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Abstract: Canonical extrinsic representations for non-rigid shapes with different poses are preferable
in many computer graphics applications, such as shape correspondence and retrieval. The main
reason for this is that they give a pose invariant signature for those jobs, which significantly decreases
the difficulty caused by various poses. Existing methods based on multidimentional scaling (MDS)
always result in significant geometric distortions. In this paper, we present a novel shape unfolding
algorithm, which deforms any given 3D shape into a canonical pose that is invariant to non-rigid
transformations. The proposed method can effectively preserve the local structure of a given 3D
model with the regularization of local rigid transform energy based on the shape deformation
technique, and largely reduce geometric distortion. Our algorithm is quite simple and only needs to
solve two linear systems during alternate iteration processes. The computational efficiency of our
method can be improved with parallel computation and the robustness is guaranteed with a cascade
strategy. Experimental results demonstrate the enhanced efficacy of our algorithm compared with
the state-of-the-art methods on 3D shape unfolding.

Keywords: canonical pose; detail preservation; shape deformation

1. Introduction

The canonical form of 3D shape is very useful for computer graphics applications,
such as shape retrieval [1–3], shape correspondence [4–6] and texture mapping [7,8], as
it largely reduces the complexity of 3D shapes caused by various poses. Currently, a
popular and commonly used method to obtain canonical forms of 3D shapes is MDS,
which comes in classical [9,10], least-squares [11–13], and landmark forms [14–17]. The
basic principle of MDS is to maintain the geodesic distances of vertex pairs for the shapes
under different poses. To achieve this, it minimizes the sum of squared distance differences
between geodesic and Euclidean distances of all vertices pairs on a 3D mesh. However, only
satisfying such distance constraints may suffer from serious distortions, leading to a poor
accuracy for context-based shape retrieval [3]. A possible way to reduce such distortions is
to preserve the local structures of 3D shapes during shape unfolding, that is to make the
shape unfolding as rigid as possible [18,19].

In order to preserve as many geometric structures as possible, some researchers tried to
obtain feature preserved canonical forms. Most of them first utilized the standard MDS [11]
of a shape as guidance, then shape analysis techniques, such as shape deformation based
registration [5] or skeleton [20], are applied to prevent distortions with the help of mesh part
segmentation [21–23]. Recently, Sahillioğlu and Kavan [24] used mass-spring system with
non-linear volume constraints to preserve geometric details. Later, Liu et al. [25] introduced
an automatic mesh unfolding algorithm by solving a semidefinite programming. The basic
idea is to maximize the total variance of the vertex set for a given 3D mesh, while preserving
the details by minimizing locally linear reconstruction errors.
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However, existing shape unfolding methods have several limitations which hamper
their applicability. First, many of them cause significant geometric distortions, as they are
the variants of MDS [11], such as the fast MDS [14], non-metric MDS [26] and accelerated
MDS [27]. Second, the geodesic distances between all pairs of vertices or landmarks
need to be calculated, which is highly time-consuming. Therefore, it is not applicable
for high resolution meshes which have hundreds of thousands of vertices. Third, some
methods [3,28] have tedious operation processes and their performances highly rely on the
accurate execution of each step. Finally, several proposed methods [24,25] need to solve
complex non-linear optimization problems which are always time-consuming. In addition,
it is difficult to guarantee the robustness of these methods.

Motivated by the above issues, we present a novel mesh unfolding method which
has better ability of structure-preserving and ease of use. Our method is based on shape
deformation, a technique that can explicitly control the geometric details of meshes. In
short, we revisit the mass-spring system model proposed by Sahillioğlu and Kavan [24] and
reformulate it in terms of rigid transform energy [19]. Our proposed formulation brings
more benefits. Firstly, our model is very simple which only needs to solve linear systems
during alternate iteration process. Secondly, it can well preserve the rigidity of the original
shape and reduce the geometric distortions as rigid transform energy [19] is considered.
Furthermore, our algorithm can be accelerated by using parallel computation and cascade
strategy further enhances the robustness of algorithm. In addition, the proposed approach
doesn’t need to calculate the pairwise geodesic distances and also has no tedious operation
processes, which are timing-consuming and difficult to control.

