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Fetal phonocardiography (fPCG) based antenatal care system is economical and has a potential to use for long-term monitoring
due to noninvasive nature of the system.The main limitation of this technique is that noise gets superimposed on the useful signal
during its acquisition and transmission. Conventional filtering may result into loss of valuable diagnostic information from these
signals. This calls for a robust, versatile, and adaptable denoising method applicable in different operative circumstances. In this
work, a novel algorithm based on wavelet transform has been developed for denoising of fPCG signals. Successful implementation
of wavelet theory in denoising is heavily dependent on selection of suitable wavelet basis function. This work introduces a new
mother wavelet basis function for denoising of fPCG signals. The performance of newly developed wavelet is found to be better
when compared with the existing wavelets. For this purpose, a two-channel filter bank, based on characteristics of fPCG signal, is
designed. The resultant denoised fPCG signals retain the important diagnostic information contained in the original fPCG signal.

1. Introduction

Continuous and long-term fetal monitoring has become an
essential approach for better accuracy in diagnosis [1]. Varia-
tions in fetal heart rate (FHR) provide up-to-date information
about the fetal health status [2]. Doppler ultrasound based
fetal cardiotocography (fCTG) is currently being used as a
technique for recording and analysis of the FHR. In this tech-
nique, a graph of fetal heart rate (cardio-) and uterine con-
tractions (-toco-) are recorded during pregnancy [3]. This
technique cannot be used for long-term monitoring of the
fetus due to several reasons [4] such as the cost and com-
plexity of the monitoring instrument, ultrasound radiation
exposure, and gel application.

Fetal phonocardiography, recording of vibroacoustic
(fPCG) signals from the maternal abdominal surface, may
become an important alternative to fCTG [5]. However,
these fPCG signals are heavily contaminated by noise from
various sources [6–11]. Hence to extract important diagnostic
information such as FHR, frequency/pitch, intensity, timing,

and energy of fetal heart sound, this technique requires
matured signal processing strategies.

Researchers from biomedical signal processing commu-
nity have applied several techniques for denoising of fPCG
signals. Varady (2001) presented a wavelet-based denoising
method for phonocardiographic signals using two-channel
signal recording and an adaptive cross-channel coefficient
thresholding technique [12]. Messer et al. (2001) attempted to
answer aboutwhichwavelet families, levels of decomposition,
and thresholding techniques best removes the noise in a PCG
[13]. Jianfeng et al. [5] used a modified spectral subtraction
algorithm to remove the unwanted stationary background
noise from the noisy fetal heart sound. The AM/FM modu-
lation technique is employed to make the fetal heart sound
more audible so that both pregnant women and gynecologists
can identify the rhythmic fetal heart beat sounds easily [5].
Mittra et al. [14] compared and analyzed the performance of
various digital noise cancellation techniques for fetal heart
sound. Their experimental results show that adaptive filter-
ing using Recursive Least Squares (RLS) algorithm is an
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appropriate methodology for the fetal phonocardiographic
signals denoising implementation [14]. Tosanguan et al.
(2008) proposed a 2-channel signal processing technique,
termed interference suppression via spectral comparison
(ISSC) and aims at improving the quality of the recorded
heart sound or the PCG data [15]. Zhao et al. (2009)
developed a denoising method for heart sound signal using
improved thresholding function in wavelet domain [16].
Chourasia et al. (2010) presented a technique for denoising of
fPCG signals using wavelet transform [17]. In another work,
Chourasia et al. (2012) also developed a methodology for
removal of unwanted noise from the fPCG signal using non-
negative matrix factorization [18].

The above-mentioned researchers have used conven-
tional filtering techniques and wavelet transform for denois-
ing the fPCG signals. The conventional techniques also
impact on the useful signals and hence may result in loss
of information of diagnostic importance. Additionally, the
passed band may still contain noise. In view of these limita-
tions of conventional methods of denoising, wavelet thresh-
old denoising has been applied to denoise heart sound
recordings. The wavelet based denoising method try to pre-
serve the signal by operating only on those selected regions
of the bandwidth that need filtering. This technique requires
appropriate selection of wavelet family, level of decomposi-
tion, and the method to be used for calculation of threshold.
The existing works are limited only to employ the existing
wavelet family from the bank of wavelet transform.

