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Summary

For investigations into fate specification and cell rearrangements in live images of preimplantation embryos,
automated and accurate 3D instance segmentation of nuclei is invaluable; however, the performance of
segmentation methods is limited by the images’ low signal-to-noise ratio and high voxel anisotropy and the
nuclei’s dense packing and variable shapes. Supervised machine learning approaches have the potential to
radically improve segmentation accuracy but are hampered by a lack of fully annotated 3D data. In this
work, we first establish a novel mouse line expressing near-infrared nuclear reporter H2B-miRFP720. H2B-
miRFP720 is the longest wavelength nuclear reporter in mice and can be imaged simultaneously with other
reporters with minimal overlap. We then generate a dataset, which we call BlastoSPIM, of 3D microscopy
images of H2B-miRFP720-expressing embryos with ground truth for nuclear instance segmentation. Using
BlastoSPIM, we benchmark the performance of five convolutional neural networks and identify Stardist-3D
as the most accurate instance segmentation method across preimplantation development. Stardist-3D,
trained on BlastoSPIM, performs robustly up to the end of preimplantation development (> 100 nuclei) and
enables studies of fate patterning in the late blastocyst. We, then, demonstrate BlastoSPIM’s usefulness as
pre-train data for related problems. BlastoSPIM and its corresponding Stardist-3D models are available at:
blastospim.flatironinstitute.org.

Introduction 1

During preimplantation development of the mouse embryo, two consecutive cell fate decisions, coupled to 2

cellular rearrangements, set aside precursors of extraembryonic tissues from cells which will form the body 3

of the embryo. Live images of embryos expressing fluorescently tagged proteins are particularly useful for 4

learning the rules by which cells in the embryo dynamically interact with each other to specify these fates 5

during development; however, deriving mechanistic insights from these images depends on extraction of 6

quantitative information about cellular features, such as the position of each cell or the expression levels 7

of specific proteins within each cell. Accurate segmentation of nuclei is a first step towards such a goal, 8

as a cell’s nucleus is a good proxy for cell position relative to its neighbors and can contain information 9

about cell-fate-specifying protein expression. To quantify these features, the segmentation must not only 10

classify each voxel as foreground (i.e., belonging to nuclei) or background, but also assign each “instance” 11

(i.e., nucleus) with a distinct label (S1 Intro Fig). 12

Studying the dynamics of development requires instance segmentation not for a single frame, but for a 13

(3+t)-D series of images of a developing embryo. To observe both fate decisions in preimplantation embryos, 14
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these movies start at the early morula stage (8-cell embryo) and end at the late blastocyst stage (>100-cell 15

embryo), encompassing approximately 48 hours of development. Acquisition of a time lapse at sufficient 16

spatial and temporal resolution to follow individual cells through 48 hours yields nearly 200 3D images (each 17

composed of ≈60 2D slices), containing a total of ≈ 10,000 individual instances of nuclei; thus, manual 18

segmentation of every instance in every frame is not feasible. Although classical image analysis methods have 19

had success in automated nuclear segmentation [1–3], these methods often require high signal-to-noise ratio 20

(SNR) images and tuning of parameters by hand. Shallow-learning methods, such as ilastik, offer an alternative 21

solution for instance segmentation [4]; however, since these methods have relatively few trainable parameters, 22

their performance saturates as the training set’s size grows [4]. Supervised deep-learning methods have 23

many trainable parameters; thus, the performance of these networks benefit greatly from large ground-truth 24

sets, which allow the networks to learn salient features. Relative to classical and shallow-learning methods, 25

deep-learning methods often generalize better across biological conditions and microscopy types [5]. 26

Currently several supervised deep learning methods are available for nuclear segmentation of 3D images 27

(S2 Intro Fig). Many widely used methods have architectures that form a U-shape and predict, at the network 28

output, one or more semantic maps (S2 Intro Fig). The U-shape comes from progressive downsampling 29

of the resolution, then upsampling to the original resolution. For example, QCANet, specifically designed 30

to segment nuclei in early mouse embryos, uses two separate 3D U-Nets for instance segmentation. The 31

two U-Nets are trained to predict the foreground-background segmentation and the center of each nucleus, 32

respectively, and with these two outputs, marker-controlled watershed produces instances. Another method, 33

U3D-BCD, uses a single modified U-Net to predict three different outputs: a foreground-background map, 34

a map of instance contours, and a signed-distance map. The first two outputs are used to locate seeds for 35

watershed performed on the signed-distance map. These examples illustrate that U-Nets predict semantic 36

maps by which post-processing methods like marker-controlled watershed decode the instances. 37

Not all 3D instance segmentation methods require the U-shape though. Though the user can choose 38

a U-Net backbone instead, Stardist-3D’s default is to avoid downsampling by using a linear arrangement 39

of convolutional blocks, followed by residual blocks that allow for deeper nets without performance loss. 40

Stardist-3D predicts two outputs: whether a given voxel belongs to a nucleus and a set of distances to the 41

nucleus boundary, assumed to be star-convex. Instead of a U-Net, another method, called RDCNet, applies 42

the same block iteratively to refine an output (S2 Intro Fig). The output includes a foreground-background 43

mask and a vector pointing from each voxel to its instance’s center. Thus, these two methods avoid the 44

U-shape and predict vectors, either to the boundary or the center. For a more detailed discussion of relevant 45

methods, see the Methods section and S1 Table. 46

Since various deep-learning methods have different number of trainable parameters, different architectures 47

and different assumptions about nuclear shape (e.g., star convexity), it is difficult to know a priori which 48

method will segment nuclei most accurately for any biological system of interest. To answer this question, 49

ground-truth data is needed to a) train each network on relevant image annotations and b) to comprehensively 50

test network performance by quantifying overlap between each instance in the ground-truth test set and each 51

instance in the model output. 52

A study by Tokuoka et al. documented one of the first attempts to compare the performance of different 53

deep-learning methods (including their method QCANet, another 3D U-Net [6], and 3D Mask R-CNN [7]) on 54

a large ground-truth dataset of nuclear instance segmentation in the mouse embryo [8]. Their ground-truth 55

dataset spans from the 2-cell stage to at most the 53-cell stage (S2 Table) and enabled state-of-the-art 56

performance for QCANet on the early stages of development, up to approximately the 16-to-32-cell stage. 57

The deterioration in performance of their model for later stages of development is likely due to the scarcity of 58

training data past the 32-cell stage. The packing of nuclei in space becomes denser as development progresses, 59

which leads to improper merging of two or more nuclei into a common instance. 60

Tokuoka et al.’s study demonstrates a clear need for improved nuclear instance segmentation that would 61

perform accurately up to the end of preimplantation development (> 100-cell blastocyst stage) in live images. 62

For example, the first fate decision in mammalian preimplantation, though initiated at the 8-to-16-cell 63

transition, does not generate two fate-committed populations until the ≈ 64-cell stage [9]. Thus, to quantify 64

this fate decision – which differentiates those cells on the surface of the embryo (the trophectoderm, or TE) 65

from those on the inside (the inner cell mass, or ICM) – requires extending accurate instance segmentation 66

from the 8-to-64 cell stages. Studying the next fate decision, in which ICM cells differentiate into epiblast 67

and primitive endoderm cell populations that spatially segregate, requires accurate segmentation for later 68
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stages, up to peri-implantation ( > 100 nuclei). 69

To this end, here we first generate a mouse line that expresses a near-infrared nuclear reporter H2B- 70

miRFP720. H2B-miRFP720 is well suited for live imaging because of its reduced phototoxicity and its lack of 71

spectral overlap with reporters in the visible range. Then, we generate a large dataset, called BlastoSPIM (1.0), 72

of light-sheet images of H2B-miRFP720-expressing preimplantation embryos with corresponding ground-truth 73

for nuclear instance segmentation. We use this dataset – that extends from the 8-cell stage to the >100-cell 74

stage – to train and test five different deep-learning methods, including Cellpose, Stardist-3D, RDCNet, 75

U3D-BCD, and UNETR-BCD. We find that the Stardist-3D model, trained on BlastoSPIM 1.0, achieves 76

state-of-the-art performance, detecting nuclei with high accuracy in early to mid-stage preimplantation 77

embryos, even with low SNR images. Next, to further improve segmentation accuracy at later embryonic 78

stages, we generate a new ground truth dataset, termed BlastoSPIM 2.0, on blastocyst embryos and show that 79

Stardist-3D trained on this dataset achieves similarly high nuclear segmentation accuracy even for embryos 80

with >100 cells. Using the two (early and late) Stardist-3D models, we quantify how ICM-TE differences 81

in nuclear aspect ratio become larger between the 32- and 64-cell stages, then decrease slightly by the > 82

100-cell stage; by contrast, ICM-TE nuclear volume differences – non-existent at the 32-cell stage – develop 83

by the 64-cell stage and persist to the > 100-cell stage. We close by demonstrating that our dataset and 84

corresponding models can aid in nuclear segmentation in other system, as in Platynereis dumerilli embryos. 85

Materials and methods 86

Transgenic mouse line generation 87

The H2B-miRFP720 transgenic mouse line was generated by targeting the TIGRE locus using the 2C-HR- 88

CRISPR method [10]. Two targeting plasmids were constructed with InFusion cloning (Takara Bio), one 89

consisting of 5’ and 3’ homology arms (each 1kb in length), surrounding H2B-miRFP720 driven by a CAG 90

promoter and flanked by rabbit beta globin polyA sequence; the second construct contained an additional 91

ORF-2A preceding H2B-miRFP720 flanked by a bGH polyA sequence. A single guide RNA (sgRNA) designed 92

using CRISPOR [11] was used to target the TIGRE locus: CAUCCCAAAGUUAGGUGUUA (Synthego). 93

CD1-IGS mice (Charles River strain 022) were used as embryo donors. Briefly, female CD1-IGS were 94

superovulated at 5-7 weeks of age using 7.5IU PMSG (Biovendor) administered by IP injection followed by 95

7.5IU HCG (Sigma) by IP injection 47 hours post PMSG. Super ovulated females were mated to CD1-IGS 96

stud males and checked for copulatory plug the following morning. 97

Cytoplasmic microinjection of 2-cell embryos was performed as previously described [10, 12]. Briefly, 98

embryos were harvested at the 2-cell stage on E1.5 by flushing the oviducts with M2 Media (Cytospring) 99

and each cell was microinjected with 100ng/ul Cas9 mRNA (made by IVT (mMESSGAE mMACHINE SP6 100

transcription kit, Thermo Fisher) using Addgene plasmid 122948), 30ng/ul donor plasmid and 50ng/ul sgRNA, 101

using a Leica Dmi8 inverted epifluorescent microscope, an Eppendorf Femtojet and a Micro-ePore (WPI). 102

