while that
at 21.89 Mb also shows a high level of polymorphism. It is
possible that in both cases new alleles have been generated
since the entry of the PRA-causative mutation into the MLHD
population.
The haplotype shared between MLHDs and Beagles around
the RPGRIP1 insertion is limited: The aforementioned 24
markers were also studied in non-MLHD breeds carrying the
RPGRIP1 insertion. Four RPGRIP1+/− dogs (three French
Bulldogs and a Labrador Retriever), and five RPGRIP1−L/−L

Beagles were analyzed (Figure 11). The shared region
adjacent to RPGRIP1 spanned 3.56 Mb in the French Bulldog
and 4.06 Mb in the Labrador Retriever. In the Beagle,
disregarding the difference of the insertion length in
RPGRIP1, only a single distal marker was shared with

RPGRIP1−/− MLHDs. If the ERG abnormalities in Beagles
have the same cause as cord1 mapped in MLHDs, then this
result suggests a maximum 0.51 Mb region containing the
mutation causing the disorder, bracketed by markers
CAMC15.041 (21.05 Mb) and CAMC15.029 (21.56 Mb) and
containing 14 genes (11 known and three unknown) other than
RPGRIP1.

DISCUSSION
In previous studies, PRA in MLHDs has been described as a
relatively early onset retinal degeneration with
ophthalmologic abnormalities being detectable as early as six
weeks of age by ERG and 25 weeks by fundoscopy, leading
to total blindness by 2y in all the affected MLHDs [16-19,
33]. However, those observations corresponded to MLHDs
from an inbred research colony. It was not known whether the
description reflected the conditions in the general pet
population. We therefore studied PRA cases and controls from
the Japanese pet MLHD population which the recent increase
in popularity has created a large population with many PRA
cases. MLHDs from the UK pet population which contributed

TABLE 6. GENOTYPE-PHENOTYPE CORRELATION IN ENGLISH SPRINGER SPANIELS.

Phenotype
RPGRIP1 genotype Total number

      of dogs+/+ +/− −/−
Control 9 (32%) 17 (61%) 2 (7%) 28

PRA 6 (40%) 4 (27%) 5 (33%) 15
Total 15 (35%) 21 (49%) 7 (16%) 43

The RPGRIP1  insertion genotype was studied in PRA cases and apparently normal controls of the English Springer Spaniel.
Although the proportion of RGPRIP1−/− dogs were higher in PRA cases, there was marked genotype-phenotype discordance as
seen in RGPRIP1−/− controls and non-RGPRIP1−/−  PRA cases. RPGRIP1 genotypes are denoted as follows: wildtype homozygote
(+/+); heterozygote (+/−); insertion homozygote (−/−).

Figure 6. PCR products containing the
RPGRIP1 insertion were sized by
capillary electrophoresis in the MLHD
and the Beagle. Fragment sizing, by
capillary electrophoresis of PCR
products containing the RPGRIP1
insertion in a MLHD (A, RPGRIP1+/−)
and two Beagles (B, RPGRIP1+/−L; C,
RPGRIP1−L/−L). The 73 bp single blue
peak corresponds to the wildtype allele
(+), while the blue peaks centered on
114 bp and 128 bp represent the alleles
with the insertion (- and -L); these two
insertion alleles differ only in the
number of adenines in the
homopolymeric sequence. The red
peaks correspond to the size standard.
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the founders of the research colony [16,17,19] were also
studied.

Contrary to previous studies with the MLHD colony with
cord1, extensive phenotypic variation was observed in the
MLHD pet population. In our study among 59 MLHDs with
sporadic PRA, the age at which visual deficit was first noticed
varied extensively. Factors such as the amount of light
exposure of the dogs, their diet, the extent of familiarity with

the living environment, as well as the extent of observation
could affect the owner’s perception of the age of onset of
visual deficit in these privately owned dogs. Yet a more
objective comparison was obtained from the observation of
18 MLHDs from an extended family (Family K) housed
together. Ophthalmologic examination in these dogs over a
4.2-year period identified a variable onset of noticeable visual
deficit and differential rate of retinal degeneration even

Figure 7. ERG responses and fundus
photograph of Beagles with the
RPGRIP1 insertion variant. Bilateral
scotopic (top) and photopic (middle)
ERG recordings and fundus photograph
of the left eye (OS; bottom) of three
Beagles: a 5y RPGRIP1+/−L dog (A and
D), a 2.8y RPGRIP−L/−L (B and E), and
another 2.8y RPGRIP1−L/−L dog (C).
Scotopic responses to a series of light
stimuli are displayed with increasing
light intensity from top to bottom
differing by 1 log cd/m2 up to 18,400 cd/
m2. The photopic response was recorded
with 31 Hz flicker stimuli of 35,900 cd/
m2. Note the apparently normal fundus
appearance in the RPGRIP1−L/−L dog
(E) with undetectable cone response
(B). OD indicates right eye.

