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Abstract

Over 130 million people are infected chronically with hepatitis C virus (HCV), which, together with HBV, is the leading cause
of liver disease. Novel small molecule inhibitors of Hepatitis C virus (HCV) are needed to complement or replace current
treatments based on pegylated interferon and ribavirin, which are only partially successful and plagued with side-effects.
Assembly of the virion is initiated by the oligomerization of core, the capsid protein, followed by the interaction with NS5A
and other HCV proteins. By screening for inhibitors of core dimerization, we previously discovered peptides and drug-like
compounds that disrupt interactions between core and other HCV proteins, NS3 and NS5A, and block HCV production. Here
we report that a biotinylated derivative of SL209, a prototype small molecule inhibitor of core dimerization (IC50 of 2.80 mM)
that inhibits HCV production with an EC50 of 3.20 mM, is capable of penetrating HCV-infected cells and tracking with core.
Interaction between the inhibitors, core and other viral proteins was demonstrated by SL209–mediated affinity-isolation of
HCV proteins from lysates of infected cells, or of the corresponding recombinant HCV proteins. SL209-like inhibitors of HCV
core may form the basis of novel treatments of Hepatitis C in combination with other target-specific HCV drugs such as
inhibitors of the NS3 protease, the NS5B polymerase, or the NS5A regulatory protein. More generally, our work supports the
hypothesis that inhibitors of viral capsid formation might constitute a new class of potent antiviral agents, as was recently
also shown for HIV capsid inhibitors.
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Introduction

Hepatitis C chronically infects over 130 million people

worldwide [1–2]. There is no vaccine available and standard-of-

care treatment is based on a combination of pegylated interferon

and ribavirin, which has a poor response rate and is plagued with

severe side-effects [3–4]. The search for targeted therapeutics for

HCV has reached a major milestone with the recent FDA

approval of two specific protease inhibitors [5–6], nearly ten years

after the initial discovery of the efficacy of such agents [7]. Initially,

these new drugs will still need to be administered in combination

with the standard-of-care combination of pegylated interferon and

ribavirin. The next advance will most likely be the replacement of

the non-selective interferon by a second targeted antiviral, directed

against another HCV protein, the RNA-dependent RNA

polymerase, NS5B [8–10] and if necessary, a third antiviral, eg.

the most recent discovered inhibitor of the regulatory protein

NS5A [11–12].

A number of obstacles remain. The new anti-NS3 protease

drugs are selective for genotype 1, where the greatest need exists in

the Western countries, since more than half of patients infected

with strains of this genotype are not cured by the interferon plus

ribavirin combination. Even though genotype 1 infections

constitute more than half of all cases, there are five other major

HCV genotypes for which novel pan-genotypic drugs are urgently

needed. Furthermore, the use of target-specific treatments

inevitably leads to emergence of resistant strains, and the first

mutants have already been reported [13–14]. Therefore it will be

necessary to continuously develop novel combination therapies

involving drugs directed against multiple targets.

Core, the capsid protein of HCV, could be a valuable target for

such future drug development [15]. Core is responsible for

assembly and packaging of the HCV RNA genome to form the

viral nucleocapsid [16]. Core dimers and higher-order oligomers

associate on lipid droplets and endoplasmic reticulum with other

HCV proteins thus acting as essential elements of viral particle

assembly possibly through dimerization-driven interaction with

NS3 [17] and other HCV proteins, including NS5A [18]. Core is

the least variable of all ten HCV proteins in clinical isolates of

infected patients, and is very well conserved among the six HCV

genotypes. Core plays a key role in the HCV life cycle during

assembly and release of the infectious particle [19]. Inhibitors of

capsid assembly may interfere with both uncoating of the viral

particle upon infection, formation of new particles and even

destabilization of assembled virions, as was recently demonstrated

for an inhibitor of HIV capsid dimerization ([20]; Kota and

Strosberg, unpublished results).

Inhibition of HCV core dimerization by peptides was reported

previously [21]. Transfer-of-energy assays revealed that the N-

terminal 106 residue fragment of core (core106) is sufficient to

achieve 91% inhibition, and that 15- to 18-residue peptides

derived from the homotypic region (positions 82–106) inhibited
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respectively 50 to 68% of core dimerization (IC50 of 20.9 mM)

[21–22]. Physicochemical properties of binding of the peptides to

core were measured by Fluorescence Polarization Light analysis

(apparent Kd of 1.9 mM), and by Surface Plasmon Resonance

characterization of binding to mature core (apparent Kd of

7.2 mM [21]). Drug-like small molecules, identified using the

assays developed to characterize the core-derived peptide

inhibitors, displayed half-maximal inhibition of core dimerization

and HCV infectivity at 90 nM concentrations [23]. However,

evidence for direct binding to HCV core protein in cells has lacked

so far. We show here that a biotinylated derivative of SL209, one

of these small molecule inhibitors, directly binds to HCV core

presumably at the site of viral assembly in infected cells. Ligand-

based affinity isolation performed on lysates of HCV-infected cells

or on recombinant HCV proteins demonstrated that the presence

of core is required to retain other HCV proteins on the affinity-gel,

thus confirming the central role of core in virion assembly.