Embryos were immediately transferred into the oviducts of pseudopregnant female CD1 mice. N0 pups were 103

identified using over-the-arm PCR primers (Fwd:tcagcctacctcaccaactg, and Rev:ccccatcgctgcacaaaata) and 104

outcrossed to CD1-IGS mice. N1 animals were genotyped using the same primers and the transgene was Sanger 105

sequenced. The N1 generation was further outcrossed twice before incrossing the line to obtain homozygous 106

mice. Homozygous and heterozygous offspring were distinguished using a wild-type PCR of the TIGRE locus 107

(TIGRE WT Fwd:CTTTCCAGTGCTTCCCCAAC and TIGRE WT Rev: CCCTTTCCCAAGTCATCCCT). 108

The first mouse line showed varying levels of H2B-miRFP720 fluorescence in cells of preimplantation 109

embryos, while the second ORF-2A-H2B-miRFP720 mouse line showed ubiquitous expression. Therefore, 110

the ORF sequence was deleted in 2-cell embryos isolated from this mouse line using the following sgRNAs: 111

GGUGACGCGGCGCUGCUCCA and CAUGCCCAUUACGUCGGUAA, resulting in a truncated ORF with 112

a functional 2A peptide. Founders and subsequent generations were established from this line, herein referred 113

to as the H2B-miRFP720 mouse line, and ubiquitous H2B-miRFP720 fluorescence was confirmed once again 114

in embryos. 115

Other transgenic mouse strains used in this study include Cdx2-eGFP [13] and mT/mG [14]. The 116

unpublished Halo-Yap mouse line was generated in the lab of Janet Rossant by targeting a Halo tag to the 117

5’ end of the endogenous Yap allele. The Halo tag is visualized by adding JF646 Halo tag ligand to the 118
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culture media. Note, in this work the Halo-Yap mouse line is only used to demonstrate that a combination of 119

spectrally distinct reporters can be used together with H2B-miRFP720. 120

Dataset Acquisition 121

Embryos were obtained from naturally mated or superovulated H2B-miRFP720 females mated to either 122

wild-type (CD1) or H2B-miRFP720 males. Embryos were isolated at E1.5 (2-cell), or E2.5 (8-cell) in M2 123

media and were cultured in Embryomax KSOM (Sigma-Aldrich) under paraffin oil (Life Global Paraffin Oil - 124

LGPO from Cooper Surgical) in a V-shaped imaging chamber at 37°C, with 5% O2 and 5% CO2. Images 125

were acquired on an InVi SPIM (Luxendo/Bruker). To limit light exposure to the embryo, we acquired a 126

full 3D image of each embryo at 15- minute intervals, with 2.0 µm z-axis resolution and 0.208 µm x- and 127

y-axis resolution. Typically, the embryos were imaged from the 8-cell stage until the 64-cell stage or to the 128

>100-cell stage, resulting in a duration of 48 hours or more. Raw time-lapse images were compressed to 129

keller-lab-block (klb) format, on the fly. 130

Dataset Annotation 131

Raw 3D images of developing embryos were manually annotated using AnnotatorJ, an ImageJ plugin that 132

supports both semantic and instance annotation. Images were loaded into the tool as Z stacks in .tiff format. 133

For all images, brightness and contrast were adjusted by using the ‘auto’ and ‘reset’ functions in ImageJ. 134

’Instance’ was selected as the annotation type. For each nucleus, the top or the bottom slice was found by 135

comparing consecutive Z slices, and a contour was drawn for every slice that contained the nucleus. The 136

coordinates of the regions of interest (ROIs) enclosed by the contours were then saved in an individual file. 137

After each instance was annotated, the contours were overlaid on the image to distinguish the instance from 138

unannotated ones. Five individuals annotated, and an expert checked for annotation errors, via a custom 139

MATLAB code, before incorporation into the dataset. 140

Dataset Characteristics 141

The BlastoSPIM 1.0 dataset includes 573 fully annotated 3D images of nuclei in mouse embryos, each 142

manually curated for annotation. Across all images, there are 11708 individual nuclear instances annotated 143

and 116 annotated polar bodies. Not all of these 3D images come from different time series. For example, 144

for one developing mouse embryo, we annotated 89 consecutive time-points, and for another embryo, we 145

annotated 100 consecutive time-points. Both of these time-lapse annotations extend from the 16-cell stage to 146

the approximately 64-cell stage. The total number of distinct embryos imaged and annotated is 31. 147

Aside from diversity in developmental stage, the embryos in this dataset express different H2B-miRFP720 148

alleles (see details in mouse line generation) and were also imaged with different laser intensities. This 149

diversity in SNR allows us to test whether model performance degrades significantly as SNR decreases. We 150

quantify SNR in our case by calculating mean foreground intensities and mean background intensities. We 151

report the distribution of SNRs, one point for each fully annotated 3D image, as the difference between mean 152

foreground and mean background in (S1 Fig). For comparison, the background intensity – in gray values – 153

typically has a mean of 118 and a variance of 10-14. 154

The BlastoSPIM 2.0 dataset consists of 80 annotated images of late-stage embryos ( S2 Fig). This set 155

includes 6628 nuclear instances. Because the lowest SNRs in the last blastocyst set were higher than the low 156

SNR cutoff used for the original set (S1 Fig), we simply selected a few of the lowest SNR images from the 157

late blastocyst set to incorporate into the existing low SNR set. When added to our original ground-truth 158

set, the final number of annotated images is 653, and the number of annotated nuclear instances is 18336. 159

Dataset Splits and Evaluation Metric 160

When splitting our dataset into a training set, a test set, and a validation set, our main objective was to 161

quantify how model performance varies as a function of both developmental stage and SNR. For BlastoSPIM 162

1.0 we created two separate test sets, one for low SNR and one for moderate SNR, each of which contained 163

a diversity of developmental stages. We define “low SNR” and “moderate SNR” by comparing the mean 164
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foreground intensity to the mean background intensity. The “low SNR” images all have a mean foreground 165

intensity which is at most 134 gray values, approximately 15 gray values above the typical mean background 166

intensity. For reference, the background intensity – in gray values – typically has a variance of 10-14 (S1 167

Fig). Within both the moderate SNR and the low SNR sets, we group annotated embryos based on their 168

developmental stage, estimated by the number of nuclei (i.e., ≈8-cell, ≈16-cell, ≈32-cell, ≈64-cell, >100-cell). 169

Each set deliberately contains more images from earlier stages than later stages so that the total of number 170

of nuclei per developmental stage is at least partially equalized across stages. Table 1 and S6 Table specify 171

the composition of the moderate SNR and low SNR sets, respectively. From the BlastoSPIM 2.0 dataset, 8 172

embryos from various stages were used as a test set, as early as the 48-cell stage and as late as the 107-cell 173

stage (S2 Fig). The remainder of the data, 72 annotated embryos, were either for validation or training. The 174

exact breakdown is specified at blastospim.flatironinstitute.org . 175

To evaluate how well the models performed on the test sets, we computed the intersection-over-union 176

(IoU) between the models’ segmentation and the ground truth. We considered an instance in the models’ 177

segmentation to match an instance in the ground truth if the IoU between the two was at least 0.1. We 178

acknowledge that this IoU cutoff is small; nonetheless, because one of our main future goals is the tracking of 179

instances over time, an instance that weakly overlaps with the true 3D nuclear instance is preferred to having 180

no instance at all. We also provide how performance varies as a function of this IoU threshold. For the sake 181

of reproducibility, the train-test-validation split for all the models in Table 1 is specified on the BlastoSPIM 182

website. We additionally specify the model hyperparameters used for each evaluation table. 183

Statistical Comparison of TE and ICM nuclei 184

The ICM-TE comparisons in this study are based on aspect ratio and volume. For the quantification of 185

aspect ratio, we use the same procedure – based on calculating the moment of inertia tensor – described 186

in [15]. The quantification of volume relies on directly the number of voxels in the instance and multiply the 187

sum by the voxel volume. 188

For the nuclear properties we measured, such as the aspect ratio, we compared on an embryo-by-embryo 189

basis, via a Mann-Whitney U-test, the median of the TE nuclei and the median of the ICM nuclei. The null 190

hypothesis is that for the nuclear property being measured, like volume, the distribution of that property 191

for ICM nuclei has the same median as the distribution for TE nuclei. Since this test returns a p-value for 192

each embryo, we combine the results of the different embryos via a Fisher’s combined probability test [16,17], 193

which assumes that the original p-values are independent of each other and equally trust-worthy. On the other 194

hand, for comparing the same fate population across stages, the pooled distributions are directly compared 195

via a Mann-Whitney U-test. 196

Results 197

0.1 Establishment of a near-infrared nuclear reporter mouse line 198

Multicolor imaging is key to simultaneous recording of morphogenesis and cell fate specification. To enable 199

visualization of cell nuclei in concert with various other molecular markers, which are typically tagged with 200

green, red or far-red fluorescent proteins, we generated a novel spectrally distinct near-infrared nuclear 201

mouse line expressing H2B-miRFP720 (Fig 1(A)-(B)). First, using 2C-HR-CRISPR [10] we targeted CAG 202

H2B-miRFP720 to the TIGRE locus [11]. Early preimplantation embryos from this line showed uniform 203

H2B-miRFP720 expression; however, by the mid blastocyst stage significant dimming of the fluorescent 204

signal was noted, even in freshly isolated embryos (data not shown). A second mouse line harboring CAG 205

ORF-2A-H2B-miRFP720 in the TIGRE locus however did not exhibit the same dimming issue, and rather 206

showed a slight increase in H2B-miRFP720 intensity during preimplantation development. We therefore used 207

two sgRNAs to delete the ORF-2A with Cas9 in this line, resulting in a CAG H2B-miRFP720 line (hereafter 208

referred to as the H2B-miRFP720 mouse line) with bright reporter expression across all preimplantation 209

stages (Fig 1(A)-(B)). This mouse line not only allows simultaneous imaging of up to four different reporters 210

in mouse embryos (Fig 1(C)), but also results in reduced phototoxicity. Furthermore, the long wavelength 211

used for its detection makes H2B-miRFP720 ideal for deep-tissue imaging. 212
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0.2 A novel ground-truth dataset of preimplantation mouse embryos for com- 213

paring nuclear-segmentation methods. 214

Using selective plane illumination microscopy (SPIM) we acquired 3D live images of H2B-miRFP720-expressing 215

preimplantation embryos at various developmental stages. By careful manual annotation, we created a new 216

ground-truth dataset with full 3D nuclear instance segmentation. This dataset, which we call BlastoSPIM 1.0 217

