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Abstract
Respiratory syncytial virus (RSV) can cause severe lower respiratory tract
infections especially in infants, immunocompromised individuals and the
elderly and is the most common cause of infant hospitalisation in the
developed world. The immune responses against RSV are crucial for viral
control and clearance but, if dysregulated, can also result in
immunopathology and impaired gas exchange. Lung immunity to RSV and
other respiratory viruses begins with the recruitment of immune cells from
the bloodstream into the lungs. This inflammatory process is controlled
largely by chemokines, which are small proteins that are produced in
response to innate immune detection of the virus or the infection process.
These chemokines serve as chemoattractants for granulocytes,
monocytes, lymphocytes and other leukocytes. In this review, we highlight
recent advances in the field of RSV infection and disease, focusing on how
chemokines regulate virus-induced inflammation.
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Introduction
Respiratory syncytial virus (RSV) can cause upper and lower  
respiratory tract infections. Lower respiratory tract RSV  
infections are particularly common in young children, resulting 
in a spectrum of illnesses, including bronchiolitis and viral  
pneumonia1. Infections caused by RSV occur worldwide, and it  
is estimated that over 3.2 million children under 5 years of age  
are hospitalised annually because of RSV infection2. Moreover,  
RSV can cause lower respiratory tract infections in adults,  
especially in the elderly and immunocompromised, who are 
prone to more severe disease1,3,4. Natural RSV infections result 
in incomplete immunity and therefore recurrent infections are  
common throughout life. The determinants of the outcome of  
RSV disease are not fully known, but both viral and host  
factors play a part5. Among the latter are the immune responses 
elicited during RSV infection, which are crucial for efficient  
clearance of the virus but, if uncontrolled, can cause immun-
opathology. This can be detrimental for the lung tissues and 
result in impaired lung function and reduced oxygen exchange.  
Chemokines are crucial for the initiation of immune responses 
to RSV as they regulate leukocyte infiltration and localisa-
tion in the lungs6. Alterations in the chemokine profile may  
therefore result in substantial dysregulation of immune  
responses. Insufficient or misdirected immunity may lead to 
increased viral replication and direct viral damage to the lung  
tissue. In contrast, unnecessarily hyperactive immune responses 
may have subsequent immunopathologic consequences.

Innate immune responses during RSV infection
RSV infection often starts in the nasopharyngeal epithelium  
and rapidly spreads to the lower airways. The main cellular  
hosts for viral replication are the epithelial cells lining the  
airways and alveoli. When the virus reaches the lower airways, 
lung-resident cells such as epithelial cells, dendritic cells (DCs) 
and alveolar macrophages (AMs) initiate the innate immune  
response to the infection with the secretion of cytokines and  
chemokines1,5. AMs are crucial for the initial anti-viral responses 
as they are the main type I interferon (IFN) producers in the 
lung during RSV infection7. Type I IFNs are cytokines that are  
important for inducing interferon-stimulated genes (ISGs) that  
limit viral replication and for priming and sustaining overall 
inflammatory cytokine and chemokine production8,9. The inflam-
matory chemokines orchestrate recruitment of blood leukocytes  
into the lung. In vitro studies show that epithelial cells and  
macrophages can produce chemokines (see details in Table 1). 
However, there is no clear evidence that AMs are the main  
source of most chemokines during RSV infection10,11 and many 
other cell types are likely involved in chemokine production. 
Interestingly, chemokine production is bi-phasic in mice12,13 
and humans14 after RSV infection; the first wave of chemokines 
is induced after sensing of the virus, and the second wave of  
chemokines is induced a few days after the initiation of  
infection. The second wave of chemokines correlates with the 
disease severity and the recruitment of T cells. The types of  
chemokines produced in the two waves are overall similar, but 
the underlying mechanism for the regulation and initiation of the 
two waves of chemokine production is not known. Therefore,  
increased knowledge of the regulation of chemokine production 
is important for the possibility to develop targeted therapies to  
reduce lung inflammation in the future.

In this review, we describe the major chemoattractants (Table 1) 
considered to be important during RSV infection. We have  
summarised work from in vivo studies in mice and from  
human patient samples and describe the cell recruitment into 
the lungs after RSV infection based on timing, starting with the  
cell types infiltrating the lungs within hours of a primary  
infection and ending with the events occurring during secondary 
exposure, after re-encountering RSV (Figure 1).