Materials and Methods

Compounds, Proteins, Antibodies, Cells, Replicon, and
Viruses

Compounds SL201, SL209 and SL231, and analogues were

made at the Center for Chemical Methodology and Library

Development (CMLD) at Boston University (BU), Boston, and

their synthesis was described previously as compound 15, and 17

in Wei et al., 2009 and as compound 1 and 2 in Ni et al., 2011

[23–24] respectively. SL209-biotin was prepared as indicated

below. HCV core106 (1–106 residues) [21] and core169 (1–169

residues) [21], NS3 helicase (167–631 residues) [17] and NS5A

(30–447 residues) [25], as well as their GST and Flag-tagged

versions of proteins were produced in E. coli and purified by Ni-

NTA affinity chromatography as described previously [17,21–

22,25]. NS5A protein was provided by Drs. I. Herrera-Angulo and

T. Tellinghuisen (TSRI-Florida). Antibodies were obtained from

commercial sources: anti-GST (Sigma–Aldrich), anti-core (MA1-

080) (Thermo Scientific), anti-NS3 [H23] (Ab138830-Abcam),

anti-LAMP1 (ab-24170-Abcam), horseradish peroxidase (HRP)-

conjugated secondary antibodies (Jackson ImmunoResearch) or as

a gift: anti-core polyclonal (R-308) from Dr. J. McLauchlan, anti-

NS5A [9E10] from Dr. T. Tellinghuisen. The hepatoma Huh-7.5

cells were kindly provided by Dr. F. Chisari, (TSRI, California).

The HCV 2a genotype pSGR-JFH1 subgenomic replicon, the

HCV 2a strain JC1 were kindly provided by Dr. T. Tellinghuisen,

Dr. C. Rice and Dr. T. Wakita.

Synthesis of Biotinylated SL209
Dimethyl8-(5-aminopentyl)-4-benzyl-3-oxo-1,2,3,4,7a,8-hexahydroindo-

lo[2,3-d][1,8]naphthyridine-6,7-dicarboxylate (2). The mixture of azide

1 (Ni et al, 2011 [23], 37.0 mg, 66 mmol), triphenylphosphine

(52.3 mg, 0.20 mmol) and water (12.0 mg, 0.66 mmol) in THF

(1 mL) was allowed to stir at 50uC for 5 hr in a sealed microwave

tube. The solution was then concentrated under high vacuum to

remove the solvent, and the residue was purified via flash

chromatography on silica gel, eluting with dichloromethane:-

methanol (5:1, Rf 0.1) to give crude amino compound as a yellow

oil (35.0 mg), which was used in the next step without further

purification.

Biotinylated SL209. A mixture of amine 2 (35.0 mg, 66 mmol) and

Biotin-X (30.0 mg, 66 mmol) in anhydrous THF/DMF (1:1,

1 mL) was allowed to stir at room temperature overnight (12 hour)

in a sealed microwave tube under argon. The solution was

concentrated under high vacuum and the residue was purified via

prep: HPLC (acetonitrile in H2O 10–40%) to give biotinylated

SL209 as a yellow oil (37.0 mg, 71% over 2 steps), SiO2 Rf = 0.4

(dichloromethane:methanol = 5:1). Purity (100%) confirmed by

LC-MS (Fig. 1).

AlphaScreen assay
The core106 Amplified Luminescent Proximity Homogenous

Assay screen (AlphaScreen) assay was developed as described in

Kota et al 2009 [21]. AlphaScreen utilizes photoactive donor and

acceptor beads which recognize specific tags on interacting

proteins [26]. The biological interaction between proteins brings

the beads in close proximity, and triggers a cascade of chemical

reactions. When the donor bead is laser-excited at 680 nm, it

converts the ambient oxygen into singlet oxygen which reacts with

the chemiluminescer in the acceptor bead which in-turn activates

fluorophores contained within the same acceptor bead to emit

light at 520–620 nm. Singlet oxygen has a very short half life and

cannot diffuse more than 200 nm. Hence this cascade of reactions

can only occur when the interacting proteins are in close

proximity. For the core106 AlphaScreen the recombinant purified

proteins were diluted to working concentrations in ‘protein buffer’

(100 mM HEPES pH 7.5, 1 mM EDTA, 5 mM DTT, 0.1%

CHAPS, 10% glycerol). The donor and acceptor beads were

diluted to working concentrations in ‘bead buffer’ (20 mM HEPES

pH7.5, 125 mM NaCl, 0.1% BSA, 0.1% CHAPS). GST-fused

core106 and Flag-fused core106 were used at a concentration of

150 nM each. The untagged core106 domain (10 mM) was added

to the proteins as a reference inhibitor, or SL209 (15 mM), or

SL209-biotin (15 mM) were evaluated on core–core interaction.

GST-core106, inhibitors and then Flag-core106 were incubated at

room temperature for 1 hour. Then anti-Flag acceptor beads

(Perkin Elmer Life Sciences), diluted to a final concentration of

20 mg/ml in bead buffer were added to the plate and incubated for

1 hour at room temperature. Finally, glutathione donor beads

(Perkin Elmer Life Sciences) were added to the proteins at a final

concentration of 20 mg/ml. The assays were executed in a white

384 well Packard opti plate (Perkin Elmer Lifesciences) and were

Figure 1. Scheme for synthesis of Biotinylated SL209.
doi:10.1371/journal.pone.0032207.g001
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read on Perkin Elmer Envision. The data of the uninhibited

control compared to the inhibition by either SL209 or SL209-

biotin were analyzed using unpaired student t-test. SL209 and

SL209-biotin were also dosed with a 4-fold dilution from 160 mM

to 150 pM. The IC50 values were calculated using GraphPad

Prism.

