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Facile Preparation of Fluorescent Neoglycoproteins Using p-Nitrophenyl
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A facile preparation of neoglycoconjugates has been developed with a commercially available chemical,
p-nitrophenyl anthranilate (PNPA), as a heterobifunctional linker. The two functional groups of PNPA, the aromatic
amine and the p-nitrophenyl ester, are fully differentiated to selectively conjugate with glycans and other
biomolecules containing nucleophiles. PNPA is efficiently conjugated with free reducing glycans via reductive
amination. The glycan—PNPA conjugates (GPNPAs) can be easily purified and quantified by UV absorption.
The active p-nitrophenyl ester in the GPNPA conjugates readily reacts with amines under mild conditions, and
the resulting conjugates acquire strong fluorescence. This approach was used to prepare several fluorescent
neoglycoproteins. The neoglycoproteins were covalently printed on activated glass slides and were bound by

appropriate lectins recognizing the glycans.

INTRODUCTION

Glycoconjugates including glycoproteins, glycolipids, and
proteoglycans play important roles in many biological systems
(I). Neoglycoconjugates, including neoglycolipids and neogly-
coproteins as artificial mimics of natural glycoconjugates (2—06),
have found many applications in various areas. One of the major
applications is the development of carbohydrate-based vaccines
and drugs (7—11).

To prepare neoglycoconjugates, and specifically neoglyco-
proteins, usually one or both of the molecules (glycan and
protein) are derivatized with an appropriate functional group
and then covalently linked. Theoretically, the linkages could
be built through many different chemical reactions. Practically,
however, derivatization is limited by several critical require-
ments. First, since glycans from natural sources or expensive
synthetic approaches are often available only in small quantities,
the glycan incorporation reaction should be highly efficient.
Second, the reaction conditions should ideally be in aqueous
buffer under physiological pH to avoid altering the glycan or
denaturation of proteins, which might affect the solubility and
immunogenicity of the conjugate. Third, the linkage itself should
not decrease the immunogenicity of the conjugate and should
be of minimal toxicity and antigenicity. There have been
numerous methods developed for protein—carbohydrate con-
jugation, or neoglycoprotein synthesis, based on heterobifunc-
tional or homobifunctional cross-linkers (/2, 13). Stowell et al.
used 2-imino-2-methoxyethyl 1-thioglycosides to link glycans
to proteins (14, 15). Diethyl squarate has been used for efficient
conjugation of proteins and carbohydrates; however, the po-
tential immune response of the linker itself has impeded its
application in vaccine development (/6). Click chemistry (/7)
as well as a number of other protein— or peptide—carbohydrate
conjugation methods have been employed for carbohydrate
bioconjugation (/8—21). Activated dicarboxylic acids can be
used as homobifunctional linkers, but usually, no intermediate
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glycan derivatives can be separated. Wu et al. utilized bis-p-
nitrophenylesters (22) to conjugate glycans and proteins. The
intermediates can be separated and purified; however, the
glycans need to be premodified to possess an active amine.
Reductive amination has also been used in the conjugation of
free reducing glycans (23) or ninhydrin-treated glycopeptides
(24) to proteins; however, the reaction conditions are relatively
harsh: they require large quantities of glycan and often the yields
are very low.

Here, we describe a simple and efficient method to conjugate
free reducing glycans with proteins using a commercially
available chemical linker (Figure 1). The linker, p-nitrophenyl
anthranilate (PNPA)', has two different functional groups: an
aryl amine that can react with free reducing glycans by reduc-
tive amination and an active p-nitrophenyl ester that can react
with nucleophiles. We show that this bifunctional linker is a
useful reagent for preparing fluorescent neoglycoproteins from
naturally occurring complex glycans. Moreover, the neoglyco-
conjugates acquire fluorescence upon linking, thus providing a
ready means of following the reaction and quantifying the
products.

EXPERIMENTAL PROCEDURES

Free reducing glycans were purchased from V-LABS and
stored at —20 °C until use. All chemicals were purchased from
Sigma-Aldrich and used without further purification. HPLC
solvents were purchased from Fisher Scientific. An Ultraflex-1I
TOF/TOF system from Bruker Daltonics was used for MALDI-
TOF mass spectrometry analysis of glycan conjugates.