(concatenation of blastocyst and SPIM), is one of the largest and most complete of its kind (S2 Table) with 218
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Fig 1. BlastoSPIM datasets, ground truth of nuclear instance segmentation for embryos
expressing a novel near-infrared nuclear marker. (A) Schematic of targeted TIGRE locus with the
CAG-H2B-miRFP720 insert. (B) Top: cartoon of preimplantation development in the mouse. After
fertilization, the zygote undergoes rounds of division in the oviduct. At the 8-cell stage, compaction and
polarization occur. By the 32-cell stage, a subset of cells called the trophectoderm (TE) form the embryo’s
surface; the remaining cells form the inner cell mass (ICM). The ICM cells begins to pattern into two fates,
primitive endoderm (PE) and epiblast (EPI), by the 64-cell stage; by implantation, around the > 100-cell
stage, the two inner fates are spatially segregated. Bottom: Maximum-intensity projected images – acquired
with SPIM – of preimplantation embryos expressing H2B-miRFP720 at different developmental stages. Scale
bar: 10 µm. (C) Preimplantation embryo expressing four spectrally distinct fluorescent reporters:
CDX2-eGFP; membrane-tdTomato (mT/mG); Halo-YAP and H2B-miRFP720. Maximum intensity
projections of images acquired with SPIM. Scale bar: 10 µm. (D) Live imaging preimplantation development.
Green: light sheet used for illumination. Blue: emitted light is collected by the detection objective. (E)
Histogram of number of nuclei per embryonic stage (represented by embryo cell number) for both
BlastoSPIM 1.0 (blue, used for initial benchmarking of methods) and BlastoSPIM 2.0 (red, used for
extending accurate segmentation to later stages). For four embryos from different stages, the ground truth of
nuclear segmentation are shown.
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more than 570 high-resolution, light-sheet images (Fig 1(E)). Fig 1(E) shows the number of annotated nuclei 219

per developmental stage, from the 8-cell stage to beyond the 100-cell stage (see Dataset Characteristics for 220

details). In total, across these images, approximately 12,000 nuclei are annotated. The quality, detail, and 221

size of the BlastoSPIM dataset makes it unique relative to other currently available ground truth datasets for 222

nuclear instance segmentation (S2 Table). 223

The BlastoSPIM 1.0 dataset, rather than focusing exclusively on early stages of development like the 224

16- cell stage, contains a wide range of developmental stages, particularly the 32-to-64 cell stages. To 225

quantitatively illustrate the challenges posed by densely packed nuclei for instance segmentation, with 226

BlastoSPIM 1.0 we calculated how nucleus-to-nucleus distances change from the 16-cell stage to the >100-cell 227

stage. As a summary statistic for the density of nuclei, we computed the shortest distance from a nucleus’s 228

surface to another nucleus’s surface (Fig 2). The median of this distance is typically 6.0 µm at the 16-cell 229

stage, 2.9 µm at the 32-cell stage, 1.8 µm at the 64-cell stage, and ≈0.5 µ at the >100-cell stage. This 230

drop in nearest-neighbor distance, with an increasing number of nuclei having a < 1µm nearest-neighbor 231

distance with successive developmental stages, is not accompanied by a comparable decrease in nuclear size 232

(Fig 2); thus, the task of instance segmentation is expected to be considerably more difficult as development 233

progresses.

Fig 2. Nearest-neighbor distances between nuclei decrease dramatically during development.
(A-D) Example z-slices and quantification for 16-cell (A), 32-cell (B), 50-to-64-cell (C), and >90-cell (D)
embryos. The first two rows contain images and corresponding annotations. Each red arrow indicates the
nucleus’s effective radius, the radius of a sphere of equivalent volume. The gray lines indicate examples of
shortest surface-to-surface distance. The third and fourth rows show that the effective radius and the
shortest surface-to-surface distance decrease during development. Illustrations in the bottom histograms
show that the latter decreases more than the former. Median of histogram in black. Scale bar: 10 µm.

234

The challenge for instance segmentation is due not only to nucleus-to-nucleus juxtaposition, but also to 235

characteristics of image acquisition. For example, live images often have low SNRs because the exposure 236

of embryos to light has to be limited to prevent phototoxicity [18]. In addition, the sample is imaged 237
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along a single axis (the z-axis, by convention), resulting in voxel anisotropy – poorer z-resolution than 238

xy-resolution. Our ground-truth dataset contains a range of SNR values (S1 Fig) and has a voxel anisotropy 239

of approximately 10. In summary, because of its size as well as its diversity in both developmental stage and 240

SNR, our ground-truth dataset of manually annotated 3D instances of nuclei is uniquely suited to interrogate 241

the performance of any existing segmentation method – for achieving accurate nuclear instance segmentation 242

in preimplantation mouse embryos. 243

0.3 Benchmarking of five instance segmentation methods on BlastoSPIM 1.0 244

reveals superior performance of Stardist-3D. 245

We used our ground-truth dataset to compare five instance segmentation networks (in S1 Table), including 246

Cellpose [19], Stardist-3D [20], RDCNet [21], U3D-BCD [22], and UNETR-BCD [23]. These methods span a 247

variety of network architectures, from those including recurrent blocks or transformers to more conventional 248

U-Nets. They also represent the instances in different ways. For example, Stardist-3D computes a set of 249

distances to the boundary, while Cellpose predicts gradients that are tracked to the instance center (S2 Intro 250

Fig). Notably, we chose not to test QCANet [8] – the net currently reported to be the state-of-the-art in 251

nuclear instance segmentation in early mouse embryos – because its two U-Nets are not jointly optimized, 252

which unnecessarily increases the number of parameters, and because it cannot directly handle anisotropic 253

images. 254

We trained each model with data from 482 3D images of embryos from BlastoSPIM 1.0 and then evaluated 255

on two distinct test sets, one of low SNR data and one of moderate SNR data. We first evaluated the 256

performance on the test set of 30 3D moderate SNR images. To interrogate stage-specific performance, we 257

divided this test set into developmental stages such that it contained approximately 120 nuclei from each 258

stage (e.g., more images from earlier stages than later stages). To benchmark each method, we compared 259

the ground-truth instances and model-inferred instances by computing matches based on the intersection- 260

over-union (IoU). Based on this matching, we computed the precision, recall, and average precision, which 261

are defined respectively as: TP
TP+FP , TP

TP+FN , TP
TP+FP+FN , where TP, FP, and FN are the number of true 262

positives, false positives, and false negatives, respectively. Whereas the precision and recall only penalize false 263

positives and false negatives, respectively, the average precision penalizes both similarly. Table 1 shows the 264

performance of each method at each developmental stage from the 8-cell stage to beyond the 100-cell stage. 265

We found that the Stardist-3D model outperformed all other methods as demonstrated by the average 266

precision metric. This is significantly higher than the state-of-the-art results on similar (confocal) data from 267

preimplantation mouse embryos, particularly in embryos with greater than 32 nuclei [8]. Of the 600 nuclei in 268

all the embryos in the test set, Stardist-3D produced 14 false negatives and 17 false positives – thus achieving 269

an overall precision and recall of 98% and 97%, respectively. We suspect that Stardist-3D’s assumption 270

of star-convexity, which approximates nuclear shapes in our dataset well (S3 Fig), facilitates Stardist-3D’s 271

learning of sufficient features to distinguish closely neighboring nuclei. 272

By comparison to Stardist-3D’s strong performance across stages, the performance of the other methods 273

depended strongly on developmental stage. For example, the U3D-BCD model also performed reasonably 274

well at the 16- and 32-cell stages but was unable to detect several nuclei in later stages as they became more 275

densely packed. The related UNETR-BCD method also performed well at the 16- and 32-cell stages, but 276

its performance degraded more than that of U3D-BCD by the last developmental stage. By contrast, the 277

performance of the other two methods slightly improved as development progressed. For example, Cellpose 278

produced more false positives than true positives in early stages, but by the 64-cell stage, precision and recall 279

surpassed 90%. Finally, RDCNet’s precision increased with developmental stage as its recall decreased. 280

Figure 3 shows qualitative results of the five networks on an embryo with 62 nuclei based on two 2D 281

image slices. U3D-BCD, UNETR-BCD, and RDCNet missed several nuclei due to under-segmentation – the 282

merging of more than one nucleus into the same instance label. Stardist-3D missed the same nucleus in the 283

xy- and xz-slices shown because two ground-truth instances (peach and purple) merged into one (purple). 284

Cellpose produced no false negatives and one false positive (white) in this example. Despite Cellpose’s 285

relatively strong performance at the 64-cell stage, the segmentation masks are coarser than all other methods 286

since it is trained at half the resolution in xy (see Network Implementation Details), and its tendency to 287

produce false positives leads to poor generalization across developmental stages. 288

Despite Stardist-3D’s strong performance in defining separate instances for closely packed nuclei (Fig 3), 289
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Table 1. Performance Results on Moderate SNR Images Per Developmental Stage for Five
Methods. Each network was trained on 482 3D images from BlastoSPIM 1.0, and was subsequently applied
to a test set of moderate SNR images (30 images, 600 nuclei). For 8-cell to 64-cell stages, model
hyperparameters were not independently adjusted. For the latest stage (> 100-cell), the probability
threshold – used to define instances – was tuned to independently optimize each method’s performance.
Matching between ground-truth instances and inferred instances was based on the cutoff in intersection over
union – as listed in “Dataset Splits and Evaluation Metric”.