Figure 8. Fine mapping of the cord1
critical region. Twenty-four
polymorphic markers on CFA15 were
studied for the association with PRA in
MLHDs. In total, 74 PRA cases and 86
controls were used for this fine mapping
across the originally reported region of
homozygosity [19]. Note that for the
marker with the highest value at 21.34
Mb (RPGRIP1 insertion, arrow) the p-
value is below the minimum detectable
in the simulation, that is <1x10−11. The
aqua-highlighted area corresponds to
the 1.74 Mb region of homozygosity
shared by all PRA cases having two
copies of the RPGRIP1 insertion.
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between siblings. The group of early-onset dogs with onset
around 2y appears to correspond to the phenotype of the
MLHD from the research colony previously described [16].
The rest of these dogs showed later onset, after 4y, and with
a broad range not seen in the colony MLHDs. Such phenotypic
variety is typical in human retinopathies caused by the same
mutation on a heterogeneous genetic background [12]. In the
dog, on the contrary, most forms of PRA, in which a mutated
locus is considered causal, express a relatively uniform
phenotype within any given breed due to the relatively
homogeneous genetic background of most breeds.

Although there was complete genotype-phenotype
correlation in the research colony studied by Mellersh et al.
[19], we have observed substantial discordance in the pet
population. The fact that RPGRIP1−/− dogs with functional
vision constitute a high proportion of MLHDs and of ESSs
(16.0 and 7.1% of each control group) indicates that this
insertion is not by itself sufficient to cause early-onset PRA.
In this study, all RPGRIP1−L/−L Beagles also retained sufficient
vision as to appear normal in standard clinical assessment.

A possible explanation for the lack of complete
correlation between the clinical status and the RPGRIP1
insertion could be that a mutation associated with PRA in
MLHDs is located elsewhere in the cord1 critical region.
However, no marker from this region was found to be

homozygous in all the PRA-affected MLHDs. We have
narrowed the cord1 region to a 1.74 Mb region containing
RPGRIP1 and 32 other genes. In this region, the strongest
evidence of association with PRA was observed with the
RPGRIP1 insertion itself (p<1x10−11; 21.34 Mb) followed by
the loci at 19.48 Mb (p=3×10−11) on CFA15. This gives strong
genome-wide significance in support of this region as
causative for PRA. Moreover, if the ERG abnormalities in
Beagles have the same cause as cord1 in MLHDs, the region
could be further narrowed to 0.51 Mb and contain 14 genes
(11 known and three unknown) other than RPGRIP1. Given
its role in human and mouse retinopathies, RPGRIP1 remains
a strong positional and functional candidate gene, and the
insertion in exon 2 is so far the most likely mutation associated
with PRA in MLHDs. We argue here that the discordant
clinical results are consistent with incomplete penetrance of
the insertion mutation, as measured by standard fundoscopic
and behavioral tests. Given the variable ages of onset, and that
there are dogs with PRA onsets at later life, it follows that the
disease penetrance will be more incomplete in younger dogs
than older ones. In our sample, of those RPGRIP1−/− dogs that
do show fundoscopic or behavioral signs, over 50% manifest
these before the age of three years (Figure 2), but thereafter
there is a gradual increase in the numbers showing these signs
over the remainder of the dogs’ lifetimes. We do not have an

Figure 9. Marker analysis in PRA-affected non-RPGRIP1−/− MLHDs. Haplotypes of the cord1 critical region on CFA15 were studied in 12
PRA-affected non RPGRIP1−/− MLHDs. The “common allele” refers to the combination of the most frequent allele observed in the
RPGRIP1−/− PRA cases (47 sporadic cases and six cases from Family K). For each cell representing an allele in the dog studied, blue shading
highlights genotypes identical to the haplotype associated with the cord1 insertion; yellow highlights alleles that are homozygous in the dog
under study but differ from the common allele. The symbol (-) and (+) for the marker RPGRIP1 insertion each represents the RPGRIP1
insertion allele and the wildtype allele, respectively. ND indicates that the genotype was not determined.
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accurate age structure for the MLHD pet population, as our
collection comes from clinics and is likely to be biased toward
young and old animals and away from normal “middle-aged”
adults. However, based on the animals detailed in Table 3 and
Table 4,it appears that a substantial proportion of homozygous
RPGRIP1−/− dogs do not show fundosopic or behavioral
changes from this source in their lifetimes.