Glycan—PNPA Conjugation. The conjugation of glycan
with PNPA was carried out using the common reductive
amination procedure for free glycan labeling with modifications
on sample purification. Briefly, to a free reducing glycan (0.1

' Abbreviations: AAL, Aleuria aurantia lectin; AEAB, 2-amino-N-
(2-aminoethyl)-benzamide; GBP, glycan binding protein; GPNPA,
Glycan-PNPA conjugate; HPLC, high performance liquid chromatog-
raphy; LNFIII, lacto-N-fucopentaose III; LNnT, lacto-N-neotetraose;
LSTc, lacto-N-sialyltetraose c; NHS, N-hydroxysuccinimide; PNPA,
p-nitrophenyl anthranilate; RCA 1, Ricinus communis Agglutinin I;
RFU, relative fluorescence unit; SNA, Sambucus nigra lectin.
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Figure 1. General strategy for using p-nitrophenyl anthranilate (PNPA) as a heterobifunctional linker to make neoglycoconjugates and other potential

applications.

to 1 mg), freshly prepared PNPA solution (0.35 M in DMSO/
AcOH = 7:3 (v/v), 25—50 uL) and an equal volume NaCNBHj;
solution (1 M in DMSO/AcOH = 7:3 (v/v)) were added. The
mixture was heated at 65 °C for 2 h. The reaction mixture was
quenched by addition of acetonitrile (0.5 to 1 mL). The mixture
was cooled at —20 °C for 2 h and centrifuged at 10 000 g for
5 min. The supernatant was discarded and the pellet subjected
to either C18 Sep-pak for desalting or C18 HPLC for direct
purification. For reaction with ethylenediamine, LNnT-PNPA
(0.1 to 1 mg) was dissolved in 20—200 4L 10% ethylenedi-
amine, and the solution was kept at room temperature for 30
min and subjected to HPLC analysis.

HPAEC-PAD and High-Performance Liquid Chroma-
tography (HPLC). High-performance anion-exchange chro-
matography with pulsed amperometric detection (HPAEC-PAD)
analysis was carried out with a Dionex ICS-3000 system with
a Carbpac PA-100 column. The eluent gradient was set to
0—125 mM sodium acetate over 50 min in sodium hydroxide
(100 mM).

A Shimadzu HPLC CBM-20A system was used for HPLC
analysis and separation of glycan—PNPA conjugates. For
reverse-phase HPLC, it was coupled with a Vydec C18 HPLC
column and a UV detector SPD-20A. UV absorptions at 330
and 280 nm were used to detect and quantify GPNPAs and
BSA—GPNPA conjugates. The mobile phase was acetonitrile
and water with 0.1% trifluoroacetic acid (TFA). The concentra-
tion of acetonitrile increased from 1% to 90% in 30 min with
a linear gradient. For SEC-HPLC, a Biobasic-60 SEC column
was used. The eluent was ammonium acetate (10 mM) at pH
4.5. The flow rate was set at 1 mL/min for all HPLC runs.

Conjugation of Proteins with GPNPAs. Protein conjugation
with GPNPAs was carried out in various buffers as described
above. Protein concentration was kept at 5 mg/mL. Aqueous
buffer with 1% DMSO was used. The protein conjugates were
purified by SEC by collecting the eluent with strong absorption
at UV 280 nm. Lyophilized fractions were dissolved in water
or suitable buffer for MALDI-TOF characterization and printing.

Printing, Binding Assay, and Scanning. The printing of
protein—glycan conjugates on NHS-activated slides and epoxy
slides was carried out according to previous procedure (25).
Biotinylated lectins were used in the binding assay, and the
bound lectins were detected by a secondary incubation with
cyanine 5-streptavidin. The slides were scanned with a Perkin-
Elmer ProScanArray microarray scanner equipped with 4 lasers
covering an excitation range from 488 to 633 nm. The scanned
images were analyzed with the ScanArray Express software.
For cyanine 5 fluorescence, 649 nm (Ex) and 670 nm (Em) were

used. All the images obtained from the scanner were in grayscale
and colored for easy discrimination.