This present work proposes a novel algorithm for denois-
ing of fPCG signals using wavelet transform (WT). In this
approach, a new wavelet family and its mother wavelet are
developed. For this purpose, a quadratic mirror filter (QMF)
bank [19] is designed based on the characteristics of the
fPCG signals.This filter bank requires a low-pass and a high-
pass filter in decomposition (analysis) phase and reconstruc-
tion (synthesis) phase. Appropriate denoising algorithm and
thresholding rule have been selected and used with the
developedmotherwavelet.Thedevelopedwavelet family pro-
vides better results when compared with the existing wave-
lets.The obtained denoised fPCG signals retain the vital diag-
nostics information contained in the original signals.

The rest of the paper is organized as follows. A brief intro-
duction about fetal phonocardiographic signals and wavelet
theory has been provided in Sections 2 and 3, respectively.
Section 4 discusses the selection of appropriate denoising
algorithm and thresholding rule for fPCG signals. Design
methodology of filter bank for new wavelet has been
explained in Section 5. Finally, the experimental results are
described in Section 6, followed by conclusion and discussion
in Section 7.

2. Fetal Phonocardiographic Signals

Fetal phonocardiography is the recording of natural vibroa-
coustic signals from the maternal abdominal surface. The
fPCG signal carries valuable information concerning the
physiological state of unborn [20]. It is also capable of recog-
nizing additional potential dysfunctional signals of the fetal
heart such as those related to cardiac murmurs, split effect,

and breathing movements, which can be detected from the
analysis of abdominal sound (fPCG) signals. However these
cardiac anomalies are impossible to detect with the widely
accepted fCTG technique due to its principle of operation
[21]. Additionally, phonocardiography provides a permanent
and lasting record of fetal heart sounds which by compari-
son at a later stagemay prove to be of great prognostic import-
ance. The fPCG technique has been introduced earlier but
overlooked by biomedical scientists and medical experts
mainly due to its low signal-to-noise ratio (SNR) [22]. The
fPCG signals are a linear summation of [23]

(i) fetal heart sound,
(ii) internal noise,
(iii) external noise.
The fetal heart sound is a signal produced by mechanical

activity of the fetal heart. The fetal heart is basically divided
into two pairs of chambers and has four valves: the mitral
and tricuspid valves. In the fetal cardiac cycle, when the ven-
tricles begin to contract, the blood attempts to flow back
into the lower pressure atrial chambers. This reverse flow of
blood is arrested by the shutting of the mitral and tricuspid
valves, which produces the first heart sound (S1). Whenever
the pressure in the ventricular chambers becomes too high for
the pulmonary valves to withstand, they open, and the pre-
ssurized blood is rapidly ejected into the arteries. While the
ventricles are being evacuated, the pressure of the remaining
blood decreases with respect to that in the arteries. This
pressure gradient causes the arterial blood to flow back into
the ventricles. The pulmonary valves arrest this reverse flow
by shutting, which gives rise to the second heart sound (S2)
[24]. The frequency spectrum of fetal heart sound lies below
200Hz. Figures 1(a) and 1(b) show a typical fetal phono-
cardiographic (fPCG) signal and its frequency spectrum,
respectively.

The internal noise is a random signal caused due to mat-
ernal respiratory sounds, acoustic noise produced by the fetal
movement, maternal digestive sound, maternal respiratory
sound,maternal heart sound, and placental blood turbulence.
These noises are of low amplitude with main frequency com-
ponents from 0 to 25Hz [4].

Similarly, the external noise is a combination of shear
noise from movement of the sensor during recording and
ambient noise originating from the environment such as
sound produced by fan, air conditioner, and hue and cry of
the nearby people. It is comparatively of high amplitude and
frequency (100–20000Hz) [4].

3. Theoretical Background

3.1. Wavelet Transform. The WT is a two-dimensional time-
scale processing method for nonstationary signals with ade-
quate scale values and shifting in time. The major advantage
of theWT is that it has a varying window size, being broad at
low frequencies and narrow at high frequencies, thus leading
to best possible time-frequency resolution in all frequency
ranges [25, 26].The analysis of nonstationary signals requires
proper location of transitions or discontinuities and identifi-
cation of their long-term behavior.TheWT represents a time
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Figure 1: (a) Typical fPCG signal and (b) its frequency spectrum.

function in terms of simple and fixed building blocks derived
from mother wavelet by translation and dilation operations.
The translation is the shifting of mother wavelet along the
time axis while dilation or scaling starches or compresses it.