Co-precipitation
Huh-7.5 hepatoma cells were grown for 24 hours before

electroporation with infectious HCV. At day 4 post-electropora-

tion, the supernatant was removed and cells were lysed in 400 ml

of lysis buffer (PBS with 1% Triton X-100, 1 mM PMSF, and

protease inhibitor cocktail) and stored at 220uC. The presence of

HCV proteins core, NS3 and NS5A in cell lysate was verified by

immunoblotting using anti-core, anti-NS3 and anti-NS5A anti-

bodies. For Streptavidin pull-down, 50 mM of SL209-biotin was

immobilized on Streptavidin-agarose beads and was incubated

with 80 ml of cell lysate in incubation buffer (20 mM Tris, pH8.0,

150 mM NaCl, 10% glycerol, 0.05% Triton X-100) for 2 hours at

room temperature under end-over-end agitation. As control,

50 mM of free biotin was incubated with cell lysates. The beads

were washed 3 times and centrifuge at 5000 g for 1 minute using a

SigmaPrepTM spin column and boiled in the SDS loading buffer

for 5 minutes, and the pulled-down proteins were detected by

immunoblotting, using specific antibodies. One-twentieth of the

lysates was included in the blots as input control. For the co-

precipitation of core106 or core169 by SL209-biotin, 50 mM of

SL209-biotin was incubated with 10 mg of core106, core169 or

control protein CTD (C-Terminal Domain of HIV capsid protein

CA). To investigate whether SL209-biotin binds NS3 and NS5A

directly, 50 mM of SL209-biotin was immobilized on Streptavidin

agarose beads and was incubated with either 80 ml of PSGR

replicon lysates or 10 mg of either recombinant NS3 or NS5A. To

confirm the need for core in mediating the binding of SL209-

biotin to NS3 or NS5A, 10 mg of core106 was spiked into the

replicon lysates and co-precipitation was carried out as described

above for the replicon lysate. As a control, 10 mg of CTD was

spiked into the replicon lysate and co-precipitated with SL209-

biotin.

Immunoblotting analysis
HCV lysate proteins were separated electrophoretically on a 4–

20% Tris glycine gradient gel by SDS-PAGE, transferred onto a

nitrocellulose membrane which was saturated with 5% milk in

PBS at room temperature for 1 hour. After incubation with

alternate protein-specific primary antibodies overnight, the

membrane was washed three times with PBS containing 0.01%

tween-20 and three times with PBS. Species-specific HRP-tagged

secondary antibody was added to the membrane at room

temperature for 2 hours. After the incubation, the membrane

was washed three times with PBS containing 0.01% tween-20 and

three times with PBS. Then the membrane was developed using a

HRP-specific chemiluminescent substrate.

Cell Culture and virus production
HCV was produced using previously published protocols [27–

29] and [30–32]. The plasmid containing HCV RNA was

linearized using XbaI and the overhangs were removed by

addition of mung bean nuclease. The templates were purified

using a PCR cleanup kit (Qiagen, Valencia,CA) and 2 mg of this

reaction was used as a template for RNA transcription. The

transcription reaction was performed using a T7 RNA transcrip-

tion kit (Ambion, Ausitn,TX). After a 3 hour synthesis reaction at

37uC RNA was DNase-treated and purified using Rneasy

minicolumns (Qiagen, Valencia, CA). RNA concentrations were

analyzed by specotrophotometry and stored frozen at 280uC until

use. The Huh-7.5 hepatoma cells were routinely cultured in

Dulbecco’s modified Eagle medium supplemented with 10% heat

inactivated fetal bovine serum, 1X Pen-Strep-Gln and 1X non-

essential amino acid at 37uC with 5% CO2 and 95% relative

humidity in 15 cm dishes. For RNA transfection, cells were

washed with phosphate buffered saline (PBS), trypsinized, and

resuspended in complete growth medium. Cells were then

pelleted, washed with ice-cold PBS, and resuspended in ice-cold

PBS at 56106 cells/ml. 10 mg of RNA transcripts were mixed with

400 ml of cells and placed into a 2 mm gap electroporation cuvette

(BTX Genetronics, San Diego, CA) and electroporated with five

pulses of 99 mSec at 860 V over 1.1 seconds in an ECM830

electroporator (BTX Genetronics). After a 30 minute recovery

period, cells were mixed with complete growth medium and

plated. Subgenomic replicon pSGR-JFH1 cell line was grown

under 1 mg/mL G418 selection in the same conditions as the

Huh-7.5 cells.

Immunofluorescence Microscopy
Naı̈ve Huh-7.5 cells were infected with HCV with or without

SL209-Biotin in LabTek II 4-well chamber slides for 3 days.