RESULTS

Derivatization of Free Reducing Sugars with PNPA by
Reductive Amination. The preliminary study of PNPA con-
jugation with free reducing glycans was carried out using
lactoneotetraose (LNnT) (Gal1—4GIcNAcS1—3Galf1—4Glc)
as the model compound. The conjugation reaction is shown in
Figure 2a. The reaction time was optimized by analyzing free
LNnT and the product mixture after various reaction times using
HPAEC-PAD (Figure 2b). The conversion of LNnT did not
significantly increase after 2 h of heating at 65 °C, when >80%
yield was obtained. The reaction mixture was precipitated in
10 volumes of acetonitrile, and the supernatant and precipitate
were analyzed using RP-HPLC (Figure 2c). Most of the excess
PNPA remained in the supernatant, and the LNnT—PNPA
conjugate was precipitated in high yield (>90%). The major
product peak was collected from RP-HPLC and analyzed by
ESI-MS (Figure 2d), which showed an expected mass at
950.3237 [M+H™] (calc. 950.3248) and confirmed the success-
ful derivatization of the reducing glycan. Interestingly, the
behavior of the LNnT-PNPA conjugate on MALDI-TOF-MS
was quite different from ESI-MS. Although the expected
molecular ion peak at 972.61 [M+Na™] (calc. 972.3068) is
evident in the spectrum, the most intense peak occurs at 958.63,
along with other fragmentation peaks at 956.62 and 942.63
(Figure 2e). The fragmentation ions of —14, —16, and —30 Da
caused by radical reactions on the nitro group (26) further
confirmed the installation of PNPA. The pattern is highly
reproducible and serves as an indicator for all glycan—PNPA
conjugates in mass spectrometry analysis (Figure 2e).

Reaction of Glycan—PNPA (GPNPA) Conjugates with
Nucleophiles. The reactivity of the GPNPAs toward nucleo-
philes was tested with ethylenediamine. This mild reaction at
room temperature transforms the electrophilic p-nitrophenyl ester
into a nucleophilic amino group (Figure 3a). Addition of 10%
ethylenediamine at room temperature for 30 min quantitatively
converted LNnT—PNPA to the expected LNnT—AEAB as
shown by RP-HPLC (Figure 3b). The major product was
purified by HPLC and characterized by MALDI-TOF (Figure
3c). This confirmed the formation of LNnT—AEAB conjugate,
and therefore demonstrated the general reactivity of p-nitro-
phenyl ester toward alkylamines. The minor peak that eluted at
11.2 min with the reaction products matched the p-nitrophenol
standard, confirming the PNPA conjugation with glycans and
its reactivity toward amines (nucleophiles) as an active ester.

Conjugation of Proteins with GPNPAs. The conjugation
of GPNPA with proteins was evaluated with BSA and



1620 Bioconjugate Chem., Vol. 20, No. 8, 2009

Luyai et al.

OH
OHOH OH  OH %\v PNPA, NaCNEH
LNnT ”0437/“ %‘V 5 DMSO/ACOH, 65°C
OH
oHOH OH OH 4 oQ
LNnT-PNPA %A/ % %A/ O 2 Cinac
O Gal Key
A Fuc
@ Neu5Ac
b) e)
| LNnT-PNPA | LNNT o 730.71[M+Na*]
:‘é‘
§ ){\_L . ih o
IS o m=o e—0oH
el ’\ \ 2h
2
® A 3h 958.63
& 4h 972.61[M+Na*]
A LNnT-PNPA
0 5 10 15 20 I om0t e—PNPA
Retention time (min) 4
876.66[M+Na*]
c 3
_ § \ LNFl
£ PNPA 5 o—I—o—o—“‘ Eote—oH
8 2 b odeliored
8 Lnnrenea |4 o 1104.46
5 X Supematant 5 1118.46[M+Na*]
| > Precipitate | @ b LNFIII-PNPA
" oM @—PNPA
0 10 20 30 40
Retention time (min) 1021.65[M+Na*] w6 ﬂ, ,.3 M eOH
d) 1241.85[M+Na*]
8| 950.3237[M+H"] Hex,HexNAG,Fuc,
©
g LNnT-ENPA © ot te pnpa 1271.43 Hex,HexNAc,
< / LSTc-PNPA  1285.41 146955 Fuc,PNPA
[
g [M+2Na"] 1483.53
® ESI-MS 1 JiM+2Na*]
e | . . l | [ i :
600 1000 1400 1800 m/z 600 800 1000 1200 1400 1600 1800 m/z

Figure 2. The PNPA derivatization of LNnT: (a) the chemical reaction equation; (b) Dionex profiles of LNnT—PNPA conjugation over a time
course; (c) RP-HPLC profiles of supernatant and precipitate after precipitation of the LNnT—PNPA conjugation with acetonitrile; (d) ESI-MS of
the HPLC purified LNnT—PNPA showing the expected mass; (¢) MALDI TOF of the starting material and the product of several compounds,
showing the expected masses and fragmented major peaks.
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Figure 3. (a) The reaction of LNnT—PNPA with ethylenediamine; (b) HPLC profile of p-nitrophenol, LNnT—PNPA, and its product after reaction
with ethylenediamine; (c) MALDI-TOF of HPLC purified product of LNnT—PNPA and ethylenediamine.