Neutrophils during RSV infection
Neutrophils are the first cell type to arrive at a site of infection 
or tissue damage and they infiltrate the lung in both mice and 
humans in large numbers during RSV infection8,15–17. Neutrophils 
are attracted into the lung tissue by a wide range of different  
molecules. These include not only several chemokines but also 
cytokines, eicosanoids and small peptides18. In this review, only 
the chemokines will be discussed. CXCR2 and CCR1 are the  
most abundantly expressed chemokine receptors on neutrophils. 
CXCR2 is able to interact with a number of different  
chemokines, but CXCL1, CXCL2 and CXCL8 have been 
studied the most. Similarly, CCR1 can bind several distinct  
chemokines such as CCL3 and CCL518.

CXCL1 (KC) and CXCL2 are considered to be some of the  
earliest chemokines expressed in the lungs of mice after 
RSV infection, detectable as early as 4 to 8 hours after virus  
exposure7,8,17,19. Moreover, recombinant CXCL1 can recruit large 
numbers of neutrophils into the lungs if given intranasally to  
mice17. CXCL1 has been suggested to be produced by several 
different cell types, including epithelial cells20 but not AMs10.  
Recently, it was shown that a stromal cell type—that is, a  
non-epithelial (AT-II) and non-endothelial cell—is the main  
source of CXCL1 during RSV infection of mice17.

CXCL8 (IL-8) has no orthologue in mice and can be studied 
in humans only. Many studies have found elevated CXCL8 
levels in bronchoalveolar (BAL) fluid or nasal washes from  
RSV-infected children (for example, 20–26) and from  
RSV-challenged healthy adult volunteers14. The origin of  
CXCL8 during RSV infection is not clear, but an in vitro  
model showed that primary paediatric bronchial epithelial cells 
can produce CXCL8 after RSV infection27. Furthermore, RSV 
can directly trigger the release of CXCL8 from neutrophils28. A  
recent study revealed links between viral load, CXCL8 levels 
and changes in the microbiome during RSV infection29. In that  
study, the abundance of bacteria of the Haemophilus genus in 
nasopharyngeal aspirates of RSV-infected hospitalised infants  
was a predictor for CXCL8 levels and higher viral load29.

CCL3 can recruit many different cell types such as neu-
trophils, monocytes, natural killer (NK) cells and T cells. CCL3  
production in the lungs increases soon after RSV infection in 
mice8,13,19,30 and in infants22,23,25. Although CCL3 can be pro-
duced by AMs10, two studies using AM-depleted mice show dif-
ferent results: one shows a reduction in CCL331 and the other no  
difference11 when AMs are depleted during RSV infection. In  
addition, after RSV infection of BALB/c mice, CCL3 was  
detected in alveolar epithelial cells and endothelial cells32. This 
suggests that CCL3 can originate from several cell types in the  
lung.
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Table 1. The most common chemokines produced during respiratory syncytial virus infection, their receptors, cell types they attract 
and possible sources.

Chemokine Receptors Cells attracted Possible cellular 
sources

Study type References

CXCL1 
(KC)

CXCR1, CXCR2 Neutrophils Stromal cells, 
neutrophils, ECs

Murine 7,8,17,19

CXCL2 
(MIP-2α)

CXCR2 Neutrophils AMs? Murine 12,19

CXCL8 
(IL-8)

CXCR1, CXCR2 Neutrophils ECs, macrophages, 
neutrophils

Human 14,20–28

CXCL9 
(MIG)

CXCR3 NK cells, T cells ? 8,33

CX3CL1 
(Fractalkine)

CX3CR1 Monocytes, NK cells, T cells ? Murine 34

CXCL10 
(IP-10)

CXCR3 Monocytes?, DCs, T cells AMs, stromal cells?, 
ECs?

Human and 
murine

8,10,14,23,33,35,36

CCL2 
(MCP-1)

CCR2, CCR4 Monocytes, NK cells, eosinophils? ECs?, 
macrophages?