Infected cells were washed twice with PBS (phosphate-buffered

saline) and then fixed with fixative solution, permeabilized with

digitonin, and blocked following the protocol previously published

[33]. After washing with PBS, cells were incubated with anti-core

(MA1-080 or R308) or anti-NS5A (9E10) primary monoclonal

antibodies and then incubated with anti-mouse secondary

fluorescent antibodies Alexa555 and streptavidin-Alexa488 (In-

vitrogen, Carlsbad, CA) for 1 hour at room temperature. Cells

were finally washed with PBS and mounted with Prolong Gold

mounting medium with DAPI (Invitrogen, Carlsbad, CA). Images

were taken on an Olympus FV1000 confocal laser scanning

microscope (Olympus Corporation, Tokyo, Japan). For visualiza-

tion of the lipid droplets, cells were stained with BODIPY lipid

probes 556/568 (Invitrogen, Carlsbad, CA). The percent inhibi-

tion of HCV infection by SL209 in IHC data was determined by

microscopic observation.

Inhibition of HCV production in Huh-7.5 cells
HCV infectious supernatant was made by electroporation of

HCV RNA into naı̈ve Huh-7.5 cells in 15 cm dishes, incubated for

72 hours, and then infectious culture supernatants were collected

and spun to remove cell debris. The viral titer was calculated by

limiting dilution assay (see below) and all inhibition assays were

performed at a Multiplicity Of Infection (MOI) of 5 to 8. For

inhibition assays, naı̈ve Huh-7.5 cells were seeded into 24-well

plates and incubated for 24 hours to allow adhesion. The

compound was prepared in HCV-infected cell supernatant by

making 1:10 serial dilutions from 100 mM down to 0.001 mM, was

added to cells and incubated for 24 hours. The next day, cell

culture media was removed from each well and replaced with the

same dilutions of compound in fresh complete media, added to

cells, and incubated for another 48 hours (previously referred to as

T1) [17,23]. Supernatant from this time point was then transferred

to naı̈ve cells for 24 hours before removing culture media and

replacing with fresh complete media, without adding new

compound for the remainder of 72 hours (previously referred to

as T2) [17,23]. Two stages of viral infection were studied: T1,

corresponding to the initial 72 hour culture of naı̈ve cells infected

in the presence of the inhibitor, and T2, corresponding to the

second 72 hour passage through naı̈ve cells [17].

Binding of a Hepatitis C Virus Inhibitors
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Quantitative Real Time RT-PCR analysis of HCV RNA
Cells were lysed and RNA was isolated using the RNeasy kit

(QIAGEN, Valencia, CA). DNA was generated using the Taqman

reverse transcription kit (Applied Biosystems, Foster City, CA).

Quantitative Real-Time polymerase chain reaction (PCR) was

performed in triplicate using LightCycler RNA Amplification Kit

HybProbe master mix (Roche) with Taqman MGB Probe 6FAM-

TATGAGTGTCGTGCAGCCTC-MGBNFQ on a model Light-

Cycler480 Real-Time PCR system (Roche). Data are expressed as

the mean fold change plus or minus standard error of 3 replicates

normalized to 100 mg total RNA. Primers used were forward

CTTCACGCAGAAAGCGTCTA and reverse CAAGCACCC-

TATCAGGCAGT.

Cytotoxicity Assay
To perform a XTT-based (2,3-bis(2-methoxy-4-nitro-5-sulfo-

phenyl)5-[(phenylamino) carbonyl]-2H-tetrazolium hydride) cyto-

toxicity assay [34], 8,000 cells in 100 mL volume of colorless

growth media were dispensed into each well of 96-well tissue

culture-treated microtiter plates and incubated overnight at 37uC
(5% CO2, 95% RH) to allow cells to adhere to the plate. The next

day, 100 mL of compound SL209 in DMSO (1.25% final DMSO

concentration) or DMSO alone were added to wells. Growth

medium with compound only was used to normalize the data to

account for background color. Next, the plates were incubated for

72 hours at 37uC (5% CO2, 95% RH). Solution of XTT-PMS

(phenazine methosulphate) was prepared in 1X PBS and added to

the cells in 50 mL volume to each well and incubated for 4 hours at

37uC (5% CO2, 95% RH). After equilibrating the plates to room

temperature for 10 minutes, optical density at 450 nm and

650 nm was measured on Biotek plate reader.

HCVcc Limiting dilution assay (Tissue Culture Inhibition
Dose-TCID50)

After wells were coated with poly-L-lysine (Sigma), naı̈ve Huh-

7.5 cells were seeded at 8000 cells per well in 96-well plates and

incubated overnight at 37uC. Supernatants collected from HCV-

infected Huh-7.5 cells in presence or absence of compound were

titrated with serial 1:10 dilutions, from 0 to 10-6 dilution, in

complete media and added onto Huh-7.5 cells for 72 hours in the

HCVcc limiting dilution assay to determine TCID50 values. After

72 hours, cell supernatant was removed from each well and cells

were fixed with 100% cold methanol for 10–20 minutes at room

temperature. Immunohistochemistry was then performed on fixed

cells beginning with washing cells three times with PBS, then

followed by blocking for 1 hour at room temperature with

blocking buffer containing 0.5% (w/v) saponin, 1% (w/v) bovine

serum albumin (BSA), and 0.2% (w/v) dried non-fat milk in PBS.