LNnT—PNPA. To optimize the conjugation, various buffers and
temperatures were tested (Figure 4 and Table 1). Figure 4a is a
schematic representation of the reaction between GPNPA and
proteins. Lysine residues in proteins can attack the active

p-nitrophenol ester to form a stable amide bond. In this reaction,
glycan and protein are thus linked through a small fluorescent
anthranilamide moiety. Figure 4b shows the MALDI-TOF
analyses that compare the conjugation of LNnT—PNPA with
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Figure 4. BSA conjugation with LNnT—PNPA: (a) the general equation of protein conjugation with GPNPAs; (b) overlay of MALDI-TOF profiles
of BSA conjugation with LNnT—PNPA at 37 °C in various buffers; (c) fluorescent SEC-HPLC profiles of BSA conjugation with LNnT—PNPA at
different temperatures and buffers; (d) overlay of MALDI-TOF profiles of BSA conjugation with lactose—PNPA at different ratios.

BSA in various buffers at 37 °C. The starting molar ratio of
LNnT—PNPA and BSA was 10:1. While significant conjugation
occurred in all buffers, reactions were faster in more basic
conditions (pH 8.5 over pH 7.5). There was no significant
conjugation difference seen in phosphate, MOPS, and carbonate
buffers based on analysis by mass spectrometry. The conjugation
efficiencies were estimated to be 2—3.5 glycans/protein molecule
based on the MALDI-TOF peak values, indicating a yield of
20—35%. Figure 4c shows the fluorescent SEC-HPLC profiles
of the conjugations in different buffers. The protein—glycan
conjugates are fluorescent as expected (Ex 330 nm, Em 420
nm), and the intensity of the fluorescence can be directly
correlated to the conjugation efficiency. Apparently, a relatively
higher temperature (37 °C over 22 °C) and pH (8.5 over 7.5)
significantly increased the conjugation efficiency. More interest-
ingly, the fluorescence of the LNnT—BSA conjugate generated
in carbonate buffer is stronger than those in PBS or MOPS
buffer, suggesting a faster reaction. It is worthwhile to note that
another fluorescent peak eluting at the same time as LNnT—AEAB
is observed. This is presumably the hydrolysis product of
LNnT—PNPA (LNnT-anthranilic acid, MW 828.77), which has
a similar size to LNnT—AEAB (870.85). This peak is of
significantly lower intensity than the protein peak, indicating
that hydrolysis of GPNPA under these conditions is not seriously
affecting the protein—glycan conjugation. To further evaluate
the conjugation of GPNPAs with proteins, we tested the
conjugation of lactose—PNPA (Gal31—4Glc-PNPA) with BSA
at different molar ratios (Figure 4d and Table 1). The increased
amount of lactose—PNPA, as expected, increased the average
number of lactose—PNPA conjugated per BSA molecule. At
100:1 ratio, ~17—18 lactose/BSA were conjugated.

Table 1. Conjugation of BSA with Glycan—PNPA Conjugates in
Different Buffers, pH, and Molar Ratios

starting product

glycan  temp molar ratio molar ratio
PNPA °C) buffer pH (glycan/BSA) (glycan/BSA)
LNnT 37 PBS 7.5 10 2.1
LNnT 37 PBS 8.5 10 3.8
LNnT 37 NaHCO; 8.0 10 2.7
LNnT 37 MOPS 7.5 10 24
LNnT 37 MOPS 8.5 10 3.1
LNnT 22 PBS 7.5 10 0.5
LNnT 22 PBS 8.5 10 2.2
LNnT 22 NaHCO; 8.0 10 2.0
LNnT 22 MOPS 7.5 10 0.0
LNnT 22 MOPS 8.5 10 1.5
lactose 37 NaHCO; 8.0 10 4.1
lactose 37 NaHCO; 8.0 20 6.6
lactose 37 NaHCO; 8.0 30 9.1
lactose 37 NaHCO; 8.0 50 12.6
lactose 37 NaHCO; 8.0 100 17.7