In summary, the main contributions of our paper are as follows:

• A novel shape unfolding method is proposed for non-rigid 3D mesh based on shape
deformation technique. It makes the local deformation be approximately rigid and
more details can be preserved.

• The proposed algorithm is easy to implement and parallel computation can be used to
improve its computational efficiency. In addition, cascade strategy is used to effectively
prevent mesh overstretching.

2. Related Work

While canonical form have been improved greatly for the purpose of context-based
shape retrieval or other applications, it still has some issues to a certain degree. In this
section, we will briefly describe the research progress of canonical form of 3D shape. These
works can be classified into two categories, those with details preservation and without. A
recent survey of canonical pose can be found in [29]. Afterwards, as the canonical form
is one of the special poses, we also investigate some related work about fabrication and
beautification.

2.1. Shape Unfolding without Detail Preservation

Elad and Kimmel [11] took the pairwise geodesic distance as input to generate the
coordinates of all vertices that preserved the specified distances. Two strategies were
presented in their paper. One was to calculate the centralized squared geodesic distance
matrix and then eigen-decomposition was applied to obtain the resulting shape. The
other was to produce the result in a least squares sense by using scaling by majorizing
a convex function(SMACOF) to minimise the stress [12]. Unlike the least squares MDS
method, which matched the resulting Euclidean distances to the exact geodesic distances,
Katz et al. [26] only matched the ordering of distances. However, these algorithms are
not applicable in practice for meshes with hundreds of thousands as the computation of
geodesic distance is timing-consuming.

The fast MDS method [14] and accelerated MDS method [27] were proposed to im-
prove the calculation efficiency of geodesic distance from different views. The former
projected the geodesic distance to Euclidean space one dimension at a time and the latter
accurately approximated the pairwise geodesic distance maps through farthest point sam-



Sensors 2021, 21, 1187 3 of 16

pling [30]. However, these methods still need to calculate the pairwise geodesic distance. In
addition, the results generated by these methods have significant geometric distortions in
Euclidean space, which affect the performances of context-based shape retrieval and shape
matching. Rustamov [31] used graph Laplacian matrix, which encoded local geometric and
topological properties of a mesh, to generate canonical form of 3D shapes. Dan et al. [32]
extend the idea of heat kernel signature to robust isometry-invariant volumetric descriptors
for shape retrieval. Similar to the classical MDS method [11], eigenvalues and eigenvectors
of the Laplacian matrix in these methods were used to obtain the canonical form, which
were called as Global Point Signatures. However, they still suffer from serious geometric
distortions. In contrast, our approach applies the local rigid energy which effectively avoids
this issue.

2.2. Shape Unfolding with Detail Preservation

To preserve more details during shape unfolding, some researchers try to obtain
feature-preserving canonical forms. Lian et al. [3] first calculated the standard MDS canon-
ical form for each model. Then the original model was segmented into individual parts
by using random walk [21]. Finally, these parts were assembled according to the resulting
MDS canonical form. The performance of their method, however, largely depends on the
segmentation’s accuracy. Unlike the method proposed by Lian et al. [3], Sahillioğlu [33]
utilized volumetric shape deformation technique based on landmarks MDS [15] to pre-
serve initial geometry details. Pickup et al. [28] used the canonical form of mesh skeleton
as guidance. They first extracted the curve skeleton [34] from a given model. Then curve
skeleton was deformed into a canonical form based on the standard MDS algorithm. Finally,
the skeleton driven shape deformation method [20] was used to generate the canonical
pose. Nevertheless, the performance of their method depends on the accuracy of skeleton
extraction to some extent. In addition, the tedious operation process mentioned above may
limit its scope of application in practice.