The WT can be categorized as continuous wavelet trans-
form (CWT)or discretewavelet transform (DWT).TheCWT
is defined as the convolution between the original signal 𝑠(𝑡)
and a wavelet 𝜓(𝑡) which can be calculated by

CWT𝜓 (𝑎, 𝑏) = ∫

+∞

−∞

𝑠 (𝑡) 𝜓
∗

𝑎,𝑏
(𝑡) 𝑑𝑡

=

1

√𝑎

∫

+∞

−∞

𝑠 (𝑡) 𝜓
∗
(

𝑡 − 𝑏

𝑎

)𝑑𝑡,

(1)

where CWT𝜓(𝑎, 𝑏) is a continuous wavelet transform, “𝑠(𝑡)”
is a signal under study, “𝑎” is a scale coefficient connected
with stretching or compression of signal in time, “𝑏” is a shift
connected with time location, “𝜓∗

𝑎,𝑏
(𝑡)” is a wavelet function

or mother wavelet representing a wavelet family, “∗” denotes
the complex conjugation, and the factor 1/√𝑎 is used for
energy normalization purposes so that the transformed signal
will have the same energy at every scale. In CWT, the scaling
parameter 𝑎 and translation parameter 𝑏 change with time
continuously. Hence wavelet coefficients are calculated for
every possible scale, which requires huge processing power
and results in large amount of data.

The Discrete Wavelet Transform (DWT) coefficients are
usually sampled from the CWT on a dyadic grid, choosing
parameters of translation 𝑏 = 𝑘

∗
2
−𝑗 and scale 𝑎 = 2

−𝑗. Where
𝑗, 𝑘 ∈ 𝑍 a set of positive integers and 𝑘 = 0, 1, . . . , 𝑛 −

1, 𝑛 represents the number of samples. These dilation and
translation parameters are discretized leading to the DWT.
After discretization, the wavelet function is defined as

DWT𝜓 (𝑗, 𝑘) = ∫

+∞

−∞

𝑠 (𝑡) 𝜓
∗

𝑗,𝑘
(𝑡) 𝑑𝑡. (2)

Here 𝜓∗
𝑗,𝑘
(𝑡) is the dilated and translated version of the

wavelet function and given as

𝜓𝑗,𝑘 (𝑡) = 2
𝑗/2
𝜓 (2
𝑗
𝑡 − 𝑘) , (3)

where 𝜓 is called as mother wavelet and 𝜓𝑗,𝑘 is called as
daughter wavelet. The level 𝑗 determines how many wavelets

are needed to cover the mother wavelet, and the number 𝑘
determines the position of the wavelet and gives the indica-
tion of time. DWT analyzes the signal by decomposing it into
its coarse and detail information, which is accomplished by
using successive high-pass and low-pass filtering operations,
on the basis of the following equations:

𝑦high (𝑘) = ∑

𝑛

𝑠 (𝑛) ⋅ ℎ (2𝑘 − 𝑛) ,

𝑦low (𝑘) = ∑

𝑛

𝑠 (𝑛) ⋅ 𝑔 (2𝑘 − 𝑛) ,

(4)

where 𝑦high(𝑘) and 𝑦low(𝑘) are the outputs of the high-pass
and low-pass filters with impulse response ℎ and 𝑔, resp-
ectively, after downsampling by 2 [27, 28]. The coefficients
of low-pass filter are called “approximation” (𝑐𝑗,𝑘) and coef-
ficients from high-pass filter are called “detail” (𝑏𝑗,𝑘) wavelet
coefficients. The detail coefficients are defined by the follow-
ing equation:

𝑏𝑗,𝑘 = ∫ 𝑠 (𝑡) 𝜓
∗

𝑗,𝑘
(𝑡) 𝑑𝑡, (5)

where 𝜓𝑗,𝑘 are wavelet functions given by

𝜓𝑗,𝑘 (𝑡) =
1

√2
𝑗
𝜓(

𝑡 − 𝑘2
𝑗

2
𝑗

) . (6)

Similarly, the approximate coefficients are

𝑐𝑗,𝑘 = ∫ 𝑠 (𝑡)Φ
∗

𝑗,𝑘
(𝑡) 𝑑𝑡, (7)

where Φ𝑗,𝑘 are called scaling functions as follows:

Φ𝑗,𝑘 (𝑡) =
1

√2
𝑗
Φ(

𝑡 − 𝑘2
𝑗

2
𝑗

) . (8)

The discrete inverse transform is found by adding the
translated, dilated wavelets, weighted by the coefficients:

𝑓 (𝑡) = ∑

𝑗,𝑘

𝑏𝑗,𝑘𝜓𝑗,𝑘 (𝑡) . (9)

The DWT gives a multiresolution description of a signal
which is very useful in analyzing real-time signals [29].