Stage Method Precision Recall Average Precision
≈ 8 Nuclei Cellpose 0.44 0.95 0.43

(15 embryos) RDC Net 0.33 0.92 0.32
(total nuclei 132) U3D BCD 0.94 0.98 0.92

UNETR 0.97 0.98 0.96
Stardist-3D 0.98 0.98 0.96

≈ 16 Nuclei Cellpose 0.44 0.86 0.41
(8 embryos) RDC Net 0.78 0.83 0.67

(total nuclei 117) U3D BCD 1.00 0.99 0.99
UNETR 1.00 0.99 0.99

Stardist-3D 1.00 0.99 0.99
≈ 32 Nuclei Cellpose 0.74 0.98 0.73
(4 embryos) RDC Net 0.80 0.74 0.63

(total nuclei 127) U3D BCD 0.98 0.93 0.91
UNETR 0.98 0.96 0.94

Stardist-3D 0.99 0.99 0.98
≈ 64 Nuclei Cellpose 0.92 0.98 0.91
(2 embryos) RDC Net 0.90 0.85 0.78

(total nuclei 122) U3D BCD 1.00 0.89 0.89
UNETR 0.96 0.80 0.78

Stardist-3D 1.00 0.97 0.97
> 100 Nuclei∗ Cellpose 0.78 0.87 0.71
(1 embryo) RDC Net 0.94 0.77 0.74

(total nuclei 102) U3D BCD 0.95 0.78 0.75
UNETR 0.96 0.71 0.69

Stardist-3D 0.88 0.94 0.83

whether it could predict instances that overlap well with the ground truth remained unclear. By varying the 290

IoU threshold used for matching (S3 Table,S4 Table), we found that the average precision on the original 291

test set remained high even at a cutoff of 0.5, but decreased for an IoU threshold of 0.6 (S5 Table). This 292

performance deterioration as the IoU threshold increases beyond ≈ 0.5 is common in 3D instance segmentation 293

tasks [20, 24]; however, we expect than an IoU of ≈ 0.5 between ground-truth instances and Stardist-3D 294

inferred instances is sufficient for nuclear tracking and measurement of fluorescent nuclear-localized factors. 295

Given the deterioration of model performance for late blastocysts, we set out to improve Stardist 3-D’s 296

accuracy by specifically training the net on late stage ground-truth data. We hand-annotated an additional 297

80 3D images of late stage embryos expressing H2B-miRFP720, containing more than 6600 nuclear instances 298

– a data set we termed BlastoSPIM 2.0 (Fig 1(E)). We trained and validated a new Stardist 3-D model 299

based on 72 late blastocysts from BlastoSPIM 2.0. This new model outperformed the previous Stardist-3D 300

model from Table 1 on test images of late blastocysts, yet unsurprisingly underperformed it on test images of 301

embryos with fewer than 64 nuclei (Table 2). For the remainder of this study, we term the Stardist-3D model 302

trained on BlastoSPIM 1.0 from Table 1 the “early embryo model” (used for < 64 nuclei) and the subsequent 303

Stardist-3D model trained on BlastoSPIM 2.0 as the “late blastocyst model” (used for > 64 nuclei). 304

We also evaluated the performance of both models on a more difficult test set – separate from the test 305

set in Table 2 – comprised of images with a very low SNR ratio (S3 Table). The test set was binned by 306

developmental stage. Though only a third of the images in the training set met our definition of low SNR (S1 307

Fig), the recall for the low SNR test set is at least 95 % for all stages from the 2-cell stage to the 32-cell stage 308
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Fig 3. Qualitative evaluation of five instance-segmentation networks trained on BlastoSPIM
and tested on a 62-cell embryo. Instance contours overlaid on a representative slice of the intensity
image in xy (top panels) and in xz (bottom panels). Each panel is labelled as: Ground-truth, Stardist for
Stardist-3D results, and similarly for other methods. Grey arrows indicate false negatives, including
undersegmentation. White arrows denote false positives. Scale bars: 20 µm. Note that false positives and
false negatives are defined by comparing the 3D instance segmentation results rather than the results shown
in a single 2D slice.

(S6 Table, S7 Table, S8 Table). Although the performance deteriorated for low SNR images of > 64-cell stage 309

embryos, the late blastocyst model still achieved ≈ 90 % precision and recall (S6 Table). We note that the 310

models’ performance on low SNR images can be improved by tuning the probability hyperparameter used by 311

Stardist (data not shown). 312

Overall, comparative analysis of five different methods trained on our BlastoSPIM dataset revealed not 313

only state-of-the-art performance by Stardist-3D on a test set composed of moderate-to-high SNR, but also 314

reliably high recall even for low SNR. Despite this strong performance, Stardist-3D’s performance could be 315

improved upon, particularly in inferring the exact shape of each nucleus; thus, the BlastoSPIM dataset – 316

both BlastoSPIM 1.0 and BlastoSPIM 2.0 – can be used to test whether future neural network architectures 317

can outperform Stardist-3D in accurately identifying the positions and shapes of nuclei in preimplantation 318

embryos. 319

0.4 Using the BlastoSPIM-trained Stardist-3D models to characterize nuclear 320

counts, shapes, and volumes in preimplantation embryo time series. 321

Next we used the two Stardist-3D models, one for early embryos and one for late blastocysts, to analyze 322

time-lapse sequences of embryos for which no ground truth existed. First, we computed the time dynamics of 323

the nuclear count. Supporting our conclusions from the test set (Table 2), the early model performs well 324

up to the 32/64-cell transition (Fig 4(A)), while the late model performs better for the 64-cell and later 325

stages (Fig 4(B)). Then, we sought to understand the relationship between developmental stage and nuclear 326

volume (Fig 4). A previous study – based on fixed embryos – measured how nuclear volume depends on 327

developmental stage, but did not measure how nuclear volume changes within a stage [25]. The QCANet 328

study by Tokuoka et al. did measure the distribution of nuclear volumes over time in live images, but could 329

not accurately segment nuclei after the 32-cell stage [8]. 330

By analyzing time-lapse sequences of five different H2B-miRFP720-expressing preimplantation embryos 331

developing from the 8-cell stage to the >100-cell stage, we found that the nuclear volumes peaked at the end 332

of the 8-, 16-, 32-, and 64-cell stages and abruptly dropped after each round of division (for late Stardist 333

model results, see (Fig 4(C); for results of both models, see S4 Fig). These trends are consistent with 334

observations in unicellular eukaryotes, such as fission yeast [26, 27], where nuclear volume was shown to 335

increase with cell cycle progression until an abrupt decrease at mitosis. Interestingly, in the embryo the rate 336

of growth progressively slowed with each subsequent stage and peaked at lower and lower values, consistent 337

with previously reported stage-specific scaling of nuclei [25] (Fig 4), although we cannot discount that part of 338
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Table 2. Performance Results on Moderate SNR Images Per Developmental Stage for both the
Stardist-3D early embryo model and the Stardist-3D late blastocyst model. This test set includes
test images from both BlastoSPIM 1.0 and 2.0. Model hyperparameters were fixed for both models across all
stages. *The decrease in the early model’s recall on the ≈ 64-cell test set (relative to Table 1) is attributed
to the incorporation of an embryo with 66 nuclei into the combined test set.

Stage Method Precision Recall Average Precision
≈ 8 Nuclei early embryo 0.98 0.98 0.96

(15 embryos) late blastocyst 0.63 0.98 0.62
(total nuclei 132)

≈ 16 Nuclei early embryo 1.00 0.99 0.99
(8 embryos) late blastocyst 0.71 0.99 0.71

(total nuclei 117)
≈ 32 Nuclei early embryo 0.99 0.99 0.98
(4 embryos) late blastocyst 0.90 1 0.90

(total nuclei 127)
≈ 48 Nuclei early embryo 0.98 0.96 0.94
(1 embryo) late blastocyst 0.96 0.98 0.94

(total nuclei 48)
≈ 64 Nuclei∗ early embryo 1 0.88 0.88
(3 embryos) late blastocyst 0.96 1 0.96

(total nuclei 188)
≈ 80 Nuclei early embryo 0.98 0.73 0.72
(2 embryos) late blastocyst 0.95 0.98 0.93

(total nuclei 165)
> 100 Nuclei early embryo 1 0.73 0.73
(2 embryo) late blastocyst 0.96 0.99 0.94

(total nuclei 208)

this effect is due to increasing cell cycle asynchrony among cells in the embryo. 339

Because previous studies reported that at the 32- and 64-cell stages, the TE cells have larger aspect ratios 340

than ICM cells [15,28], we then asked whether the same statement holds true for the corresponding nuclei. 341

To distinguish between ICM and TE cells, we used nuclear position as a proxy in 32-, 64-, and > 100-cell 342

stage embryos, annotating nuclei close to the embryo surface as TE and nuclei deeper within the embryo as 343

ICM. We found that in cavitated 32-cell stage embryos, the median TE nucleus’s aspect ratio, given by its 344

longest axis length over its shortest axis length, was already greater than that of the median ICM nucleus 345

(p < 0.001) (Fig 4). At this stage, a TE nucleus’s long axis tends to be 80 % longer than its shortest axis. 346

Interestingly, the ICM nuclei are often not well approximated by a sphere, but instead often have long and 347

medium axes that are both 5 % - 40 % longer than the shortest axis. By comparing our embryos at the 348

32-cell stage to those at the 64-cell stage, we found that the median aspect ratio of TE nuclei grows over that 349

time (p < 0.001), while the median ICM nuclear aspect ratio remains unchanged (p = 0.7) (Fig 4). From the 350

64-cell stage to the > 100-cell stage, the nuclei of the ICM and TE both increase in aspect ratio (p < 0.001 351

and p = 0.009, respectively), yet at the > 100-cell stage, the TE nuclei continue to have higher aspect ratios 352

than ICM nuclei (p < 0.001) (Fig 4). In summary, we found, as seen in studies of TE and ICM cell shapes, 353

that TE nuclei flatten more during cavitation (from the 32-to-64 cell stages) than the ICM nuclei; however, 354

both the TE and ICM nuclear aspect ratios increase by the >100-cell stage. 355

In addition to flattening nuclei, the formation and expansion of the cavity could plausibly affect the 356

nuclear volumes of the two cell populations differently. Consistent with a recent publication [2], at the 32-cell 357

stage, no statistically significant differences were found between the median TE nuclear volume and the 358

median ICM nuclear volume (p = 0.16). However, by the early 64-cell stage, the median TE nucleus was 359

larger than that of the ICM (p < 0.001) by about 15 % (Fig 4). The mechanism responsible for generating 360

this difference in nuclear volumes remains unclear. Since nuclear volume depends on the time since the 361

last division (Fig 4), we hypothesize that this difference could arise from cell cycle asynchrony, if the TE 362

cells divided earlier [29] and thus had more time post-division to grow in volume relative to the ICM. It is 363
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Fig 4. Measuring dependence of nuclear properties on developmental stage and cell fate via
Stardist-3D inference. (A-B) Number of nuclei over time for 4 embryo sequences as inferred by the early
embryo model and late blastocyst model, respectively. Dashed horizontal lines: 16, 32, 64, 100 nuclei
respectively. (C) Number of nuclei and nuclear volume versus time for two representative embryo sequences
from (B). (D-F) For 32-cell (left, pooled nuclei from 6 embryos) and 64-cell stage embryos (center, pooled
nuclei from 5 embryos) and > 100-cell stage embryo (right, pooled nuclei from 2 embryos), the TE and ICM
populations are compared based on their nuclear aspect ratios. Dashed vertical lines: median of ICM (red)
and TE (blue) nuclei. Insets: renderings of an embryo at the 32-, 64-, and > 100-cell stage in which nuclei
have been manually fate-assigned as ICM (red) and TE (blue) nuclei. (G-I) Same as (D-F) but comparisons
are based on nuclear volumes. See text for p-values comparing each pair of distributions in (D-I).

also possible that forces from the cavity onto the ICM affect nuclear volume regulation. By analysis of two 364