Some other researchers try to directly obtain the canonical form with details.
Pickup et al. [35] calculated the canonical form of a shape by stretching out its limbs. They
maximised the Euclidean distances between feature points on the extremities of the mesh
while preserving the original edge lengths. Sahillioğlu and Kavan [24] solved this problem
by a mass-spring system. This method tried to move each vertex as far away from each
other as possible while maintaining the length of finite element. Interior-point method [36]
is used to solve their model which is composed of a non-linear objective function and hard
volume constrains. In [25], Liu et al. proposed an automatic mesh unfolding method which
is solved by semidefinite programming. They first evaluated an approximate pairwise
Euclidean distance matrix with unfolding property by maximizing the total variance of the
vertex set. Then, the standard MDS or least square MDS [11] was implemented to obtain
the final canonical form. However, the above methods only focus on how to preserve edge
lengths, but ignore the edge directions of the mesh. In addition, they use sophisticated
non-linear optimization algorithm [24,25] which highly affects the applications of their
methods. In contrast, our approach imposes constraints on both the edge lengths and
directions. Furthermore, the proposed method only needs to solve linear systems and
parallel implementation further promotes its practicality.

2.3. Other Special Poses

In this section, we discuss the special poses are generated by other objectives, ranging
from beatification to fabrication. Symmetrization, for instance, aims to enhance approx-
imate symmetries of an object by computing optimal displacement vectors that pull the
shape towards symmetry through a constrained deformation model [37]. In the animation
control application, Ref. [38] proposes a fast approach for optimizing parameters such
as spring rest lengths so that the artistically modeled shape represents the equilibrium
after the mesh has settled under gravity. Refs. [39,40] solve another static equilibrium
equation for hair animation based on physically. Ref. [41] optimizes a object into a bal-
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anced pose that makes it stand after 3D printing through iterating between carving and
deformation. Inverse design methods [42,43] obtain a special resting pose for 3D printing
through deforming the mesh into the desired target shape under specified forces when
fabricated. Ref. [44] solves sphere spherical surface parameterization for shapes with
arbitrary topology based on the concepts of electrostatics.

3. Technical Details

In this section we will introduce the details of our shape deformation based unfolding
algorithm. The input of our algorithm is a tetrahedral mesh denoted as S , which has
n vertices and m edges. Ni is the set of vertices connected to vertex i. The embedding
of S is defined by the vertex positions P = {pi ∈ R3, i = 1, 2, ..., n}. Assuming S is
deformed into S ′ that has the same connectivity as S and a different geometric embedding
P′ = {p′i ∈ R3, i = 1, 2, ..., n}.

It is natural to define the cells among the topological elements of the mesh. In
consideration of the required overlap, we choose a vertex-based definition, where each
cell is composed of the edges incident upon a vertex, see Figure 1. Afterwards, we could
measure the deviation from rigid transformation between two cells in a least squares sense.

Figure 1. The illustration of local rigid deformation. Cell Ci and its deformed version C
′

i are composed
of these black edges.

3.1. Rigid Transformation between Two Cells

Given a cell Ci corresponding to vertex i, and its deformed version C ′i (see the black
lines in Figure 1), the approximated rigid transformation between them is defined by
observing the edges emanating from the vertex i in S and S ′. If the deformation is rigid
between Ci and C ′i , then there exists a rotation matrix Ri for all j ∈ Ni such that

p′i − p′j = Ri(pi − pj) . (1)

If the deformation is not rigid, in the least squares sense, we still could find the best
approximating rotation matrix Ri by minimizing

L (Ci, C ′i ) = ∑
j∈Ni

wij‖p′i − p′j − Ri(pi − pj)‖2 , (2)

where, wij is the per-edge weight. According to [19], the optimal rotation Ri can be easily
solved by eigen decomposition. The transformations solved from Equation (2) make sure
the local rigidity of S is preserved and mesh details can not be discarded.