The general wavelet denoising procedure is described in
the following steps:
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(i) decomposition of the fPCG signal using DWT to
obtain the approximation and detail coefficients,

(ii) thresholding of these decomposed coefficients using
an appropriate denoising algorithm,

(iii) reconstruction of the fPCG signal from these
thresholded coefficients using the inverse transform
(IDWT) [17].

3.2. Denoising Algorithm. The denoising algorithm uses sta-
tistical regression of noisy coefficients over time to obtain a
nonparametric estimation of the reconstructed signal with-
out noise. The thresholding algorithms commonly employed
for denoising of the nonstationary signals are [30]

(i) universal threshold,
(ii) minimax threshold,
(iii) rigorous Stein’s Unbiased Risk Estimate (SURE) thre-

shold.

(i) Universal Threshold (Sqtwolog). The universal threshold
denoising algorithm is a fixed threshold method which can
be calculated by

𝜆 = 𝜎√2 log (𝑛), (10)

where 𝑛 denotes the length of the signal and 𝜎 is the standard
deviation.

(ii) Minimax Threshold (Minimaxi). Minimax threshold also
uses fixed threshold and it yields minimax performance for
Mean Square Error (MSE) against an ideal procedures. This
threshold level depends on the noise and signal relationships
in the input data and it is given by 𝜆 = 𝜎𝜆𝑛, where 𝜆𝑛 is
determined by aminimax rule such that themaximum risk of
estimation error across all locations of the data is minimized.

(iii) Rigorous SUREThreshold (Rigrsure).The denoising algo-
rithms described previously use global thresholds. That is,
the computed threshold is applied to all wavelet coefficients.
The rigorous SURE threshold algorithm describes a scheme
that uses a threshold value 𝜆𝑗 at each resolution level 𝑗
of the wavelet coefficients. This algorithm is also known
as SureShrink and uses the Stein’s Unbiased Risk Estimate
(SURE) criterion to get an unbiased estimate.

These denoising algorithms can be divided into linear and
nonlinear methods. The linear method is independent of the
size of empirical wavelet coefficients, and therefore the size of
the coefficient by itself is not taken into account. It assumes
that signal noise can be foundmainly in fine scale coefficients
and not in coarse scales. The nonlinear method is based on
the idea that the signal noise can be found in every coefficient
and is distributed over all scales.

3.3. Wavelet Thresholding Rules. Wavelet thresholding is a
signal estimation technique that exploits the capabilities of
wavelet transform for signal denoising [31]. This method
has been researched extensively due to its effectiveness and

simplicity. Any signal 𝑠(𝑡) can be represented by the sum-
mation of the original signal𝑥(𝑡) and the noise 𝑛(𝑡) as follows:

𝑠 (𝑡) = 𝑥 (𝑡) + 𝑛 (𝑡) . (11)

After performing the wavelet transform

𝑆𝑗,𝑘 = 𝑋𝑗,𝑘 + 𝑁𝑗,𝑘, (12)

where 𝑆𝑗,𝑘 is the 𝑘th wavelet coefficient in the scale 𝑗. There
are two ways of thresholding with threshold 𝜆; the shapes of
these thresholding operators are illustrated in Figure 2.

Hard Thresholding (ℎ). In hard thresholding, those wavelet
coefficients with absolute values below or at the threshold
level (𝜆) are affected only and they are replaced by zero value
whereas others are kept unchanged
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=
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(13)

Soft Thresholding (s). In soft thresholding, coefficients above
threshold level (𝜆) are also modified; they are reduced by
particular value of the threshold

𝑌̂
soft
𝑗,𝑘

=

{
{

{
{

{

𝑌𝑗,𝑘 − 𝜆 for 𝑌𝑗,𝑘 ≥ 𝜆
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󵄨
󵄨
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󵄨
𝑌𝑗,𝑘

󵄨
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󵄨
󵄨
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𝑌𝑗,𝑘 + 𝜆 for 𝑌𝑗,𝑘 ≤ −𝜆.