Printing and Recognition of Glycan—BSA Conjugates
on Microarray Slides. To validate the structural integrity of
glycans after conjugation with proteins, we conjugated several
GPNPAs (LNnT, LNFIII, and LSTc) with BSA using a 5:1
molar ratio of glycan/protein. The conjugates were purified by
SEC-HPLC. The MALDI-TOF profiles in Figure 5a show the
mass shifts compared to BSA alone, indicating that 1.5—2
glycans/protein molecule were conjugated. The purified BSA—glycan
conjugates were printed on epoxy and NHS-activated glass slides
and interrogated with several plant lectins. All three lectins
showed expected bindings on both epoxy and NHS-activated
slides (Figure 5b). AAL, a fucose binding lectin (27), bound to
BSA—LNFIII conjugates. RCA I, a plant lectin that recognizes
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glycan structures are indicated along with a key to the symbols.

B1,4-linked galactose residues (28) bound to BSA—LNnT
conjugates and also to BSA—LSTc conjugates, weakly, since
02,6-sialylation does not fully abolish its binding to Gal$1,4-R
moieties. SNA, a plant lectin that binds a2,6-linked sialic acid
residues (29), bound to BSA-LSTc conjugates, as expected.

DISCUSSION

p-Nitrophenyl ester is known to be an active ester due to the
strong electronegativity of the nitro group. This active ester,
however, is well-tolerated by the aromatic amine group in
PNPA, which is a nucleophile. The existence of two opposing
but tolerant functional groups makes PNPA a promising
heterobifunctional linker under finely tuned conjugation condi-
tions. Reductive amination of PNPA with free reducing glycans
does not interfere with the p-nitrophenyl ester, as shown by
HPAEC, HPLC, and MALDI-TOF (Figure 2b—d). Although
this reaction does not go to completion under the commonly
used conditions, it is still highly efficient (>80% yield) and
nonselective toward many glycans, as shown by LNnT, LNFIII,
and LSTc conjugation profiles (Figure 2e). Furthermore, GP-
NPAs can be easily separated from unconjugated free glycans
by C18 Sep-pak due to the strong hydrophobicity of the linker.
The high conjugation efficiency, nonselectivity, and easy
separation make this approach appropriate for extracting natural
glycans as active esters for neoglycoconjugate preparation. We
have noticed that, by direct reductive amination with glycans,
the reducing end ring structure is opened. This is of concern in
situations where the whole glycan structures are considered
epitopes, such as conjugation of mono- and disaccharides or
structures with epitopes close to the reducing end. In most cases,
we are more interested in the terminal moieties as epitopes,
which should not be affected by this strategy. Under these
circumstances, the ability to utilize complex natural glycans
directly without laborious synthesis is of more importance than
the reducing end structural variation. On the other hand, this
strategy could also be applied to any biomolecules with an
aldehyde group, which could be installed at the glycan reducing
end without breaking the ring structures (30).

It is worthwhile to note the interesting behavior of GPNPAs
on MALDI-TOF. While ESI-MS clearly showed the molecular
ion, MALDI-TOF of GPNPAs showed a reproducible fragmen-
tation pattern besides the molecular ion. This radical reaction
related pattern is specific to the nitro group. While it might
complicate mass spectra to a certain extent, it could also serve
as a fingerprint for confirming glycan—PNPA conjugates in mass
spectrometry analysis. Nevertheless, this does not interfere with
the reactivity of GPNPAs for conjugation with other molecules,
as shown in Figure 3. LNnT—PNPA quickly reacts with
ethylenediamine to form LNnT—AEAB. The electrophile (ester)
of LNnT—PNPA is easily transformed to a nucleophile (amine),
enabling its direct conjugation with electrophilic molecules such
as epoxy and NHS esters. We have demonstrated the use of
AEAB conjugation with glycans for generation of fluorescent
natural glycan arrays (37), providing an alternative for this
application. Although AEAB and PNPA are all heterobifunc-
tional linkers that can be used to conjugate free reducing glycans
with other biomolecules or solid surfaces, they are complemen-
tary in terms of the reactivity. GAEABs have a nucleophilic
alkylamine, while GPNPAs have a good leaving group that is
reactive toward nucleophiles. Application of both conjugations
offers more flexibility in the design and preparation of
bioconjugates.