3.2. Shape Unfolding Model

The proposed shape unfolding model inherits the advantages of mass-spring system.
It stretches the distance of non-neighbor vertex pairs on S while preserving the rigidity of
each cell. Our model can be written in the following form:
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L (P′) = −∑
i

∑
j/∈Ni

kij‖p′i − p′j‖2

+ β ∑
i

∑
j∈Ni

wij‖p′i − p′j − Ri(pi − pj)‖2 ,
(3)

where, β is a parameter to balance the two items, wij and kij are the weights for vertex pairs.
Through large experiments, we observe that it obtains satisfactory results when wij and kij
are set to 1. The influence of β will be discussed in Section 4.

In Equation (3), the first item is applied to stretch the non-neighboring vertex pairs as
far from each other as possible. The second item is the summation of Equation (2) for all
vertex, which is used to promote a rigid local deformation.

By setting bij = Ri(pi − pj), the minimization of Equation (3) is equivalent to mini-
mize the following equation

L (P′) = −∑
i

∑
j/∈Ni

‖p′i − p′j‖
2 + β ∑

i
∑

j∈Ni

‖p′i − p′j‖
2

− 2β ∑
i

∑
j∈Ni

(p′i − p′j)
Tbij + β ∑

i
∑

j∈Ni

‖bij‖2.
(4)

Equation (4) can be further rewritten into the following matrix form

L (P′) = −Tr(P′TV1P′) + βTr(P′TV2P′)

− 2βTr(P′TH) + F,
(5)

where, Tr(.) represents the trace of a matrix, V1, V2, H and constant F are given by

V1 = ∑
i

∑
j/∈Ni

(ei − ej)
T(ei − ej),

V2 = ∑
i

∑
j∈Ni

(ei − ej)
T(ei − ej),

H = ∑
i

∑
j∈Ni

(ei − ej)
Tbij,

F = β ∑
i

∑
j∈Ni

‖bij‖2,

(6)

where, ei is the ith row of an identity matrix. Taking the derivative of the unknown P′ and
setting the derivative to zero, we can obtain P′ by solving the following linear system [45]

(βV2 −V1)P′ = βH . (7)

4. Implementation Details

In general, the proposed algorithm can be solved with the following process: given
an initial guess P′0, the local rotations {Ri} are estimated by Equation (2), then {Ri}
are fixed and P′1 is obtained by solving Equation (7). The above progress is iteratively
performed until an satisfactory solution is generated. This strategy is widely used in
computer graphics [19,46]. Our technique can be applied into both triangular mesh and
tetrahedral mesh as the data type used in our algorithm is graph structure. However, the
representation of tetrahedral mesh obtains the better detail-preserving ability because of
the implicit volume constraints. Hence, all experiments are performed on the tetrahedral
meshes in our paper. In the following, we will discuss several important parameters used
in the optimization.
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4.1. Initial Exploration

To evaluate the performance of the proposed method for automatic mesh unfolding,
we first discuss the effects of parameter β. Intuitively, it affects the local rigidity and the
quality of unfolding for a given mesh.

In Figure 2, the Human model (a) is deformed with three different β which are 5× 105,
1× 106 and 2× 106, and the corresponding results are shown in (b), (c) and (d) respectively.
Each of them are obtained with 25 iterations. From these results we can observe that small
β helps to stretch the mesh, however many details are lost, while large β facilitates the
shrinkage of the shape, but it goes against mesh unfolding. The energy curve defined in
Equation (3) with β = 1 × 106 is shown in Figure 2e. We can clearly see that the energy is
almost converged after 15 iterations.

Figure 2. The influences of β. (a) is the original mesh. From (b–d) are the mesh unfolding results
with β = 5 × 105, 1 × 106, 2 × 106, respectively. (e) shows the convergence curve of the objective
function with β = 1 × 106.