>100-cell stage embryos, we found that the median TE nuclear volume remains larger than the median ICM 365

nuclear volume for embryos with >100 nuclei (p = 0.003) (Fig 4). Just as the model’s segmentations detect 366

differences between ICM and TE, our model will likely play an important role in quantifying the changes in 367

nuclear properties that accompany the next fate decision, specifying the embryo proper and extra-embryonic 368

tissue within the ICM [30]. 369

0.5 Generalization of our trained Stardist-3D models to different model organ- 370

isms. 371

Finally, we wished to address whether our advances in instance segmentation for the mouse embryo generalize 372

to other systems. In principle, our model’s performance on a dataset not used for training could depend on 373

the organism, the method for nuclear labeling, and the imaging technique (i.e., confocal or light-sheet). We 374

evaluated our Stardist-3D model on a ground-truth set composed of 9 live light-sheet images of Platynereis 375

dumerilli embryos from the 38- to the 392-cell stage [24] (Fig 5(A)-(D)), in which nuclei were labeled by 376
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microinjection of a fluorescent tracer. 377

We first optimized our Stardist-3D early embryo model (“early mouse only” model) – without retraining 378

– by using four of the ground-truth Platynereis images to tune a single Stardist-3D hyperparameter, the 379

probability threshold. Applying that “early mouse only” model to the five other images, we found that it 380

performed well, at greater than 95% precision and recall, on early Platynereis embryos, from the 76- to 381

198- cell stages . With a precision and recall of 98% and 87%, respectively, for an image with ≈ 400 nuclei, 382

the “early mouse only”’s performance deteriorated slightly at the latest developmental stages (Table 3). 383

Performing the same exercise with the “late mouse only” model revealed that its performance on the test 384

set was weaker than the “early mouse only” model for early developmental stages (Fig 5), but for the latest 385

developmental stages (with 281 and 392 nuclei), the “late mouse only” model’s precision and recall remained 386

above 90 %. 387

Table 3. Evaluation of our Stardist-3D model (“mouse only”) on unseen data from Platynereis at an IoU
threshold of 0.1.

Nuclear
Count

Precision
(Early)

Recall
(Early)

Average Pre-
cision (Early)

Precision
(Late)

Recall
(Late)

Average Pre-
cision (Late)

76 0.96 1 0.96 0.82 0.97 0.80
162 0.99 0.95 0.94 0.92 0.96 0.89
198 0.96 0.96 0.93 0.89 0.98 0.87
281 0.97 0.90 0.88 0.92 0.94 0.87
392 0.98 0.87 0.85 0.94 0.91 0.85

Our analysis with no model retraining (Table 3, S9 Table, and S10 Table) demonstrated that our models, 388

especially the “early mouse only” model, performed well for embryos with even more nuclei than late 389

blastocysts. Nonetheless, the model performance deteriorated for higher IoU thresholds (S9 Table and S10 390

Table), meaning that our model-predicted instances did not precisely overlap with corresponding ground-truth 391

instances. This observation motivated us to retrain and revalidate our Stardist-3D models, originally used for 392

the mouse, based on seven of the Platynereis ground-truth images embryo. We refer to these two retrained 393

models as the “early-mouse-then-worm” model and “late-mouse-then-worm” model. We compared each 394

retrained model’s performance to the performance of a model trained on the same Platynereis training data, 395

but without the mouse model as an initial condition (“worm only” model). Relative to the “worm only” 396

model, the “early-mouse-then-worm” model achieved higher precision and recall on the 162-cell test embryo 397

at an IoU cutoff of 0.5 (S13 Table and Fig 5). Similarly, the “late-mouse-then-worm” model achieved higher 398

precision and recall on the 198-cell test embryo than the “worm only” model at an IoU cutoff of 0.5. Thus, 399

our models without further training, particularly the “early mouse only” model, performed well up to the 400

198-cell stage for low IoU cutoffs, and the retraining of our mouse models on Platynereis data enabled them 401

to outperform a “worm only” model in accurately predicting nuclear shapes and positions for higher IoU 402

cutoffs (S11 Table, S12 Table, and S13 Table). 403

Conclusion 404

To understand how individual cells’ behaviors contribute to morphogenetic events, biologists acquire staggering 405

amounts of time-lapse images of these processes. Quantifying the properties and behaviors of individual 406

cells in such image series requires instance segmentation: identifying which voxels belong to which object. 407

Although many measurements require segmentation of entire cells, instance segmentation of nuclei is useful 408

for estimating the relative positions of cells, classifying by mitotic stage, and measuring the expression of 409

nuclear-localized factors. Nuclear instance segmentation is challenging for several reasons including nucleus- 410

to-nucleus proximity, variations in nuclear shape, voxel anisotropy, and low SNR. By comparative analysis of 411

five different neural networks on a newly collected and publicly available ground-truth dataset, BlastoSPIM, 412

we have shown which of these networks best addresses these challenges in the preimplantation mouse embryo. 413

Our comparative analysis revealed state-of-the-art performance by Stardist-3D (early embryo model) 414

across developmental stages. Both precision and recall remained above 95 %, even at the 64-cell stage 415

(Table 1). Similar performance was achieved even on a separate test set with low SNR. In contrast, the 416

performance of other methods varied, with Cellpose and RDCNet producing many false positives, particularly 417

at early developmental stages, and U3D-BCD and UNETR missing several nuclei for the 64-cell stage and 418
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Fig 5. Usefulness of the mouse embryo datasets (BlastoSPIM 1.0 and 2.0) for the analysis of
images of the worm Platynereis (A) Mature female P. dumerilli, image from: [31]. Scale bar: 4 mm. (B)
Maximum intensity projection of image of Platynereis embryo containing 162 nuclei. Adapted from [24].
Scale bar: 10 µm. (C-H) Instance contours overlaid over intensity image for a single slice of the 162-cell test
embryo. Comparison of ground-truth (C) to a Stardist-3D model trained solely on Platynereis data (“worm
only”) (D), our early embryo Stardist-3D model without further training (“early mouse only”) (E), our early
embryo Stardist-3D model with further training (“early-mouse-then-worm”) (F), our late blastocyst
Stardist-3D model without further training (“late mouse only”) (G), and our late blastocyst Stardist-3D
model with further training (“late-mouse-then-worm”) (H) . Scale bar: 10 µm. White (gray) arrows denote
false positive (negatives). Note that each white-grey arrow pair in (G) results from the relatively high IoU
cutoff (0.5); at this cutoff, the model-inferred instance is not matched with a ground-truth instance, which
leads to a false negative paired with a false positive.

later stages (Table 1). To further improve segmentation performance at later stages of preimplantation 419

development, we hand-annotated a second ground truth dataset of nuclei in late blastocyst embryos and 420

trained a second Stardist model (late blastocyst model), with which precision and recall also remained ≥ 95 421

% even in > 100-cell stage embryos. Therefore we not only present trained Stardist-3D models with superior 422

performance for nuclear instance segmentation in time-lapse images of early mouse embryos, but share large 423

ground truth datasets (BlastoSPIM 1.0 and 2.0), which will be an important resource for evaluating the 424
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performance of future CNN architectures because of the dataset’s size and quality and nuclear density relative 425

to other currently available datasets (S2 Table). 426

We used our trained Stardist-3D models to segment nuclei in time series for which no ground truth existed. 427

These segmentations revealed oscillations of nuclear volume with the cell cycle: volumes gradually increased 428

throughout interphase and peaked just before mitosis, resulting in a sudden volume drop. We also found that 429

the growth rate of nuclei slowed progressively from the 8-cell stage to the 16-cell stage to the 32-cell stage to 430

the 64-cell stage. We extended these analyses to test whether nuclear geometries are correlated with fate. 431

First, we confirmed that TE nuclei have significantly higher aspect ratio – with their long axis typically ≈ 432

80% longer than their shortest axis – than ICM nuclei, both at 32-cell stage and the 64-cell stage. Second, we 433

showed that though TE and ICM nuclei do not differ in volume at the 32-cell stage, TE nuclei become larger 434

than ICM nuclei by the 64-cell stage (Fig 4). The TE-ICM difference in nuclear volume detected at the 64-cell 435

stage was also detected at the >100-cell stage, and the aspect ratios of both TE and ICM nuclei increased at 436

the >100-cell stage relative to the 64-cell stage. We expect that this instance segmentation model will enable 437

many more insights into mouse development, including into the fate decision occurring within the ICM. 438

We next tested whether our model generalizes well to other imaging data. We took advantage of a publicly 439

available annotated dataset of developing annelid Platynereis dumerilli embryos, injected with a nuclear 440

fluorescent tracer and live-imaged with a light-sheet microscope (Fig 5) [24]. We found that our models 441

– without further retraining – performed well on the data up to the 198-cell stage. When we trained our 442

model further on Platynereis ground truth data from Platynereis images, it outperformed – at higher IoU 443

thresholds, like 0.5 – a model trained solely trained on Platynereis data. Thus, our models without retraining, 444

particularly the “early-mouse-only” model, performed well at low IoU thresholds on embryos with many 445

nuclei, up to ≈ 200. When retrained on ground truth data from the Platynereis model systems, our model 446

achieved more accurate nuclear segmentation at high IoU thresholds when compared to a model trained on 447

Platynereis data alone. 448

The generalizability of our model fills a clear need since many publicly available models work only in 2D, 449

segment only cell boundaries, or are trained only on high SNR images [32]. Given our model’s performance 450

even without fine-tuning, small hand-corrections of our model’s predictions on a different biological system 451

could be used to generate training data, as long as that system’s nuclei satisfy the star-convexity assumption 452

of Stardist. We expect that BlastoSPIM and our Stardist-3D model, in conjunction with other publicly 453

available datasets and pre-trained models [33], will play a key role in the development of truly generalist 454

models. BlastoSPIM 1.0 and 2.0 and the Stardist-3D models trained on them are, furthermore, the first 455

crucial steps towards automated (3+t)-D analysis of early mouse development, which, by incorporating the 456

construction of lineage trees, can reveal the temporal dynamics of individual nuclei as fate decisions transpire. 457

458
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Supplementary Information 459

S1 Table. Tools for 3D nucleus segmentation. Description of base network architecture and modifica- 460

tions, network output, loss functions, and post-processing methods.