(14)

Hard thresholding maintains the scale of the signal but
introduces ringing and artifacts after reconstruction due to
a discontinuity in the wavelet coefficients. Soft thresholding
eliminates this discontinuity resulting in smoother signals but
slightly decreases the magnitude of the reconstructed signal.

4. Selection of Denoising Algorithm and
Thresholding Rule for fPCG Signals

The presented work also contributes in the selection of suit-
able algorithm and thresholding rule for denoising of fPCG
signals. Based on the discussion in Sections 3.2 and 3.3, there
are three denoising algorithms, namely, universal threshold,
minimax threshold, and rigorous SURE threshold and two
thresholding rules which can be employed in denoising of
fPCG signals. These denoising algorithms and thresholding
rules are practically implemented and their results are com-
pared. The mean squared error (MSE) is used to evaluate
the performance of all denoising algorithms and thresholding
rules in denoising the fPCG signals. It can be obtained using
following expression:

MSE =

∑
𝑛

𝑖=1
(𝑠 − 𝑠𝑒)

2

𝑖

𝑛

, (15)

where 𝑛 denotes the length of the signal, 𝑠 represents the
original signal and 𝑠𝑒 is the estimated signal obtained from
the denoised wavelet coefficients.
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Figure 2: Wavelet thresholding.
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Figure 3: Waveform of (a) reference fPCG signal and (b) test fPCG signal with additive noise.

Figure 3(a) shows the waveform of one simulated fPCG
signal as an example. This signal is used as a reference signal
in the selection process of appropriate denoising algorithms
and wavelet threshold. Figure 3(b) is a test signal generated
by adding simulated stationary random noise in the original
fPCG signal which is shown in Figure 3(a). The noise is
generated by recording it, first, in actual conditions. After
recording, the noise signal is simulated with similar average
characteristics. The simulated noise is then mixed with the
fPCG signal shown in Figure 3(a) and used as an input
to evaluate the performance of the selection of appropriate
denoising algorithm and thresholding rule.

The test signal so obtained is analyzed with DWT based
multiresolution analysis. The signal is decomposed to five
levels using fourth order Coiflets wavelet. This selection of
mother wavelet is based on the fact that it possesses all
the properties needed for analysis of the fPCG signals [29].

All the three algorithms with soft or hard thresholding rule
are applied for denoising of the fPCG signal. The resultant
waveforms from this implementation are shown in Figure 4,
and the best estimations obtained are depicted in Table 1. In
Figures 3 and 4, the 𝑥-axis represents number of samples and
the 𝑦-axis represents relative amplitude.

Table 1 shows a comparison of three denoising algorithms
with soft or hard thresholding rule. The rigorous SURE
threshold algorithmwith soft thresholding rule yields the best
estimationwith considerably smallerMSE as compared to the
other algorithms for denoising of fPCG signals.

5. Design of Filter Bank for New Wavelet

Since it has been discussed earlier in Section 1 that the
effective implementations of wavelet transform in denoising
the fPCG signals requires appropriate wavelet basis function,
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Figure 4:Denoised fPCGsignal using different algorithms: (a) sqtwolog(s), (b) sqtwolog(h), (c)minimaxi(s), (d)minimaxi(h), (e) rigrsure(s),
and (f) rigrsure(h).



The Scientific World Journal 7

Table 1: Comparison of denoising algorithms.

Denoising algorithm Code MSE
Universal threshold algorithm with soft thresholding rule sqtwolog(s) 0.8331
Universal threshold algorithm with hard thresholding rule sqtwolog(h) 0.843
Minimax threshold algorithm with soft thresholding rule minimaxi(s) 0.6295
Minimax threshold algorithm with hard thresholding rule minimaxi(h) 0.7892
Rigorous SURE threshold algorithm with soft thresholding rule rigrsure(s) 0.575
Rigorous SURE threshold algorithm with hard thresholding rule rigrsure(h) 0.8165
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↑ 2
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Figure 5: Two-channel filter bank.

we propose to design a new wavelet function which will be
based on the characteristics of the fPCG signals and hence
will improve the performance of its denoising. The main
properties to be verified in designing a family of wavelet are
existence of scaling function, symmetricity and compactly
support of wavelet and scaling functions, availability of filter
bank, orthogonality of filter bank, and smoothness of wavelet
function. With these properties, the wavelet family may be
called as suitable wavelet for the analysis of intended signal.
This wavelet will lead to maximization of wavelet coefficient
values to produce the highest local maxima of the signal
in wavelet domain. It also produces the possibility of best
characterization of frequency content of that signal [32].