From the above discussion we can conclude that choosing a small β results in mesh
overstretching in the early iterations and enlarging β is a trade-off strategy during iterations.
A straightforward strategy is to increase β per iteration. But it is difficult to design a
universal increasing function for β which is suitable for all meshes. Another strategy is to
use cascading algorithm with maximum 15 iterations for each cascade. In each cascade,
the value of β remains the same and it is increased in the next cascade. Figure 3 illustrates
the deformed results with cascading algorithm for the same model shown in Figure 2. The
shape in (a) is deformed through four cascades with initial β = 5 × 105, which is increased
two times in each cascade. The corresponding results are shown in (b)–(e) and energy curve
is plotted in (f). Experiments demonstrate that the cascading algorithm can obtain better
results compared with the fixed value of β. However, cascading algorithm costs more extra
running time. Fortunately, the computation efficiency of our model can be improved by
parallel computation in each cascade. Figure 4 illustrates the influences of different initial
β. We can obtain a series of unfolding results through tuning parameter β, which can meet
the different requirements of users.
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Figure 3. From left to right are the original tetrahedral mesh (a), the result of the first cascade (b), the
result of the second cascade (c), the result of the fourth cascade (d), the result of the fourth cascade (e),
and the convergence curve of the objective function (f). The jumps in (f) are caused by the incremental
increasing of β.

Figure 4. The influences of different initial β. Original glass model (top) understretches with
β = 10 × 106 (second row), overstretches with β = 1 ×106 (fourth row), and unfolds well with
β = 5 × 106 (third row).

4.2. Parameters

Through extensive theoretical and numerical analysis we finally adopt the following
strategies. Each cascade is stopped when it reaches a specified iteration number or the ratio
of energy between adjacent iterations below a given precision. In detail, the initial energy
fs can be calculated by setting P′ = P, the initial β = 5 × 105 for most meshes, enlarging
the initial β is a good try if the result is not satisfactory, the maximum iterations for each
cascade kiter = 15, the precision ε = 10−4 and the maximum number of cascade num = 4.

In addition, if the ratio 1
m ∑m

i=1
l
′
i
li
∈ [0.95, 1.05], we also terminate the iteration. Here l

′
i

and li are the lengths of the ith edge on the intermediate and original tetrahedral mesh
respectively.

Pseudo code of our shape unfolding algorithm is shown in Algorithm 1.
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Algorithm 1 Shape unfolding cascading algorithm
Input: Original tetrahedral mesh S , original edge lengths {li}, initial energy fs, initial β,
the maximum cascading number num, the maximum iterations kiter for each cascade and
the precision ε.
Output: Deformed tetrahedral mesh S ′.

1: i = 1, j = 1.
2: while true do
3: Get {Ri} according to Equation (2).
4: Compute intermediate tetrahedral mesh S ′′ according to Equation (7) and intermedi-

ate edge lengths {l′i}.

5: Compute the ratio δ = 1
m ∑m

i=1
l
′
i
li

.
6: if δ ∈ [0.95, 1.05] then
7: break
8: end if
9: Compute intermediate energy fe according to Equation (5).

10: if | fe/ fs − 1| < ε or i >= kiter then
11: β = 2β, j = j + 1, i = 0.
12: end if
13: if j > num then
14: break
15: end if
16: i = i + 1.
17: fs = fe
18: end while
19:
20: return S ′ = S ′′ .

5. Experimental Details

The proposed mesh unfolding method is tested on a non-rigid 3D watertight meshes
dataset [47]. This dataset provides a wide range of non-rigid shape classes. Each class
contains 20 different poses and each mesh has about 9500 vertices. To improve the com-
putational efficiency, each mesh is first simplified to about 2000 vertices. Then we use
tetgen [48] or [49] to generate the corresponding tetrahedral meshes. We obtain about 513
tetrahedral meshes after removing the failed generation. All experiments are performed on
a laptop with Intel Core i7− 4790K CPU and 32 G RAM.

5.1. Quantitative Metrics

To demonstrate the effectiveness of the proposed mesh unfolding method, we quanti-
tatively evaluate the quality of the resulting canonical poses. Specifically, the metrics are
defined as

Erig =
1
n ∑

i
∑

j∈Ni

‖p′i − p′j − Ri(pi − pj)‖
‖pi − pj‖

, (8)

and

Estr =
2

n(n− 1)

n−1

∑
i=1

n

∑
j>i

d
′
ij − dij

dij
, (9)
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where, Erig measures the accuracy of the local rigid approximation, Estr measures the mesh
stretching between the initial mesh and the canonical pose, d

′
ij and dij are the Euclidean dis-

tances between vertex pairs on the deformed and original mesh. From Equations (8) and (9)
we can clearly see that an embedding with small Erig and large Estr will have good rigidity
and strong stretching ability, respectively.