Tool name Base network Network out-
put

Loss metrics Post-
processing

Cellpose [19] 2D U-Net with
residual blocks
and style trans-
fer

horizontal/vertical
gradient maps,
cell probability
map

L2 loss (gradients),
cross-entropy loss
(cell probability)

probability
threshold and
test-time enhance-
ments

QCANet [8] Two 3D U-
Net’s, hyperpa-
rameter tuning
by Bayesian
optimization

Semantic segmen-
tation, nucleus
center detection

Dice loss Reinterpolation
and marker-based
watershed

NuSeT [34] 2D U-Net in-
tegrated with
Region Pro-
posal Network
(RPN)

Semantic segmen-
tation, bounding
box with score

cross-entropy loss +
Dice loss (segmenta-
tion), class loss and
regression loss (de-
tection)

watershed and
3D reconstitution
from 2D slices

Stardist [20] 3D ResNet or
3D U-Net

radial distances to
object boundary,
object probability
(OP) with dis-
tance transform

cross-entropy loss
(OP), OP-weighted
mean absolute error
with regularization
(radial distances)

OP threshold and
non-maximum
suppression

RDCNet [21] 3D recurrent
block with
stacked dilated
convolutions

semantic
classes, semi-
convolutional
embeddings

Embedding soft jac-
card (ESJ) loss

Margin thresh-
olds, Hough
voting

EmbedSeg
[24]

3D Branched
ERF-Net

pixel embeddings,
clustering band-
width, seed proba-
bility

Lovász-Softmax
loss + seed loss +
smoothness loss

seed probability
threshold, cluster
bandwidth thresh-
old

U3D-BCD
[22]

3D U-Net with
residual blocks
substituted for
convolutional
layers

foregrounds
masks, in-
stance contours,
signed-distance-
transform map

Weighted sum of
cross-entropy loss
and dice loss for
foreground and con-
tour; mean-squared
error for signed dis-
tance

seed detection
via threshold
on foreground
probability and
distance value,
marker-controlled
watershed

UNETR-BCD
[23]

Stack of
transformers
connected to
3D CNN-based
decoder

foregrounds
masks, in-
stance contours,
signed-distance-
transform map

Weighted sum of
cross-entropy loss
and dice loss for
foreground and con-
tour; mean-squared
error for signed dis-
tance

seed detection
via threshold
on foreground
probability and
distance value,
marker-controlled
watershed
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S2 Table. Ground-truth, three-dimensional annotations of nuclei. Other examples of publicly 462

available ground-truth data sets for instance segmentation of nuclei. *The entire ground-truth dataset used 463

in [8] contains more than 6000 time-series of early mouse embryos, of which only 165 have been made publicly 464

available.

Name Microscopy Nuclear
Labeling

Sample Image
Count

Network re-
sults

NucMM-Z [22] Serial-
section
electron
microscopy

N/A Zebrafish brain 1 Cellpose3D,
Stardist-3D,
U3D-BCD

NucMM-M [22] Micro-CT N/A Mouse visual cortex 1 Cellpose3D,
Stardist-3D,
U3D-BCD

BBBC050∗ [8] Confocal
microscopy

H2B-
mRFP1,
H2B-
mCherry

Pre-implantation
mouse embryo from
the pro-nuclear
stage to 53-cell
stage

165 QCANet,
3D U-Net,
3D Mask
R-CNN

C. elegans
developing
embryo [35]

Confocal
microscopy

histone-
GFP

C. elegans embryo
between 2-cell stage
and ≈300-cell stage

9 QCANet,
3D U-Net,
3D Mask
R-CNN

Platynereis-
Nuclei-
CBG [24]

Light-Sheet
Microscopy

Fluorescent
nuclear
tracer
injected

Platynereis dumer-
ilii embryo between
0 and 16 hours post-
fertilization

9 Cellpose3D,
Stardist-3D,
EmbedSeg

Platynereis-
ISH-Nuclei-
CBG [24]

Confocal
Microscopy

DAPI Platynereis dumer-
ilii specimins
16 hours post-
fertilization

2 Cellpose3D,
Stardist-3D,
EmbedSeg

Parhyale
hawaiensis-
Nuclei [20]

Confocal
Microscopy

H2B-
eGFP

Parhyale hawaien-
sis embryo between
46 hours post-
amputation (hpa)
and 110 hpa

6 U-Net,
Stardist-3D,
Cellpose3D,
EmbedSeg

C. elegans-
Nuclei [20]

Confocal
Microscopy

DAPI C. elegans embryo
at the 558-cell stage

28 U-Net,
Stardist-3D

Mouse-
Skull-Nuclei-
CBG [24]

Confocal
Microscopy

DAPI Nuclei from the
skull of developing
mouse embryos

2 Cellpose3D,
Stardist-3D,
EmbedSeg

Peri-
implantation
mouse em-
bryos [36]

Confocal
Microscopy

Antibody
staining

Peri-implantation
mouse embryos

35 3D U-Net
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S3 Table. High SNR test set: Performance Results Per Developmental Stage for Stardist-3D 466

at an IOU Threshold of 0.3. This table is analogous to Table 2, which used an IoU cutoff of 0.1. Model 467

hyperparameters were fixed for both models across all stages. *The decrease in the early model’s recall on 468

the ≈ 64-cell test set (relative to Table 1) is attributed to the incorporation of an embryo with 66 nuclei into 469

the combined test set.

Stage Method Precision Recall Average Precision
≈ 8 Nuclei early embryo 0.96 0.97 0.93

(15 embryos) late blastocyst 0.62 0.97 0.60
(total nuclei 132)

≈ 16 Nuclei early embryo 1 0.99 0.99
(8 embryos) late blastocyst 0.71 0.98 0.70

(total nuclei 117)
≈ 32 Nuclei early embryo 0.99 0.99 0.98
(4 embryos) late blastocyst 0.90 1 0.90

(total nuclei 127)
≈ 48 Nuclei early embryo 0.98 0.96 0.94
(1 embryo) late blastocyst 0.96 0.98 0.94

(total nuclei 48)
≈ 64 Nuclei∗ early embryo 1 0.88 0.88
(3 embryos) late blastocyst 0.95 0.99 0.95

(total nuclei 188)
≈ 80 Nuclei early embryo 0.98 0.72 0.71
(2 embryos) late blastocyst 0.95 0.97 0.92

(total nuclei 165)
> 100 Nuclei early embryo 1 0.73 0.73
(2 embryo) late blastocyst 0.96 0.99 0.94

(total nuclei 208)
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S4 Table. High SNR test set: Performance Results Per Developmental Stage for Stardist-3D 471

at an IOU Threshold of 0.5. This table is analogous to Table 2, which used an IoU cutoff of 0.1. Model 472

hyperparameters were fixed for both models across all stages. *The decrease in the early model’s recall on 473

the ≈ 64-cell test set (relative to Table 1) is attributed to the incorporation of an embryo with 66 nuclei into 474

the combined test set.

Stage Method Precision Recall Average Precision
≈ 8 Nuclei early embryo 0.95 0.95 0.91

(15 embryos) late blastocyst 0.49 0.77 0.42
(total nuclei 132)

≈ 16 Nuclei early embryo 0.98 0.97 0.96
(8 embryos) late blastocyst 0.66 0.91 0.62

(total nuclei 117)
≈ 32 Nuclei early embryo 0.98 0.98 0.97
(4 embryos) late blastocyst 0.89 0.99 0.89

(total nuclei 127)
≈ 48 Nuclei early embryo 0.96 0.94 0.90
(1 embryo) late blastocyst 0.94 0.96 0.90

(total nuclei 48)
≈ 64 Nuclei∗ early embryo 0.94 0.83 0.79
(3 embryos) late blastocyst 0.92 0.96 0.89

(total nuclei 188)
≈ 80 Nuclei early embryo 0.85 0.63 0.57
(2 embryos) late blastocyst 0.91 0.93 0.85

(total nuclei 165)
> 100 Nuclei early embryo 0.87 0.63 0.58
(2 embryo) late blastocyst 0.90 0.93 0.84

(total nuclei 208)

475

March 14, 2023

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2023. ; https://doi.org/10.1101/2023.03.14.532646doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.14.532646
http://creativecommons.org/licenses/by-nd/4.0/


S5 Table. High SNR test set: Performance Results Per Developmental Stage for Stardist-3D 476

at an IOU Threshold of 0.6. This table is analogous to Table 2, which used an IoU cutoff of 0.1. Model 477

hyperparameters were fixed for both models across all stages. *The decrease in the early model’s recall on 478

the ≈ 64-cell test set (relative to Table 1) is attributed to the incorporation of an embryo with 66 nuclei into 479

the combined test set.

Stage Method Precision Recall Average Precision
≈ 8 Nuclei early embryo 0.86 0.86 0.76

(15 embryos) late blastocyst 0.44 0.69 0.37
(total nuclei 132)

≈ 16 Nuclei early embryo 0.92 0.91 0.85
(8 embryos) late blastocyst 0.62 0.86 0.56

(total nuclei 117)
≈ 32 Nuclei early embryo 0.98 0.98 0.97
(4 embryos) late blastocyst 0.83 0.92 0.77

(total nuclei 127)
≈ 48 Nuclei early embryo 0.87 0.85 0.76
(1 embryo) late blastocyst 0.86 0.88 0.76

(total nuclei 48)
≈ 64 Nuclei∗ early embryo 0.90 0.79 0.73
(3 embryos) late blastocyst 0.88 0.91 0.81

(total nuclei 188)
≈ 80 Nuclei early embryo 0.74 0.55 0.46
(2 embryos) late blastocyst 0.80 0.82 0.69

(total nuclei 165)
> 100 Nuclei early embryo 0.75 0.54 0.46
(2 embryo) late blastocyst 0.69 0.71 0.54

(total nuclei 208)
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S6 Table. Performance Results of Stardist-3D on Low SNR Images Per Developmental Stage 481

at an IoU cutoff of 0.1. *Note that model performance for images (with low SNR) of late blastocysts can 482

be improved by lowering the probabililty hyperparameter used by Stardist-3D (data not shown).

Stage Method Precision Recall Average Precision
≈ 2 Nuclei early embryo 1 1 1
(2 embryos) late blastocyst 0.27 0.75 0.25

(total nuclei 4)
≈ 4 Nuclei early embryo 1 1 1
(2 embryos) late blastocyst 0.47 1 0.47

(total nuclei 8)
≈ 8 Nuclei early embryo 1 0.99 0.99

(33 embryos) late blastocyst 0.99 1.0 0.99
(total nuclei 270)

≈ 16 Nuclei early embryo 0.96 0.98 0.94
(19 embryos) late blastocyst 0.88 1 0.88

(total nuclei 268)
≈ 32 Nuclei early embryo 1 1 1
(2 embryos) late blastocyst 0.97 1 0.97

(total nuclei 66)
≈ 64 Nuclei ∗ early embryo 0.97 0.67 0.66
(2 embryos) late blastocyst 0.89 0.93 0.83

(total nuclei 123)
≈ 95 Nuclei early embryo 0.99 0.73 0.72
(3 embryos) late blastocys 0.94 0.98 0.92

(total nuclei 280)
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S7 Table. Performance Results of Stardist-3D on Low SNR Images Per Developmental Stage 484

at an IoU cutoff of 0.3. *Note that model performance for images (with low SNR) of late blastocysts can 485

be improved by lowering the probabililty hyperparameter used by Stardist-3D (data not shown).