Cells were incubated with 0.3% (v/v) hydrogen peroxide for

5 minutes at room temperature to block endogenous peroxidases

before washing cells three times with PBS. Cells were then

incubated with mouse 9E10 anti-NS5A antibody at a dilution of

1:20,000 in PBS buffer containing 0.5% (w/v) saponin for 1 hour

at room temperature or overnight at 4uC and washed three times

with PBS. Secondary goat anti-mouse conjugated with horse horse

radish peroxidase (HRP) antibody was prepared at 1:200 dilution

in PBS buffer containing 0.5% (w/v) saponin and incubated on

cells for 1 hour at room temperature. Cells were washed three

times in PBS. Bound peroxidase was developed with DAB

chromagen containing diaminobenzidine tetrahydrochloride (Vec-

tor Laboratories, Burlingame, CA). Wells with at least one positive

staining of NS5A were counted and the method of Reed and

Muench was used to calculate TCID50 values. Cell nuclei were

stained with hematoxylin 2 to record images (Richard Allan

Scientific, Kalamazoo, MI) under microscope [32].

Results

Biotinylation of small molecule SL209 does not affect
inhibition of dimerization

The AlphaScreen and TR-FRET assays developed for identi-

fying peptide disruptors of core106 or core169 dimerization were

used to identify small molecules with similar properties and lower

IC50, including SL201, its more potent analogue, SL209, and the

dimer of SL209, SL231.Their structures are presented in Figure 2A

[17,21–24]. To prove that small molecule inhibitors of core

dimerization directly bind to core, we prepared a biotinylated

derivative of SL209 (SL209-biotin) (Fig. 2A). We verified by the

core106 AlphaScreen assay that addition of the biotin tag did not

alter the inhibitory activity: SL209-biotin disrupts core dimeriza-

tion by 75% compared to 83% for untagged SL209, 74% for

SL231, and 66% for SL201, another analogue (Fig. 2B). To

eliminate the remote possibility that SL209-biotin binds to either

GST or Flag rather than to core106 itself, we developed two novel

AlphaScreen assays, one with GST-core106 and the other with

Flag-core106. Untagged SL209, when added at 10- to 15-fold

excess, inhibited the binding of SL209-biotin by respectively 83%

and 77% (Fig. 2C).

When analyzed by dose response studies, the IC50 value of

SL209-biotin for inhibition of core106 dimerization was calculated

to be 3.7 mM (Fig. 2D-right panel), compared to 2.8 mM for

SL209 (Fig. 2D-left panel).

SL209 and SL209-biotin reduce HCV RNA production and
HCV infectivity

The effects of SL209 and its biotinylated analogue on the Huh-

7.5 host cells of HCV were comparable: SL209-biotin was only

slightly more toxic to Huh-7.5 cells. Biotinylation did not affect the

capacity to reduce HCV RNA production, measured by Real

Time RT-PCR for SL209-biotin (EC50 = 4.80 mM; EC90 =

47.3 mM) compared to SL209 (EC50 = 3.20 mM; EC90 = 33.9 mM)

(Fig. 2E and Table 1).

Streptavidin-agarose beads coated with SL209-biotin
bind HCV proteins

SL209-biotin bound to streptavidin-covered agarose beads

retains a 15 kDa band corresponding to recombinant core106

(Fig. 3A-top panel) and a 20 kDa band corresponding to core169

protein (Fig. 3A-middle panel), as shown by SDS-electrophoretic

analysis followed by immunoblotting with anti-core antibodies.

The biotin-only control did not retain either one of the proteins.

The control protein HIV CTD (C-terminal domain of HIV core

protein p24) was not retained by either biotin or SL209-biotin

confirming the specificity of the binding of SL209-biotin to core

(Fig. 3A-bottom panel). SL209-biotin retains native HCV NS3,

NS5A, and NS5B proteins contained within HCV-infected cell

lysates, in line with previously reported co-localization studies

(Fig. 3B). The NS5A protein detected here by Western blotting is

the hyper-phosphorylated form which runs at ,58 kDa. The

biotin-only coated streptavidin agarose beads did not retain any of

the proteins contained within the HCV-infected cell lysates. No

protein was captured on beads incubated with lysates of cells

expressing HCV pSGR subgenomic replicon, devoid of core

(Fig. 3C). SL209-biotin alone did not retain either NS3 helicase or

NS5A confirming the need for the presence of core to establish the

interaction (Fig. 3D). As further proof that core is required for

Binding of a Hepatitis C Virus Inhibitors
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binding of SL209 to NS3 and NS5A, the pSGR replicon cell lysate

was spiked with recombinant core106, and analyzed by immuno-

blot: the capsid protein rescued the capture of NS3 and NS5A by

SL209-biotin (Fig. 3E). As a non-related protein control, HIV

CTD was spiked into the pSGR replicon lysate. Co-precipitation

analysis was carried out with SL209-biotin immobilized on

Streptavidin beads and incubated with replicon lysates spiked

with CTD and the resulting eluates were analyzed by immuno-

blotting. CTD did not rescue the capture of NS3 and NS5A by

SL209-biotin which confirmed that core is necessary for this

interaction (Fig. 3F).