In addition, we also use the following metric to measure the similarity between the
pairwise Euclidean distances and the corresponding geodesic distances at the deformed
canonical mesh:

Egeo = ‖
D
′

‖D′‖F
− G
‖G‖F

‖F, (10)

where, D
′
ij = d

′
ij is the pairwise Euclidean distance and G

′
ij = g

′
ij is the corresponding

geodesic distance. For each mesh, its value close to 0 imply a good geodesic approximation
as the difference is taken between unit matrices. Based on the Equations (8)–(10), we can
use the empirical cumulative distribution function (CDF) to evaluate the performance of
different algorithms on a whole dataset.

5.2. Comparisons

In this section, we compare the results generated by our approach with the state-of-
the-art methods: the least squares multidimensional scaling method [11] (LSMDS), skeleton
based canonical form [28] (SCF), and detail-preserving mesh unfolding [24] (DPMU). Note
that, the method proposed by Liu et al. [25] is not included in our comparisons because
of its expensive time consuming, which is 20 times slower than DPMU, and its retrieval
accuracy is not the best among the above three methods in the similar dataset [50] from the
recent survey paper [29]. To conduct fair comparisons, LSMDS [11] is modified to accept
tetrahedral mesh as input and the weights for all vertex pairs are set as 1. For the other
methods, all parameters are the same as described in their articles.

In Figure 5, we illustrate the comparison results among our method, LSMDS, SCF and
DPMU. We can observe from this figure that LSMDS always loses some local details of
the original meshes, especially for the models with limbs and end-points. While SCF can
preserve more details than LSMDS, its efficacy highly depends on the the quality of the
skeletal structure which is sensitive to geometry and topology of the mesh. For instance, it
is always difficult to extract the accurate skeleton for hand and bird models. As a result,
SCF cannot obtain satisfactory results for these meshes. DPMU and our method generate
satisfactory results for almost all models. However, our method explicitly preserve the
rigidity of the original mesh.

Figure 6 shows the CDF curves of Erig, Estr and Egeo for different methods on the
dataset [47]. For local rigidity (a), less then 50% samples locate in [0, 2] for LSMDF and
SCF methods, and about 95% samples locate in that interval for DPMU, while almost all
samples locate in that interval for our method. From (b), we can see that all methods can
achieve very similar performances on mesh stretching. In (c), LSMDS can achieve the
best performance on geodesic distance preservation, as they consider geodesic distance as
hard constraints. However, it is hard to keep the local details. DPMU and our approach
have the similar accuracy on this metric and SCF is the worst one. In conclusion, our
method is the best for rigid transformation while keeping good performance on Estr and
Egeo. Similar results also can be found in Table 1. The difference is that they are calculated
on the same category.
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Figure 5. Illustration of mesh unfolding results of different methods. (a) original meshes, (b) the
results of least squares multidimensional scaling method (LSMDS) [11], (c) the results of skeleton
based canonical form (SCF) [28], (d) the results of detail-preserving mesh unfolding (DPMU) [24]
and (e) our results.

Figure 6. The cumulative probability distributions of Erig (a), Estr (b) and Egeo (c) for different
methods.
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Table 1. Comparisons on the same category. Numbers in each cell (·, ·, ·) represent the mean of Erig

(left), Estr (middle) and Egeo (right) for the same category, respectively. For each class, the best is
highlighted.