In the current study, ERG has proved useful for detecting
the earliest sign of retinal degeneration before the appearance
of any fundoscopic or behavioral changes. All the
RPGRIP1−/− MLHDs in which scotopic ERG was measured
showed reductions in the rod response. The two RPGRIP1−L/

−L Beagles, for which photopic and scotopic ERGs were
performed, showed no cone response with reduced rod
response. There were MLHDs with reduced rod ERG but no
other clinical signs, and some dogs showed little or no fundus
abnormality for at least 4.2 years after the detection of
moderately to severely reduced ERG. By comparison, several
dogs in the extended family studied herein did show dramatic
changes in both fundus appearance and responses to
functional tests over the same period. Thus it is likely that dogs
with no apparent visual dysfunction on routine clinical
assessment could develop visual deficits in later life. We
hypothesize that cord1 retinal degeneration starts early in life
but the rate of progression varies, with some dogs not

manifesting any dramatic change of the fundus appearance or
overall visual function until much later.

In all five breeds in which the insertion occurs, a
polymorphism in the downstream intron (marker:
RPGRIP1_intron2) is the same for all chromosomes
containing the insertion. In the Beagle, the shared haplotype
region is limited to a maximum of 0.51 Mbp. The ERG
observation of cone-rod photoreceptor degeneration in the
two RPGRIP1−L/−L Beagles supports the involvement of the
RPGRIP1 insertion in retinal phenotype. Hence, it is likely
that the insertion appeared sometime in the past and was
transmitted to several breeds as they were formed, with the
adenine homopolymeric sequence being expanded in the
Beagles, and demographic events leading to the increase in
frequency of the insertion in MLHDs, ESSs, and Beagles.

Absence (or near absence) of ERG response in dogs with
no apparent visual deficits was seen in one of the MLHDs with
undetectable rod response (MLD4 of Family K) and in the
Beagle with undetectable cone and severely reduced rod
response. A similar observation has been made in some of the
RPGRIP1−/− MLHD from a second research colony founded
from the one used by Mellersh et al. [18], and has also been
described in the retinal degeneration associated with human
nephronophthisis [40]. Given our observations, it is likely that
some of the control dogs, determined on the basis of lack of

Figure 10. Marker analysis in PRA affected RPGRIP1−/− MLHDs. Polymorphic markers in the cord1 critical region on CFA15 were analyzed
in PRA affected RPGRIP1−/− MLHDs. The 12 dogs shown are representative of the haplotypes of 47 sporadic cases and six cases from Family
K studied. Alleles shared by the majority of the dogs are highlighted in blue (referred to as “common allele” in Figure 9 and Figure 11) and
other highlighted colors mark less common alleles. Variants in CAMC15.029 and 034 could be the result of mutation events, rather than
recombination since the markers flanking them are the “common alleles.” Therefore, the region of homozygosity was delimited by markers
CAMC15.041 and CAMC15.031. The symbol (-) for the marker RPGRIP1 insertion represents the RPGRIP1 insertion allele. ND indicates
that the genotype was not determined.

Molecular Vision 2009; 15:2287-2305 <http://www.molvis.org/molvis/v15/a246> © 2009 Molecular Vision

2301

http://www.molvis.org/molvis/v15/a246


apparent visual deficit, had retinal degeneration that could
only be detected with ERG.

Although some genotype-phenotype discrepancies could
be reduced by reconsidering the phenotype, and by
functionally demonstrating the involvement of the
RPGRIP1 insertion in retinal degeneration in MLHDs,
substantial discordances remain: the extensive range of onset
among RPGRIP1−/− PRA cases; and the 20.3% of PRA cases
that are non-RPGRIP1−/−.

It is likely that PRA in the MLHD is oligogenic or
additional loci are involved as modifiers giving rise to a
variable age of onset, as has been suggested for prcd [7] and
XLPRA1 [41]. Such loci would have gone undetected in the
original study if all the dogs in the colony were fixed for them
due to a founder effect; this would explain the uniformity of
the PRA phenotype in the colony MLHDs.