Treatment with core dimerization inhibitors strongly
reduces the number of HCV infected cells, visualized by
anti-NS5A antibody

Huh-7.5 cells infected with HCV in presence of 0, 3, or 25 mM

of SL209, were washed after 24-hours, supernatant was replaced

with compound in fresh complete media and cells incubated for an

additional 48 hours. The cytotoxicity index CC50 value for SL209

measured on uninfected cells was found to be above 100 mM and

the EC50 value evaluated by Real Time RT-PCR on HCV-

infected cells was found to be 3.2 mM [23–24]. Immunohisto-

chemical staining of HCV NS5A in infected cells revealed that

SL209 used at 3.125 and 25 mM reduced the number of HCV-

infected cells substantially (Fig. 4). The results shown are

representative of 3 experiments with 4 wells per experiment.

The inhibition of HCV infection by SL209 in immunohistochem-

istry data was studied by microscopic observation. The EC50 value

by Tissue Culture Infectious Dose 50 limiting dilution assay was

calculated to be 5 mM.

Expression of core is required for intracellular staining by
SL209-biotin combined with streptavidin-fluorochrome

HCV-infected cells were treated with SL209-biotin and

Streptavidin-Alexa 488, and then stained by anti-core fluorescent

antibodies. The resulting characteristically dot-like images con-

firmed that the inhibitor was mostly found to be co-localized with

core often but not always on lipid droplets (Fig. 5A). No

streptavidin-mediated labeling was observed in untreated cells

(no SL209-biotin, therefore no Streptavidin-Alexa488 staining)

(Fig. 5B), in uninfected cells (Fig. 5C), or in cells expressing HCV

subgenomic replicon (no core therefore no SL209-biotin binding,

nor Streptavidin Alexa488 staining (Fig. 5D).

Discussion

Direct binding of inhibitors to core
We describe here the first evidence of binding, to the HCV

capsid protein, of a core dimerization inhibitor which reduces

HCV production and infectivity [23]. Direct binding was shown

by using a biotinylated derivative of small molecule drug-like

SL209, that largely maintained the HCV inhibitory properties of

the untagged compound. Using SL209-biotin absorbed on agarose

beads coated with streptavidin, direct physical interaction was

demonstrated by affinity-isolation performed on lysates of HCV-

infected cells, and confirmed with recombinant HCV proteins.

Affinity-binding was shown not only for core, but also for other

HCV proteins which were previously reported to be co-localized

with core on lipid droplets or on ER, namely NS3, NS5A, and

NS5B [18,33,35–36]. In the absence of core, neither NS5A nor

NS3 were retained on the SL209-biotin coated streptavidin beads.

Table 1. Anti-viral activity of SL209 and associated compounds.

Compound Core dimerization IC50 [mM] Cytotoxicity CC50 [mM]
HCV inhibition EC50 by
RT-PCR [mM]

HCV inhibition EC90 by
RT-PCR [mM]

SL201* 9.30 .320 8.80 92.80

SL209* 2.80 .100 3.20 33.90

SL231* 0.10 .100 2.50 25.90

SL209-biotin 3.70 .40 4.80 47.30

The compounds were analyzed in the core dimerization AlphaScreen assay to determine the IC50 values, on naı̈ve Huh-7.5 cells to calculate the CC50 values and finally
on HCV infected (Multiplicity Of Infection – MOI – 5 to 8) Huh-7.5 cells to determine the EC50 values using Real Time RT-PCR.
‘‘*’’indicates previously published in Wei et al. [24], Strosberg et al. [15], Mousseau et al. [17], Ni et al. [23].
doi:10.1371/journal.pone.0032207.t001

Figure 2. Inhibition of core dimerization and of virus production by SL209-biotin and evidence for direct binding to core protein. In
an AlphaScreen assay, glutathione-coated donor beads and anti-flag antibody coated acceptor beads (20 mg/ml each) were used to monitor the
dimerization of GST- and Flag- tagged core106 proteins. GST-core106 (GC106) and Flag-core106 (FC106) were used at 150 nM each and core106 was
used at 1 mM as a reference inhibitor. A: Structures of SL201, SL209, SL231, and SL209-biotin. SL201, is a 513 Da small molecule inhibitor
originally identified to inhibit HCV core dimerization and virus production. SL209, is a SAR analogue of SL201. SL231, is a dimer of SL209. SL209-biotin
is a biotinlyated derivative of SL209. ‘‘*’’ indicates that structures of SL201, SL209, and SL231 have been previously published in Wei et al 2009 [24],
Strosberg et al 2010 [15], and Ni et al 2011 [23]. B: Levels of inhibition. Core106 inhibited 91% and small compounds inhibitors: SL201, SL209,
SL231 and SL209-biotin used at 15 mM inhibited respectively 66%, 74%, 83%, and 75% of core dimerization. C: Direct binding to GST-core106
(GC106) or Flag-core106 (FC106). In a novel AlphaScreen format GC106/SL209-biotin and FC106/SL209-biotin were mixed in 1:1000 ratio and
incubated. Streptavidin donor beads and glutathione coated acceptor beads at 20 mg/ml were used in the detection of the binding. Free SL209 at
50 mM inhibited 83% of SL209-biotin binding to GC106 and 77% of SL209-biotin binding to FC106. D: Dose response analyses. Inhibition levels
were analyzed in a dose response format. The compounds were dosed from 160 mM to 150 pM. The IC50 values for SL209 (right panel) and SL209-
biotin (left panel) were calculated as 3.7 mM and 2.8 mM using GraphPad Prism. E: Inhibition of HCV production. Inhibition of HCV production in
Huh-7.5 cells by SL209 and SL209-biotin was analyzed by adding serially diluted the compounds (individually) and virus onto naı̈ve Huh-7.5 cells. The
supernatants of the cells after 3 days of culture were removed from the initial culture and added to naı̈ve cells cultured for another 3 days. RNA was
purified from lysed cells and analyzed by Real-Time RT-PCR. EC50 values were calculated to be 3.2 mM and 4.8 mM for SL209 (right panel) and SL209-
biotin (left panel), respectively. EC90 values were calculated to be 33.9 mM and 47.3 mM for SL209 (right panel) and SL209-biotin (left panel),
respectively.
doi:10.1371/journal.pone.0032207.g002
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These results confirm that in the affinity-isolation conditions,