In view of these considerations, we developed a new
wavelet function which is orthogonal and named as “fetal.”
In orthogonal wavelet analysis, the number of convolutions
at each scale is proportional to the width of the wavelet basis
at that scale. This produces a wavelet spectrum that contains
discrete “blocks” of wavelet power and is useful for signal pro-
cessing as it gives the most compact representation of the
signal [33]. Conversely, a nonorthogonal analysis is highly
redundant at large scales, where the wavelet spectrum at
adjacent times is highly correlated. The new wavelet also has
a small number of coefficients in high-pass subbands and
allows the signal singularities, transitions, and edges intact in
the low-pass subband.

To synthesize new wavelet it requires a two-channel filter
bank which has a low-pass and a high-pass filter in decompo-
sition (analysis) phase and reconstruction (synthesis) phase.
This two-channelmultirate filter bank consists of filterswhich
process the input signal at half of its original rate. A block
diagram of two-channel filter bank is shown in Figure 5. The
signal 𝑠(𝑛) gets filtered by𝐺o and𝐻o filters anddownsampled.
These filters are called analysis or decomposition filters. The
output of these filters contains the signal at half rate.These are
called subbands of the signal. Each subband can be further
divided into smaller subbands using the same filter bank.
After being processed, the signal is upsampled and filtered

using 𝐺1 and 𝐻1 filters, which are called synthesis or recon-
struction filters. For perfect reconstruction, in a two-channel
filter bank, the downsampled signal that contains only the
even samples is given to the first channel and the downsam-
pled signal that contains only the odd samples is given to the
second channel. This separation of signal into even and odd
components is called polyphase representation of the signal.

Four important characteristics are taken into account
while designing the filter bank: (i) perfect reconstruction, (ii)
orthogonality of the filter bank and the underlying wavelet
basedmultiresolution structure, (iii) flatness of the filters and
vanishing moments in the wavelets, and (iv) smoothness of
the wavelets. The output of a perfect reconstruction two-
channel filter bank is [34]

𝑌 (𝑧) =

1

2

[𝐺o(𝑧) 𝐺1 (𝑧) + 𝐻o(𝑧)𝐻1 (𝑧)]𝑋 (𝑧)

+

1

2

[𝐺o(−𝑧) 𝐺1 (𝑧) + 𝐻o(−𝑧)𝐻1 (𝑧)]𝑋 (−𝑧) ,

(16)

where 𝑋(𝑧), 𝐺(𝑧), and𝐻(𝑧) are the 𝑧-transform of the input
signal, analysis filters and synthesis filters respectively. For
perfect reconstruction: firstly, the alias term 𝑋(−𝑧) must be
zero, hence

𝐺o(−𝑧) 𝐺1 (𝑧) + 𝐻o(−𝑧)𝐻1 (𝑧) = 0. (17)

This can be achieved by letting

𝐺1 (𝑧) = 𝐻o (−𝑧) , 𝐻1 (𝑧) = −𝐺o (−𝑧) . (18)

Second, the distortion term must be constant or a pure
delay time; that is,

𝐺o(𝑧) 𝐺1 (𝑧) + 𝐻o(𝑧)𝐻1 (𝑧) = 2𝑧
−𝑙
, (19)

where l denotes a time delay.
Equation (18) can also be written as

𝐻o (𝑧) = 𝐺1 (−𝑧) , 𝐻1 (𝑧) = −𝐺o (−𝑧) . (20)

Substituting this in (19)

𝐺o(𝑧) 𝐺1 (𝑧) − 𝐺1(−𝑧) 𝐺o (−𝑧) = 2𝑧
−𝑙
, (21)

𝑃o (𝑧) − 𝑃o (−𝑧) = 2𝑧
−𝑙
, (22)

where 𝑃o(𝑧) denotes the product of two low-pass filters𝐺o(𝑧)
and 𝐺1(𝑧). Equation (21) indicates that all odd terms of
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Figure 6: Impulse response for the reconstruction and decomposition filters of fetal.

product of two low-pass filters must be zero for order 𝑙, where
𝑙must be odd and even order terms are arbitrary [35]. Hence
it can be written as

𝑃o (𝑛) =
{
{

{
{

{

0 𝑛 odd, 𝑛 ̸= 𝑙

2 𝑛 = 𝑙

arbitrary 𝑛 even.
(23)

Hence it can be concluded that the design process of two-
channel filter bank for a newwavelet is reduced into two steps
as follows:

(1) design of filter 𝑃o(𝑧) which satisfies (23),
(2) factorize 𝑃o(𝑧) into 𝐺o(𝑧) and 𝐺1(𝑧).