Stage Method Precision Recall Average Precision
≈ 2 Nuclei early embryo 1 1 1
(2 embryos) late blastocyst 0 0 0

(total nuclei 4)
≈ 4 Nuclei early embryo 1 1 1
(2 embryos) late blastocyst 0.47 1 0.47

(total nuclei 8)
≈ 8 Nuclei early embryo 1 0.99 0.99

(33 embryos) late blastocyst 0.98 0.99 0.96
(total nuclei 270)

≈ 16 Nuclei early embryo 0.96 0.98 0.94
(19 embryos) late blastocyst 0.86 0.98 0.85

(total nuclei 268)
≈ 32 Nuclei early embryo 1 1 1
(2 embryos) late blastocyst 0.97 1 0.97

(total nuclei 66)
≈ 64 Nuclei ∗ early embryo 0.97 0.67 0.66
(2 embryos) late blastocyst 0.84 0.87 0.74

(total nuclei 123)
≈ 95 Nuclei early embryo 0.98 0.72 0.71
(3 embryos) late blastocyst 0.93 0.98 0.91

(total nuclei 280)
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S8 Table. Performance Results of Stardist-3D on Low SNR Images Per Developmental Stage 487

at an IoU cutoff of 0.5. *Note that model performance for images (with low SNR) of late blastocysts can 488

be improved by lowering the probabililty hyperparameter used by Stardist-3D (data not shown).

Stage Method Precision Recall Average Precision
≈ 2 Nuclei early embryo 1 1 1
(2 embryos) late blastocyst 0 0 0

(total nuclei 4)
≈ 4 Nuclei early embryo 1 1 1
(2 embryos) late blastocyst 0.24 0.5 0.19

(total nuclei 8)
≈ 8 Nuclei early embryo 1 0.99 0.99

(33 embryos) late blastocyst 0.88 0.89 0.79
(total nuclei 270)

≈ 16 Nuclei early embryo 0.94 0.96 0.90
(19 embryos) late blastocyst 0.70 0.79 0.59

(total nuclei 268)
≈ 32 Nuclei early embryo 0.98 0.98 0.97
(2 embryos) late blastocyst 0.91 0.94 0.86

(total nuclei 66)
≈ 64 Nuclei ∗ early embryo 0.92 0.64 0.61
(2 embryos) late blastocyst 0.66 0.69 0.51

(total nuclei 123)
≈ 95 Nuclei early embryo 0.86 0.63 0.63
(3 embryos) late blastocyst 0.84 0.88 0.75

(total nuclei 280)
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S9 Table. Stardist-3D Results on Platynereis set at an IoU Cutoff of 0.3. Analogous to 490

Table 3.

Nuclear
Count

Precision
(Early)

Recall
(Early)

Average Pre-
cision (Early)

Precision
(Late)

Recall
(Late)

Average Pre-
cision (Late)

76 0.96 1 0.96 0.78 0.92 0.73
162 0.98 0.94 0.92 0.89 0.93 0.83
198 0.96 0.96 0.92 0.87 0.95 0.83
281 0.96 0.89 0.86 0.91 0.93 0.85
392 0.96 0.85 0.82 0.93 0.90 0.84

491

S10 Table. Stardist-3D Results on Platynereis set at an IoU Cutoff of 0.5. Analogous to 492

Table 3.

Nuclear
Count

Precision
(Early)

Recall
(Early)

Average Pre-
cision (Early)

Precision
(Late)

Recall
(Late)

Average Pre-
cision (Late)

76 0.95 0.99 0.94 0.71 0.84 0.63
162 0.92 0.88 0.81 0.80 0.83 0.68
198 0.91 0.91 0.83 0.82 0.90 0.75
281 0.84 0.78 0.67 0.83 0.84 0.72
392 0.84 0.74 0.65 0.87 0.84 0.75
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S11 Table. We retrained our models on Platynereis ground truth and quantified performance 494

(at an IoU cutoff of 0.1) on test Platynereis embryos.

Stage Model TP FN FP Precision Recall
162 Nuclei early “mouse-then-worm” 158 4 1 0.99 0.98

late “mouse-then-worm” 157 5 0 1 0.97
“worm only” 158 4 2 0.99 0.98

198 Nuclei early “mouse-then-worm” 194 4 5 0.97 0.98
late “mouse-then-worm” 194 4 2 0.99 0.98

“worm only” 194 4 6 0.97 0.98

495

S12 Table. We retrained our models on Platynereis ground truth and quantified performance 496

(at an IoU cutoff of 0.3) on test Platynereis embryos.

Stage Model TP FN FP Precision Recall
162 Nuclei early “mouse-then-worm” 158 4 1 0.99 0.98

late “mouse-then-worm” 156 6 1 0.99 0.96
“worm only” 158 4 2 0.99 0.98

198 Nuclei early “mouse-then-worm” 194 4 5 0.97 0.98
late “mouse-then-worm” 194 4 2 0.99 0.98

“worm only” 193 5 7 0.97 0.97

497

S13 Table. We retrained our models on Platynereis ground truth and quantified performance 498

(at an IoU cutoff of 0.5) on test Platynereis embryos.

Stage Model TP FN FP Precision Recall
162 Nuclei early “mouse-then-worm” 155 7 4 0.97 0.96

late “mouse-then-worm” 152 10 5 0.97 0.94
“worm only” 153 9 7 0.956 0.944

198 Nuclei early “mouse-then-worm” 189 9 10 0.95 0.95
late “mouse-then-worm” 192 6 4 0.98 0.97

“worm only” 190 8 10 0.950 0.960
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S1 Intro Fig. Segmentation tasks applied to images of a pastoral scene [37] and of a mouse 500

embryo. (A) Raw image to be segmented. From top to bottom, an image of cows in a pasture, maximum 501

intensity projections of 3D image of 16-cell mouse embryo, a z-slice from the 3D image. 3D image has 502

dimensions (83.4 µm, 83.4 µm, 68 µm). Scale bar: 10 µm. (B) Semantic segmentation for images in (A). (C) 503

Object detection for images in (A). (D) Instance segmentation for images in (A). 504

S2 Intro Fig. Comparison of five deep-learning-based methods for nuclear instance segmen- 505

tation. Each column depicts a different method. From top to bottom, the rows illustrate how images are 506

inputted into the network, the network’s architecture, network outputs for a single nucleus, the post-processing 507

steps, and the 3D instance segmentation, respectively. 508

S1 Fig. SNR of each image in the BlastoSPIM dataset. (A-B) Histogram, for annotated images in 509

the original BlastoSPIM set and in the corrected late blastocyst segmentations, respectively, of the difference 510

between mean foreground intensity and the mean background intensity. Black line: Cutoff for separating low 511

SNR from moderate-to-high SNR in the original BlastoSPIM dataset. 512

S2 Fig. Number of nuclei annotated per developmental stage for corrected late blastocyst 513

segmentations. This plot is analogous to Fig 1(E). 514

S3 Fig. Quantifying how well star-convex approximation applies to nuclear shapes in ground- 515

truth time series data. We fit each nucleus to a star-convex shape, using 128 rays. For a single embryo, for 516

which we have annotated ground truth for 89 consecutive timepoints (time points acquired every 15 minutes), 517

we plot a box for each time to illustrate how well this fit performs, in terms of IoU. When all nuclei are in 518

interphase, the star-convex fit performs quite well, at more than 90 percent IoU between the ground truth 519

and the model-generated instance. During the transition from the 16-cell stage to the 32-cell stage and from 520

the 32-cell stage to the 64-cell stage, the fit quality degrades. A small number of nuclei, about five in this 521

time series cannot be fit by a star-convex shape, resulting in an IoU of less than 40 percent. We expect that 522

the outlier nuclei (red) – which are not well fit by a star-convex shape – are likely mitotic, most likely in 523

either metaphase or anaphase when the shape of the condensed chromatin is often complex. Black dashed 524

line: the number of nuclei versus time. 525

S4 Fig. Nuclear volumes versus developmental time in live images, as inferred by both early 526

embryo and late blastocyst Stardist-3D models. (A-D) For embryos 1-4 (indexed as in Fig 4), we 527

plot both the median nuclear volume (blue) and the sum of nuclear volumes (orange) over time. Solid lines: 528

inference based on early embryo model. Dashed line: inference based on late blastocyst model. 529

S5 Fig. Precision-recall curve as a function of Stardist-3D probability threshold for “early 530

mouse-then-worm” model and “worm only” model. For all panels, the Stardist-3D probability 531

threshold varies from 0.4 to 0.7. Lower precision (recall) values tend to occur for lower (higher) probability 532

thresholds, respectively. At high IoU, the “early mouse-then-worm” model outperformed “worm only” model 533

across these values of Stardist-3D probability threshold. (A-B) IoU threshold of 0.1 applied to 162-nuclei 534

and 198-nuclei embryo, respectively. (C-D) IoU threshold of 0.3 applied to 162-nuclei and 198-nuclei embryo, 535

respectively. (E-F) IoU threshold of 0.5 applied to 162-nuclei and 198-nuclei embryo, respectively. (G-H) IoU 536

threshold of 0.6 applied to 162-nuclei and 198-nuclei embryo, respectively. 537

S6 Fig. Precision-recall curve as a function of Stardist-3D probability threshold for “late 538

mouse-then-worm” model and “worm only” model. For all panels, the Stardist-3D probability 539

threshold varies from 0.4 to 0.7. Lower precision (recall) values tend to occur for lower (higher) probability 540

thresholds, respectively. At high IoU, the “late mouse-then-worm” model outperformed “worm only” model 541

across these values of Stardist-3D probability threshold. (A-B) IoU threshold of 0.1 applied to 162-nuclei 542

and 198-nuclei embryo, respectively. (C-D) IoU threshold of 0.3 applied to 162-nuclei and 198-nuclei embryo, 543

respectively. (E-F) IoU threshold of 0.5 applied to 162-nuclei and 198-nuclei embryo, respectively. (G-H) IoU 544

threshold of 0.6 applied to 162-nuclei and 198-nuclei embryo, respectively. 545
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0.6 Description of Segmentation Methods 546