Protein—carbohydrate conjugation has become an important
route for generating glycan-related antibodies. Many methods
have been developed, most of which focus on conjugating
synthetic glycans through bifunctional linkers. In our effort to
develop carbohydrate-based vaccines against schistosomiasis and
other pathogens (32), we sought to conjugate complex glycans
extracted from natural sources, which are usually very compli-
cated to synthesize with appropriate linkers attached. Therefore,
we needed an effective method to efficiently conjugate free
reducing glycans with protein carriers. Although there are a
number of methods developed for protein—carbohydrate con-
jugations, most of them are not targeting naturally occurring
complex glycans, which are difficult to obtain through synthesis.
Although direct coupling of glycans with proteins by reductive
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amination has been used, the yields are often disappointing. To
obtain homogeneous natural glycans is also a major challenge.
PNPA, as a heterobifunctional linker, can react efficiently and
selectively with glycans and proteins. GPNPAs can be easily
prepared and purified from natural sources based on their UV
absorbance. The GPNPAs can be efficiently conjugated with
BSA, as shown by MALDI-TOF and HPLC (Figure 4).
MALDI-TOF is the most common method used to determine
the protein—carbohydrate conjugation efficiency based on the
mass shift before and after conjugation. However, with more
glycans and linkers added, the MALDI-TOF peak broadens
quickly so that the peak value does not accurately represent
the average molecular weight of protein conjugates. The
protein—glycan conjugates prepared with the GPNPA strategy
are fluorescent, which can greatly facilitate the quantification
of conjugated glycans even at a minimal level (Figure 4c).
Furthermore, with appropriate UV range fluorescence detection
methods, this fluorescence could be used to detect small amounts
of protein in purification steps and bioassays. On the basis of
the mass and fluorescence of the conjugates, we confirmed that
various glycans such as lactose, LNnT, and LSTc can be
reproducibly conjugated to proteins. The molar ratio of glycans
versus glycan—protein conjugates can be driven by increasing
the molar ratio of glycans to proteins, reaching 17—18 glycans/
conjugate at 100:1 glycan/protein molar ratio.

Upon conjugation of glycans to proteins, it is difficult to
validate that the structures of glycans are not affected during
the glycan—protein conjugation process. Therefore, we conju-
gated and printed several glycan—protein conjugates on activated
glass slides and interrogated them with various lectins. The
conjugation of LNnT, LNFIII, and LSTc GPNPAs to BSA
showed similar mass shifts (Figure 5a), indicating the general
applicability of this approach to different glycans. This is
especially useful for sialylated structures, as the sialic acid is
not compatible with many conjugation approaches relying on
carboxylic acid activation. With p-nitrophenyl ester incorporated
onto the glycan reducing end by reductive amination, sialylated
glycans can be conjugated to proteins as easily as other glycans.
When the BSA conjugates of LNnT, LNFIII, and LSTc were
printed on activated glass slides (epoxy and NHS) and assayed
with three lectins, AAL, RCA I, and SNA, expected specific
binding was observed for each lectin. These results show that
the glycan structures are presented after the conjugation process
in a manner that is consistent with their predicted recognition,
which implies that such conjugates can be used to explore
biological functions of glycans. It is also worth noting that this
approach provides an alternative platform for natural glycan
microarray printing. While suitably derivatized glycans (25, 31, 33, 34)
can be directly printed on NHS or epoxy slides for successful
carbohydrate binding protein screening, printing of protein—glycan
conjugates presents the glycan structures in the context of
protein. This somewhat addresses concerns about nonspecific
surface interactions related to microarray slide presentation and
may provide a desirable alternative presentation strategy under
certain circumstances. The fact that the protein—glycan conju-
gates are fluorescent is also a major advantage when quantifiable
microscale material is used in microarray printing.

One general issue in using protein—carbohydrate conjugates
as potential vaccines is that the linker itself is sometimes
immunogenic or alters immunogenic potential of the glycan.
While no testing is yet available on the immunogenicity of
anthranilamide derivatives, the fluorescent anthranilamide is
generally considered safe as a chemical, and the closely related
anthranilic acid is the precursor of the amino acid tryptophan.
Thus, while not yet tested in vivo, we expect this linker to have
minimal immunogenicity and toxicity.
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In conclusion, we have developed a novel approach utilizing
a commercially available chemical as a convenient fluorescent
linker for protein—carbohydrate conjugation. The ease and
efficiency, the ability to utilize natural glycans, and the acquired
fluorescence of the final conjugates make this approach very
promising in the development of carbohydrate antibodies and
carbohydrate-based vaccines.
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