In this work, the filter 𝑃o(𝑧) is designed based on the
characteristics of fPCG signals. The common requirements
of this design are linear phase, minimumphase, and orthogo-
nality of the filter. A fourth-order low-pass Butterworth filter
is chosen because the transition width requirement is not
stringent for the given cut-off frequency. This will also help
in reducing the computational complexity. The Butterworth
filter satisfies the conditions for perfect reconstruction. It has
linear frequency response in the pass band as compared to
Chebyshev Type I/Type II and elliptic filters. The filter 𝑃o(𝑧)

is factorized into 𝐺o(𝑧) and 𝐺1(𝑧), and then the coefficients
of 𝐻o(𝑧) and 𝐻1(𝑧) are derived using (20) [32, 36]. Figure 6
shows the impulse response of the four filters computed for
construction of filter bank of the new wavelet “fetal.”

The wavelet and scaling functions are then derived from
the coefficients of these filters using (6) and (8), respectively.
Figure 7 shows the wavelet and scaling functions of the “fetal”
wavelet.

With these wavelet and scaling functions, the wavelet and
scaling coefficients for multiresolution analysis are obtained.
The developed wavelet “fetal” is now ready to use. All the
discrete analysis functions, including dwt, idwt, and wave-
dec. can operate on the new wavelet. Similarly, all the con-
tinuous analysis functions, including cwt, wscalogram, and
the corresponding GUI tools, can also operate on the new
wavelet. In this work, this new wavelet “fetal” is used for
intended denoising of the fPCG signals.

6. Experimental Results

The newly developed wavelet “fetal” is used for denoising of
real-time fetal heart sound signals which are of widely dis-
tinct nature and quality. A Simulink model is developed
for computer based denoising of these signals [37]. Figure 8
shows the model for wavelet denoising of the fPCG signal
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Figure 7: Wavelet and scaling function of “fetal” wavelet.
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through which the filters of developed wavelet family and
selected threshold criterion are implemented.

In thismodel, the fPCG signals are fetched from the work
space and applied to the Dyadic analysis filter bank. These
signals carry fetal heart sound and a damped version of simu-
lated maternal organs’ sounds along with the external noise.
The analysis filter bank decomposes the fPCG signals into a
collection of subbands with smaller bandwidths and slower
sample rates. This bank uses a series of high-pass and
low-pass FIR filters to repeatedly divide the input frequency
range. The fPCG signals are decomposed to the 3 levels by
newly developed “fetal” wavelet with the analysis filter bank.
These decomposed wavelet coefficients consist of details in
the input fPCG signals.The denoising of fPCG signals is car-
ried out by using selected algorithm (Rigorous SURE) and
thresholding rule (Soft threshold). The synthesis filter bank
reconstructs the signal decomposed by the analysis filter
bank block. This bank takes in subbands of this signal and
uses them to reconstruct the signal by using a series of
high-pass and low-pass FIR filters. The reconstructed signals
have a wider bandwidth and faster sample rate than the

input subbands. The waveforms of input signal and denoised
outputs are displayed through “Time Scope” blocks.

For performance evaluation of the developedwavelet, five
test fPCG signals (S1–S5) are generated using a signal sim-
ulation module (SSM) [38]. These test signals are denoised
using some existing competitive wavelets families and the
developed wavelet. The competitive wavelets are the one that
possess required properties of orthogonality and a scaling
function Φ such as Daubechies, Symlets, and Coiflets. The
results of this comparison are computed using MSE equation
(15) and presented in Table 2. As explained earlier, all the
three denoising algorithms with soft or hard threshold are
used for denoising of the fPCG signals.

The results in Table 2 show that the developed wavelet
“fetal” along with rigorous SURE algorithm and soft thresh-
old provides the best performance for denoising the fPCG
signals.

The developed wavelet family was also implemented for
denoising of a real fPCG signal. This signal was recorded
using a specially developed wireless data acquisition system
[39]. The recording of fPCG signal was obtained in a quiet
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Figure 9: Waveforms of a real fPCG signal and its denoised version.