An important factor influencing model performance is the base-network used to learn the relationship between 547

input images and the output instance representation. Many relevant methods (Fig 6, Fig 7, S1 Table), 548

including QCANet [8], NuSeT [34], Cellpose [19], U3D-BCD [22], and EmbedSeg [24], are adaptations of 549

the U-Net [38]. The current state-of-the-art model for nuclear segmentation in mouse embryos, QCANet 550

uses two independent 3D U-Nets, one for a semantic map of nuclei and one for detecting nuclear centroids. 551

On the other hand, NuSeT uses a 2D U-Net for semantic segmentation and a region proposal network 552

(RPN) that shares the encoder for predicting boxes (S1 Intro Fig). Two methods, Cellpose and U3D-BCD, 553

modify the U-Net by replacing the standard convolutional blocks with residual blocks, which incorporate 554

identity-mapping short-cut connections to prevent high training error for deep networks [39]. EmbedSeg uses 555

a 3D branched ERFNet (Efficient Residual Factorized Network), that also employs residual blocks with 1D 556

factorized convolutions to reduce computational costs. These blocks are combined with downsampling and 557

upsampling blocks to form the sequential encoder-decoder structure. Thus, these first five methods rely on 558

convolutional maps generated by a U-shaped structure. 559

Fig 6. Components of the network architectures tested on our dataset. Dark purple, standard
convolutional layer; teal circle, dilated convolutional layer; pink arrow, upsampling and downsampling block
for U-Net-derived networks; gray square, global average pooling operation for computing image style in
Cellpose; purple four-sided star, residual block, where the input to the convolutional layer is added to its
output via a skip connection (the number of convolutional layers within the block may differ); blue pentagon,
recurrent block in RDCNet *; magenta hexagon, transformer block; light blue diamond, linear projection and
positional embedding of image patches in UNETR-BCD. *The recurrent block’s previous output (Y(i−1)) is
combined with the original input (X) to the recurrent block through concatenation and convolution. Then, a
stacked, dilated convolution block with shared weights is applied.

The remaining networks, including Stardist-3D, RDCNet, and UNETR-BCD, differ significantly from 560

the previously discussed networks. Stardist-3D is the most similar to the previous methods because it relies 561

on a series of residual blocks [39], containing convolutional layers; its distinguishing feature is its lack of 562

down-sampling and, thus, of a U-shape. In contrast to Stardist-3D which uses different blocks connected 563

successively, RDCNet uses the same block – a stacked, dilated convolution block – iteratively to refine 564

the network outputs by operating on the initial input and the latest iteration’s output (Fig 6 and Fig 7). 565

Unlike all other methods, RDCNet also uses a semi-convolutional operation, one that explicitly includes 566

each voxel’s positional information. The final network, UNETR, the base network of UNETR-BCD, departs 567

radically from other included methods by its use of transformers for the contracting path of the U-Net (Fig 7). 568

Transformers, widely used in natural language processing, learn potentially long-ranged interactions between 569
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Fig 7. The network architectures tested on our dataset. (A) Cellpose preprocesses a 3D image into
XY, XZ, and YZ slices. For each 2D slice, a modified U-Net is trained to predict two gradient maps (e.g. XY
and XZ for X direction); these maps are combined to calculate components of a 3D gradient vector field. (B)
U3D-BCD predicts a signed-distance map and instance contours via a modified 3D U-Net, where for each
spatial resolution a convolutional layer is followed by a residual block containing two convolutional layers. (C)
Stardist uses two convolutional layers with kernel sizes 7x7x7 and 3x3x3 followed by three residual blocks that
each contain three convolutional layers with kernel size 3x3x3 to predict star-convex object boundaries. (D)
UNETR-BCD divides an image into patches, linearly projects each patch into a vector and applies positional
embedding to preserve the patches’ relative spatial arrangement. The embedded patches are then passed into
a sequence of 12 transformer blocks followed by a U-Net decoder. (E) RDCNet consists of a recurrent block
between two convolutional blocks. Outputs are iteratively refined through the recurrent block.
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image patches, similar to the relationships between words in a sentence. Just as in a U-net, UNETR connects 570

the contracting path, here occupied by transformers, with an expanding path, a collection of convolutional and 571

deconvolutional operators, via skip connections. Thus, Stardist-3D and RDCNet differ from other methods by 572

lacking U-net-shaped structures, and UNETR-BCD has the shape of a U-Net but encodes via transformers. 573

The key remaining difference between the methods is their output instance representations and the 574

necessary post-processing steps. Although a common output for all the networks is a voxel-wise score related 575

to whether a voxel belongs to a nucleus, each method has a different way of combining this score with 576

its other outputs to represent individual instances. Both QCANet and NuSeT predict a binary semantic 577

segmentation map, which is combined with either nucleus center detection (QCANet) or object bounding 578

boxes (NuSeT) through marker-based watershed in post-processing. However, since NuSeT uses a 2D network, 579

it requires an additional post-processing step of combining 2D instances into 3D masks. Cellpose predicts a 580

cell probability, thresholded to distinguish between foreground and background, as well as a gradient vector 581

for each pixel. Gradient tracking and clustering are then performed to determine instances. While Cellpose 582

also uses a 2D network, it is able to segment 3D images by making 2D predictions in each of the three spatial 583

directions and estimating 3D gradients from the different 2D slices. Stardist outputs an object probability 584

map and distances to an object boundary, represented as a star-convex polyhedron. In post-processing, 585

non-maximum suppression is used to remove duplicate instance predictions, and the object probability 586

threshold can be tuned to reduce false positives or negatives. RDCNet outputs a semantic segmentation map, 587

then predicts semi-convolutional embeddings – a vector pointing from each foreground voxel to the center of 588

the corresponding instance. The instance centers are determined through a Hough voting scheme, and voxel 589

embeddings are clustered with a tunable margin during post-processing. Analogously, EmbedSeg predicts the 590

probability of a voxel being an instance center, voxel embeddings, and clustering bandwidth or margin. In 591

contrast to all other methods, U3D-BCD and UNETR-BCD predict multiple representations, including a 592

semantic foreground mask, instance contours, and a signed distance map. Marker-controlled watershed on 593

the predicted distance map is used for post-processing in these two methods. 594

0.7 Network Implementation Details 595

Each model was trained with data from 482 3D images of whole embryos. Each embryo was cropped into 8 to 596

16 patches depending on the size for a total of 4363 patches. Each patch had a resolution of 64x256x256. The 597

patches overlap such that all voxels of a nucleus were fully contained in at least one patch. The raw intensity 598

images were bit-shifted by four bits to the right, so that all voxel intensities are in the range between 0 and 599

255. Any value still above 255 was capped at 255. 600

0.7.1 RDC Net 601

For all hyperparameter combinations sampled for training, a few were held constant. The down sampling 602

factors were chosen to be 1, 10, and 10, for the z, x, and y directions, respectively, to account for anisotropy. 603

Spatial dropout was chosen to be 0.1, following the original paper. All networks were trained for a maximum 604

of 200 epochs, batch size of 2, with the Adam optimizer and Cosine Decay Restarts scheduler with learning 605

rates from 10-3 to 0. The set of model weights that resulted in the lowest validation loss across all epochs was 606

saved. The patch size was either the original crop (64x256x256) or 32x256x256 (32 random, consecutive Z 607

slices from the original crop). The number of groups (parallel stacked, dilated convolution blocks with shared 608

weights), dilation rates, number of channels per group, number of iterations, and the margin parameter were 609

also adjusted to observe their effects on network performance. 610

During inference on test images, each raw image was broken into patches with the same size as those the 611

model was trained on. The test patches were passed through the model and the resulting label patches were 612

stitched together by discarding redundant masks and any masks touching the patch boundaries, assuming 613

each nucleus is located at the center of at least one patch. 614

0.7.2 Cellpose 615

Cellpose is called a generalist method for cell and nuclei instance segmentation. It is based on a 2D U-Net 616

with residual blocks and style transfer. The objects are modeled as a diffusion gradient. The output is 617

composed of horizontal and vertical gradient maps and a segmentation probability map. Since the original 618
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cellpose model is 2D, the 3D patches were broken into 2D slices for training. The source code was modified 619

to include a data loader, since the size of the 2D training set is orders of magnitude larger than the original 620

Cellpose dataset. Models were trained for a maximum of 1000 epochs, either from scratch or from a pretrained 621

Cellpose model. Test images were down-sampled by a factor of 0.5 in X and Y to improve performance 622

since Cellpose is prone to over-segmentation for our full-resolution images in 3D. The patching and stitching 623

method was the same as for RDCNet. 624

0.7.3 Stardist 625

3D Stardist was trained with patches of 32x256x256 sampled from the full size patches. Input intensity was 626

normalized capping values below 1% and above 99.8%. For sampling the star convex in 3D, we used 96 rays 627

with a grid of 1x4x4 to compensate for the anisotropy. Data augmentation included 2D flips and grid warping. 628

For late stage embryos, more than 2.5 days, we used the optimal threshold based on the subset of training 629

data in this category. 630

0.7.4 U3D BCD and UNETR 631

In U3D BCD, a 3D Residual U-Net, and UNETR, which uses a transformer as an encoder, the instance 632

segmentation problem is broken down into learning hybrid representations i.e., semantic, contour and signed 633

distance transform maps with the help of neural networks, and using watershed algorithm to separate 634

instances. 635

UNETR encoder’s transformer uses an embedding dimension of 768, the input volume is patched into 636

volumetric tokens of dimensions 16 ×16×16, and multi-head self-attention is performed with 12 heads. 637

Augmentations, in the form of randomized brightness and contrast, flips, rotations and elastic deformations, 638

were used. Finally, the input volumes were randomly cropped to 16×128×128, before passing them through 639

the network. Adam optimizer with decaying learning rate was chosen for training. Weighted sum of Binary 640

Cross Entropy (BCE) Loss and Dice Loss is taken for foreground and contour masks, while Mean Squared 641

Error (MSE) was utilized for signed distance transform map predictions. Inference is performed by processing 642

overlapping sliding windows across the large volumes of testing set. During post-processing, the multi-channel 643

outputs from networks are combined by thresholding them appropriately to find instance seeds (or markers). 644

Similarly, a more relaxed threshold on the outputs is used to obtain the foreground mask. Thereafter, 645

marker-controlled watershed algorithm can be used with the help of seeds and predicted distance map to find 646

instances. 647

0.7.5 Training with Synthetic Data 648

To counter the limited number of samples with densely-packed nuclei, we generate artificial samples to 649

learn generalized features. This is made possible by modeling nuclei as 3-dimensional Gaussian kernels, of 650

dimensions x, y, z where x, y ∈ [100, 150] and z ∈ [3, 6]. Elastic deformations, randomized lighting, and 651

addition of noise are done to match SNR ratios with that of actual data-set. The models are pre-trained with 652

this simulated data, allowing the network to fine-tune its predictions on the actual data-set. 653
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