The 12 PRA-affected MLHDs which were non-
RPGRIP1−/− had dissimilar marker alleles in the cord1 critical
region compared to RPGRIP1−/− PRA cases. Therefore, if each
of these 12 cases is indeed affected with a genetic form of
retinal degeneration, it is possible that other forms of PRA

caused by different loci are present in this breed, albeit with
lower prevalence than cord1. This could be the same for PRA
affected non-RPGRIP1−/− ESSs.

The mutation in NPHP4 causing an early-onset cone-rod
dystrophy in the SWHD [29] was not present in the MLHDs
used in this study (data not shown). NPHP4 could be a
candidate modifier since mutations in either RPGRIP1 or
NPHP4, causing disruption of the interaction between the two
gene products have been observed in LCA patients [42]. A
microsatellite marker within NPHP4 was not associated with
PRA in MLHDs (data not shown).

Mutations known to cause PRA in other dog breeds could
also be present in MLHDs as a result of interbreeding before
or during breed formation. Known PRA-causing mutations in
PDE6B [43], RDS/Peripherin and ROM1 [44], and PDE6A
[45] have previously been excluded in PRA-affected MLHDs,
and we have also excluded the prcd mutation from the PRA
cases of MLHDs used in this study (data not shown).

The RPGRIP1 protein was first identified through the
interaction with the retinitis pigmentosa GTPase regulator
(RPGR) protein [20] causing X-linked RP in humans and X-

Figure 11. Marker analysis in non-MLHD breeds with the RPGRIP1 insertion. Polymorphic markers in the cord1 critical region on CFA15
were analyzed in five RPGRIP1−L/−L Beagles, and in four other RPGRIP1+/− dogs (three French Bulldogs and a Labrador Retriever). The
common allele denotes the combination of the most frequent allele observed in RPGRIP1−/− PRA cases of MLHDs (47 sporadic cases and six
cases from Family K). Blue highlights mark genotypes identical to the common allele in the PRA-affected MLHDs. Haplotype blocks outlined
in blue and red (Beagle) and yellow (French Bulldog) represent each breed-specific haplotype. Without taking into account the variation of
the insertion length in RPGRIP1, the region of homozygosity shared between PRA-affected MLHDs and beagles both homozygous for an
insertion in exon 2 of RPGRIP1 (RPGRIP1−/− and RPGRIP1−L/−L) was delimited by markers CAMC15.041 and CAMC15.029, which is
highlighted in pink. The symbol (-) and (-L) for the marker RPGRIP1 insertion each represents the RPGRIP1 insertion allele and its variant
while (+) represents the wildtype allele. ND indicates that the genotype was not determined.
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linked PRA in Samoyeds and Siberian Huskies [22]. Since the
phenotypic variation in PRA cases of the MLHD had no
association with gender (data not shown), it is unlikely that
RPGR plays a role in the disease.

Given that a substantial proportion of RPGRIP1−/− dogs
appeared to retain functional vision, it could be argued that
the RPGRIP1protein may not be essential in these dogs visual
function. A homologous protein such as RPGRIP1L or other
pathways could be compensating the luck of functional
protein. However, the complete loss of RPGRIP1 gene
expression in RPGRIP1−/− dogs remains putative, and further
functional work is underway.

As animal models for gene therapy, it is important that
the phenotype in the affected cases is predictable and
consistent. However, as we have observed in this study, the
phenotype of the PRA cases in pet MLHDs is not uniform:
onset age and disease progression varies. Moreover, the
genotype-phenotype discordance makes it difficult to predict
the dog’s phenotype solely by the presence of the RPGRIP1
insertion. Although the effort to understand the entire picture
of the disease is underway, we do not have the molecular
means to allow an accurate prediction of the phenotype to date.
The factor that affects the variable disease expression must be
elucidated before cases from the pet MLHD population can
be considered ideal animal models. The relative phenotypic
uniformity in the research dogs could be attributed to a
homogeneous genetic background due to inbreeding, and
common environmental factors.

In conclusion, the phenotypic variation and the
discordance with the insertion in exon 2 of RPGRIP1 observed
here indicate that the cause of PRA in the MLHD pet
population is more complex than initially thought (i.e., a
single gene, fully-penetrant Mendelian trait segregating in a
single breed). Although the complete association of the
RPGRIP1 insertion with PRA in MLHDs remains to be
established, observations of cone-rod retinal degeneration in
RPGRIP1−L/−L Beagles indicate its involvement in retinal
degeneration. Yet additional as well as alternative loci would
be required to account for the extensive phenotypic variation
in addition to the remaining genotype-phenotype discordance.
Further studies are under way to obtain the full genetic picture
of PRA in MLHDs.
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