Methods
Category Ants Cat Centaur Dinosaur Glasses Shark

LSMDS [11] (2.25, 0.20, 0.38) (1.53, 0.14, 0.37) (1.79, 0.19, 0.33) (1.81, 0.22, 0.45) (2.04, 0.80, 0.77) (1.65, 0.15, 0.38)
SCF [28] (2.05, 0.14, 0.89) (1.80, 0.17, 0.89) (2.14, 0.23, 0.96) (1.93, 0.22, 1.09) (2.11, 1.06, 2.05) (1.86, 0.24, 1.10)

DPMU [24] (0.54, 0.16, 0.44) (0.43, 0.11, 0.43) (0.57, 0.18, 0.38) (0.61, 0.24, 0.61) (2.95, 1.55, 1.34) (0.70, 0.22, 0.50)
Ours (0.38, 0.16, 0.44) (0.32, 0.11, 0.43) (0.32, 0.15, 0.37) (0.33, 0.19, 0.55) (0.51, 1.01, 1.05) (0.80, 0.32, 0.58)

DPMU uses local volume of each vertex as constraint which is nonlinear and the
resulting optimization is difficult to solve while the proposed algorithm only needs to
solve two simple linear optimization sub-problems. Therefore, our algorithm is faster than
DPMU. To prove this, four different shapes are selected and the corresponding unfolding
results are shown in Figure 7. In Table 2, we list the running time of our method and
DPMU for these shapes. It is clear see from the third and fourth rows that our method
consumes less running time for all shapes. In addition, the computational efficiency of our
method can be further improved with parallel computation. The last row of Table 2 lists
the running time of our method with parallel computation. Note that, the time consumed
by the pre-processing process, such as the computation of simplification and tetrahedral
mesh which takes about 1.32 s for a shape on the dataset [47], is not taken into account.

Figure 7. Comparison with state-of-the-art method [24]. (a) Original meshes. (b) Results of DPMU.
(c) Our results. The corresponding time consumption is shown in Table 2.
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Table 2. Runing time of examples in Figure 7 (Unit: second).

Models Alien Garilla Snake Woman

Num. of Vertices 4062 5091 4229 4823
Time of DPMU 687.05 190.12 1137.23 147.39

Time of ours 84.12 157.01 83.25 115.57
Time of ours (parallel) 30.87 54.37 31.02 46.95

5.3. Application to Shape Retrieval

In this section, our algorithm is evaluated on non-rigid shape retrieval application [51,52]
and compared with the state-of-the-art methods. Two 3D shape retrieval algorithms,
which are based on the mean squares error of vertex positions after using optimal rigid
transformation (ORT) [53] and the Clock Matching Bag-of-Features (CMBOF) [2], on the
original shapes and the unfolding shapes obtained by LSMDS, SCF, DPMU, and Ours.
For each strategy, we first centre the mesh, normalize its scale and use a combination of
principal component analysis (PCA) [54] and rectilinearity [55] to normalize its orientation.
Then, a similarity matrix is saved for online searching based on some statistical measures.
We use nearest neighbors (NN) [56] for evaluation in this paper, which calculates the
percentage of the closest retrieved shapes that belong to the same class as the query.

Table 3 lists the retrieval accuracy of NN for different methods. From this comparison
we can see that our algorithm can achieve comparable shape retrieval performance among
the state-of-the-art shape unfolding methods. It is worth noting that only using 3D rigid
transformations (ORT) could achieves high accuracy, which is more than 89.5% for all
methods. This demonstrates the efficacy of canonical form in shape retrieval.

Table 3. Retrieval accuracy for different methods on the dataset [47].

Ori LSMDS [11] SCF [28] DPMU [24] Ours

ORT 48.2 91.3 89.5 95.1 94.6
CMBOF - 99.2 99.2 99.5 99.5

6. Integration with User Control

While our algorithm works well on a large number of models, it is difficult to generate
highly uniform canonical forms for models with very different poses. In Figure 8, (a)-left
and (b)-left are two poses of the same person. After mesh unfolding, their legs (a)-right and
(b)-right have different poses. To solve this problem, an extra item is added in Equation (3)
to consider the information provided by users.