Table 2: Comparison of different mother wavelets for denoising of fPCG signals in terms of MSE.

Wavelet family
db5 coif4

Algorithm↓ Signal→ S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
(1) Sqtwolog(s) 0.8331 0.9124 1.099 0.3274 0.3328 0.5826 0.5744 1.1137 0.2615 0.2817
(2) Sqtwolog(h) 0.843 0.9124 1.099 0.3274 0.3328 0.5906 0.5666 1.1137 0.2615 0.2817
(3)Minimaxi(s) 0.6295 0.9073 1.099 0.3274 0.3328 0.5371 0.5716 1.1137 0.2712 0.2817
(4)Minimaxi(h) 0.7892 0.8953 1.099 0.7691 0.7779 0.8199 0.7972 1.1137 0.8162 0.8092
(5) Rigrsure(s) 0.575 0.8875 1.1001 0.4331 0.4396 0.4661 0.5531 1.081 0.2539 0.2669
(6) Rigrsure(h) 0.8165 0.8055 1.2945 0.7476 0.7561 1.0091 0.8633 1.2254 1.0062 0.8851

Wavelet family
sym7 Fetal (New)

Algorithm↓ Signal→ S1 S2 S3 S4 S5 S1 S2 S3 S4 S5
(1) Sqtwolog(s) 0.5608 0.6064 1.1245 0.2663 0.2769 0.5723 0.5766 1.1054 0.2712 0.2865
(2) Sqtwolog(h) 0.5629 0.5934 1.1245 0.2663 0.2769 0.6001 0.5613 1.1054 0.2712 0.2865
(3)Minimaxi(s) 0.5615 0.602 1.1245 0.2877 0.2837 0.5298 0.5743 1.1054 0.2712 0.2865
(4)Minimaxi(h) 0.836 0.8363 1.5005 0.8267 0.8224 0.8263 0.7889 1.1054 0.8133 0.8324
(5) Rigrsure(s) 0.5033 0.5979 1.1673 0.4122 0.4436 0.4212 0.539 0.9998 0.2469 0.2518
(6) Rigrsure(h) 0.8431 0.8394 1.5005 0.8369 0.8353 1.1776 0.8519 1.2173 1.1123 0.8732

room with the help of a medical expert and a trained nurse.
A pregnant woman visiting for antenatal care was requested
to contribute in the real-time testing of the developed system.
The subject was having 34 weeks of gestation and singleton
pregnancy. She was asked to lie in the supine position, with
the head resting on a pillow. The phonocardiographic sensor
was positioned on the abdominal surface of the mother and
adjusted to acquire the maximum intensity of the signal. An
abdominal belt was used to fasten the sensor. The signal
was sampled with sampling frequency of 8000Hz, 16 bit
resolution and saved for further processing.

The recorded fPCG signal is now fetched from the mem-
ory through the model, as shown in Figure 8, for denoising.
Figure 9 shows the waveforms of original and denoised ver-
sion of this signal. In these waveforms, 𝑥-axis represents the
time in seconds, whereas 𝑦-axis represents amplitude of sig-
nal in volts.

7. Discussion and Conclusion

The fPCG signals are of very low amplitude and contain poor
signal-to-noise ratio. The main sources of noise are maternal

biological activities, external noises such as sound produced
by electrical appliances, movement of transducer, and so
forth. These noises show overlapping spectra with the actual
fPCG signals. Hence conventional noise removal techniques
are not suitable for denoising of these signals. During denois-
ing, care has to be practiced to preserve the features contained
in the original signal. These preserved features are relevant
and necessary for an appropriate diagnosis about fetal
health.

In this paper design of a new wavelet basis function for
denoising of fPCG signals has been carried out. The key
features of newly designed family are its speed of convergence
at infinity to 0, regularity, and orthogonality. It also has a small
number of coefficients in high-pass subbands and allows the
signal singularities, transitions, and edges intact in the low-
pass subband. It has been found that the combination of
optimal perfect reconstruction filter bank and appropriate
denoising algorithm can improve the performance of denois-
ing.The experimental results revealed suitability of the newly
developed wavelet to be the most appropriate wavelet basis
function for denoising of fPCG signals in terms of MSE. The
resultant denoised fPCG signals will preserve physiological
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information of diagnostic importance regarding health status
of the unborn.
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