SL209-biotin binding is strong enough to retain core complexes

containing other HCV proteins. In support of this observation, co-

localization of core and NS5A proteins with SL209-biotin was

occasionally observed in HCV-infected cells using confocal

microscopy. Despite similar structures, SL209-biotin may thus

differ significantly from another inhibitor SL201, which had

earlier been shown to not only disrupt core dimerization, but also

inhibit interaction with NS3 helicase [17]. Alternatively, assay

conditions and their effect on avidity and affinity may play a major

role in dictating complex formation: in cells, or on agarose beads.

Protein-ligand complexes may be more stable than in the transfer-

of-energy assays optimized to measure inhibition of protein-

protein interactions [21–22].

Figure 3. Affinity isolation on SL209-biotin captures native and recombinant HCV core and core-associated proteins. SL209-biotin
was immobilized on streptavidin agarose beads and incubated with core106 (10 mg) or core169 (10 mg) proteins or lysates of Huh-7.5 cells infected
with HCV J6/JFH-1. The retained proteins were examined by immuno-blotting using anti-core, NS3, NS5A or NS5B antibodies. One-twentieth of the
cell lysate used in the assay was immuno-blotted for all proteins as the input control. As a control, the lysates were incubated with Biotin immobilized
on streptavidin agarose beads. As an additional control, a non-specific protein, CTD (C-terminal domain of HIV capsid protein, p24) was incubated
with immobilized SL209-biotin. A: SL209-biotin captures/co-precipitates recombinant core106 (top panel) and core169 proteins (middle panel) and
does not capture non-specific control protein CTD (bottom panel). B: SL209-biotin captures/co-precipitates core, NS3, NS5A, and NS5B from HCV-
infected Huh-7.5 cells, but C: not from replicon containing Huh-7.5 cell lysates. D: SL209-biotin does not co-precipitate recombinant NS3 and NS5A
proteins. E: Core protein added to replicon-containing Huh-7.5 cell lysates rescues co-precipitation of NS3 and NS5A. F: CTD protein added to
replicon-containing Huh-7.5 cell lysates does not rescue the co-precipitation of NS3 and NS5A.
doi:10.1371/journal.pone.0032207.g003
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Site of binding of inhibitors on core
Our earlier data suggested that the core-derived peptide

inhibitors bound to the core homotypic region, defined previously

as being located between positions 82 and 106 [21,37]. These

peptides share the sequence LYGNEGCGWAGWLLSPRG,

which was independently confirmed as an inhibitor of HCV

RNA production and infectivity [38]. Our small compound

inhibitors were identified using the same screening assays as the

ones developed to identify the peptides [23–24]. However, these

chemicals displayed IC50 values which were at least five times

lower than those of the peptide, suggesting that binding occurs

with higher affinity and possibly not on the same residues than the

peptide. EC50 values for HCV inhibition were about three times

and often much lower (nanomolar range) [23]. This could be

attributed to the fact that the inhibitors disrupt core dimerization,

a step which is necessary for core oligomers to form and remain

stable. As stated previously for the HIV-1 CA-1 inhibitor, a very

limited number of molecules may be sufficient to inhibit the

formation of a functional particle, an observation consistent with

the view that the whole viral capsid constitutes a single target with

multiple binding sites [39].

Intracellular labeling with biotinylated SL209 of
HCV-infected cells

Using SL209-biotin in combination with Streptavidin-Alexa

488, we showed by confocal immunofluorescence microscopy that

the presence of core is indispensable to observe any intracellular

staining: no labeling is observed in uninfected cells nor in cells

infected with HCV replicon or with HIV. Furthermore, SL209-

biotin staining coincides mostly, but not always, with immuno-

staining of core. Cellular co-staining of core and SL209-biotin

occurs often in sites where we could not detect lipid droplets,

mainly on Endoplasmic Reticulum (ER), as determined by staining

with LAMP1 (Lysosomal-associated membrane protein1), an ER

marker protein (Takahashi and Strosberg–unpublished data). This

observation is in line with the recent discovery that the core

protein of high-titer JC1 recombinant HCV virus, used in our

studies frequently exhibits an ER localization [40], rather than the

predominant lipid droplet localization of the core protein of JFH1

virus described in previous co-localization studies in HCV-infected

cells [33,41] and core-transfected uninfected cells [42]. Our choice

of using JC1 in preference to JFH1 was dictated by a much

improved level of viral production: whether this explains a possible

shift of virion production site and lower coating of lipid droplets is

not known [40].