L (P′) = −∑
i

∑
j/∈Ni

kij‖p′i − p′j‖2

+ β ∑
i

∑
j∈Ni

wij‖p′i − p′j − Ri(pi − pj)‖2

+ γ ∑
(i,j)∈U

uij‖p′i − p′j − tij‖2

, (11)

where, γ is a parameter to balance the user information, uij is the weight for vertex pairs,
which is also set to 1, U is the control set of vertex pairs and tij is the control vector specified
by user.

Similar to the derivation process of Section 3.2, we can obtain the following linear
system

(βV2 + γV3 −V1)P′ = βH + γK , (12)
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where

V3 = ∑
(i,j)∈C

(ei − ej)
T(ei − ej)

K = ∑
(i,j)∈C

(ei − ej)
Ttij

. (13)

We find that parameter γ has a similar role to β in experiments, so we set γ = β in our
algorithm with user control.

In Figure 8, an example is given to show how to specify vertex pairs and control
vectors by users. As shown in Figure 8c-left, we first pick one point pair pi and pj on the
feet (red nodes), then specify their direction tij and the length after unfolding with the
following strategy. As the intrinsic symmetry plane of this model is perpendicular to z-axis,
that is (0, 0, 1), we restrict tij to be parallel to (0, 0, 1) and the length after unfolding to be
||pi − pj||/2. The result after solving Formulation (11) is shown in Figure 8c-right which
almost has the same pose as the one in Figure 8a-right.

(a) Results of pose 1. (b) Results of pose 2 without user control. (c) Results of pose 2 with user control.

Figure 8. Different poses of the same model ((a)-left and (b)-left) results in different canonical forms ((a)-right and (b)-right).
With user control (red point pair in (c)-left), the quality of the canonical form can be largely improved ((c)-right). The second
and third columns of each subfigure show the same model under two views.

For the Octopus model shown in Figure 9, our method can give a satisfactory result
((a)-middle). However, its tentacles do not in a plane when viewed from another view
((a)-right). Our algorithm with user control can be used to further improve the quality
of the canonical form. We first pick one point at the end of each antenna (red points in
(b)-left). Then the directions and lengths between the adjacent antennas are restricted to
approximate a regular octagon. The resting results are shown in Figure 9b. We can clearly
see that all tentacles are almost in the same plane.

(a) Results before user control. (b) Results after user control.

Figure 9. While the canonical form ((a)-middle) generated with our method for the Octopus model
((a)-left) is satisfactory, its tentacles are not in a plane from the other view((a)-right). To improve it,
we interactively select points at the end of its tentacles shown as red color in (b)-left. The results
shown with two views( (b)-middle and (b)-right), which are obtained by restricting the directions
and lengths of the adjacent points.



Sensors 2021, 21, 1187 14 of 16

7. Conclusions

In this paper, we proposed a novel 3D mesh canonical form generation algorithm
based on shape deformation technique. Through extensive experiments, we can see that
our method can well preserve the local rigidity of original mesh while unfolding. The
non-rigid shape retrieval performance of our method is comparable with the state-of-the-
art method. Meanwhile, the proposed algorithm is very simple and easy to implement
whose computational performance can be further improved with parallel computation and
cascade strategy further enhances the robustness of algorithm. In addition, constraints
specified by users can be easily integrated into our approach to further improve the quality
of the canonical forms.

Despite those advantages, the proposed canonical method can not deal with the
meshes with topological errors [50,57], where parts of the meshes have been incorrectly
fused together or have different genus numbers. As shown in Figure 10, our algorithm
unfolds the legs successfully, but the adhesion remains unchanged. In these cases, we may
need to manually cut the adhesion parts and then perform our shape unfolding algorithm.
In addition, how to choose an adaptive β will be explored in our future work.

(a) Case one. (b) Case two.

Figure 10. Failure cases. Left: the original mesh. Right: the unfold mesh. Our algorithm unfolds the
legs successfully, but the adhesion remains unchanged.

8. Patents

This section is not mandatory, but may be added if there are patents resulting from
the work reported in this manuscript.
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