The work presented here supports core, the HCV capsid protein

as a novel target for anti-HCV drug development. We show that an

inhibitor of capsid protein dimerization can specifically and directly

bind to core and core-based complexes with other HCV proteins.

This binding possibly results in disruption of assembly or in

disassembly of the viral particle, leading to reduction of infective

HCV particles. One added advantage of HCV core over the other

currently identified targets is its remarkable conservation among all

six genotypes, especially in the previously described ‘‘homotypic’’

region of dimerization [37]. Inhibitors optimized on the basis of

analogues described here have been found to be equally active on

core proteins of genotype 1a or 1b and to inhibit virus production of

a HCV 2a strain at nanomolar concentration. Despite several

attempts, no resistance mutant were so far found to emerge rapidly

in HCV 2a-infected cells grown in the presence of increasing

concentrations of core inhibitors.

Mechanism of action of SL209
While compound SL209 was identified as an inhibitor of core

protein dimerization, the mechanism by which it blocks HCV

production and infectivity is not yet known. Core multimerizes to

form the capsid of the virus, which together with the viral RNA,

forms the nucleo-capsid. Despite many attempts, core or even its N-

terminal mostly hydrophilic fragment core106, could not be

crystallized, so we do not yet have a good model for the assembled

capsid. While we can exclude any effect SL209 has on entry (no effect

on time-of-addition) [17] or replication (no effect on replicon

propagation [17]), it is likely that the inhibitor of core dimerization

acts on the viral capsid assembly or disassembly. By analogy with

HIV capsid inhibitors [20,39,43], several alternative mechanisms can

be considered for the molecular mode of action of SL209: inhibition

of uncoating of the particle upon penetration, blockade of correct

assembly of the capsid or destabilization of the assembled capsid.

Capsid proteins as targets for viral inhibitors
Several groups have recently proposed viral capsid protein as

targets for antiviral drug development for HBV and HIV. While

capsid-derived natural or stapled peptides displayed relatively modest

binding affinities, small compound inhibitors were described with

quite impressive affinities, IC50 values in solution, and EC50 values in

infected cells [39,43–46]. Cell-based screening yielded small molecule

compound PF-74, a potent inhibitor of HIV capsid assembly which

was shown to have both early stage and late stage effects, in contrast

to other compounds which only displayed late stage activity [20]. Co-

crystallization of compound PF-74 with the HIV CA protein revealed

Figure 4. SL209 strongly reduces number of HCV-infected Huh-7.5 cells. Huh-7.5 cells seeded into 96-well plate were infected with HCV in
the presence of increasing amounts of SL209 and incubated for 72 hours. Cells were fixed with methanol and immunohistochemistry was performed
to stain cells for expression of the HCV NS5A protein with anti-NS5A (9E10) antibodies followed by rabbit anti-mouse HRP-conjugated secondary
antibody. We show here three representative fields containing large number of infected cells of which treatment with SL209 progressively reduces
numbers of cells stained with the anti-NS5A antibody. The left field (‘‘no compound’’) was treated with vehicle, and the following two fields were
treated with 3.125 mM and 25 mM SL209. Wells treated with 25 mM of SL209 showed a substantial reduction in HCV-infected cells. The cells were
counter stained with hematoxylin 2 to visualize the nuclei. Magnification is 106. The data are representative of 4 wells in each experiment and 3
different experiments.
doi:10.1371/journal.pone.0032207.g004
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a novel binding pocket distinct from the one identified earlier for

peptides and in silico screened inhibitors [39,43,45–46]. The present

work demonstrates a direct localization of a biotinylated derivative of

a HCV inhibitor at the presumed site of viral particle assembly

strongly supports the validity of capsid inhibitors as useful molecular

probes to study capsid assembly and to serve as a basis for the

development of potential new antiviral drugs.
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Figure 5. Core is required for labeling by SL209-biotin. Huh-7.5 cells seeded into chamber slides were infected with HCV in the presence of
increasing amounts of SL209-biotin and incubated for 72 hours. Infected cells were probed for expression of core with anti-core antibody and
replicon cells were probed for both core and HCV NS5A protein respectively with anti-core (R-308) anti-NS5A (9E10) antibodies. Alexa555-coupled
secondary antibody was used to detect bound specific antibody. Huh-7.5 cells are stained with DAPI to localize nuclei, and studied by confocal
microscopy. In immunofluorescence studies of HCV-infected cells, treated with 2 mM of SL209-biotin (below the EC50 value of 4.8 mM) and
streptavidin-Alexa488 and labeled for core, SL209-biotin can be seen to penetrate the infected cells (Fig. 5A). No such labeling could be observed
when compound is not present (Fig. 5B), in uninfected cells (Fig. 5C), or in cells expressing HCV subgenomic replicon which produce NS5A but not
core (Fig. 5D). Magnification was 106with 36 optical zoom and the images were cropped to display the field of interest.
doi:10.1371/journal.pone.0032207.g005
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