Human and 
murine

7,10,12,22,23,25

CCL3 
(MIP-1α)

CCR1, CCR4, CCR5 Neutrophils, monocytes, NK cells, T cells AMs, ECs, stromal 
cells

Human and 
murine

8,10,13,14,19,22,23
,25,30

CCL5 
(RANTES)

CCR1, CCR3, CCR5 Neutrophils, monocytes, DCs, NK cells, 
T cells

ECs, AMs Human and 
murine

11,12,14,20,31,37

CCL7 
(MCP-3)

CCR2 Monocytes ? Murine 7

CCL8 
(MCP-2)

CCR1, CCR2, CCR3, 
CCR5

Monocytes, eosinophils, NK cells, T cells ?

CCL11 
(Eotaxin-1)

CCR2, CCR3, CCR5 Eosinophils, T cells ? Murine 19,38,39

CCL12 
(MCP-5)

CCR2 Monocytes, eosinophils, lymphocytes Macrophages? Murine 7

CCL17 
(TARC)

CCR4 Th2 cells, Treg cells ? Human 40

CCL20 
(MIP-3a)

CCR6 DCs, T cells ?

CCL22 CCR4 Th2 cells, Treg cells DCs, macrophages

AM, alveolar macrophage; DC, dendritic cell; EC, epithelial cell; NK, natural killer; Treg, regulatory T.

Neutrophils phagocytose microbes and release granules contain-
ing oxygen radicals, elastases and proteolytic enzymes41–43. In  
addition, they form neutrophil extracellular traps (NETs), 
which serve to stop pathogens from propagating44,45. Although 
the role of neutrophils is well defined during bacterial or fungal  
infections, their role during RSV infection remains unclear. It 
is not yet known whether they have a beneficial role limiting 
the spread of the virus or a detrimental role damaging the lung  
tissue46,47. The viral load does not change if neutrophils are  
depleted during RSV infection48, suggesting that neutrophils 
do not have a substantial direct anti-viral role. However, the  
inflammatory environment in the lung, induced by RSV infec-
tion, results in neutrophil activation17, and in vitro studies 
suggest that activated neutrophils augment the detachment of  
epithelium infected with RSV49,50. Furthermore, a detrimental 
role of excessive neutrophilic response is suggested by the  
fact that the degree of neutrophilic infiltration into the lungs  
correlates positively with severity of RSV-induced bron-
chiolitis15,16,51. Also, infants with RSV-induced bronchiolitis 

have increased levels of neutrophil elastase21,52 and signs of  
oxidative burst53, which can promote oxidative stress and  
tissue injury54. NETs can be secreted by neutrophils from  
RSV-infected children and have also been detected in lungs of 
RSV-infected calves55. In vitro studies have shown that RSV  
fusion protein can interact with TLR4, an innate immune 
receptor expressed on neutrophils and other cells, to trigger  
formation of NETs56. It has also been suggested that NETs can 
capture RSV and that NET formation can contribute to lung  
damage during RSV infection55. In sum, neutrophils are a key 
population of cells recruited into the lungs after RSV infection,  
but more studies are needed to confirm whether they are  
beneficial or detrimental to the host during RSV infection.

Monocytes during RSV infection
Monocytes are the second cell type to infiltrate the lung after 
RSV infection. Human and murine monocytes are divided into  
two main subsets on the basis of their chemokine receptor  
expression. Their functions seem to be more or less similar, but  
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Figure 1. Chemokines as drivers of cell infiltration into the lung during respiratory syncytial virus (RSV) infection. Cells of the lung, 
such as alveolar macrophages, epithelial cells and stromal cells, produce chemokines during RSV infection to initiate and drive inflammation. 
During a primary RSV infection, neutrophils are the first cells to be recruited into the lung, followed by monocytes and dendritic cells. This is 
followed by the infiltration of natural killer (NK) cells and then T cells. During a secondary infection, tissue-resident and circulating memory  
T cells respond to the infection. In some cases, eosinophils can also infiltrate the lungs during RSV infection.

one subset expresses high levels of CCR2 and low levels of 
CX3CR1 (CCR2hi subset) and the other subset expresses 
high levels of CX3CR1 and low levels of CCR2 (CX3CR1hi  
subset)57. CX3CR1 is also expressed on T cells and airway  
epithelial cells58. CX3CR1 binds to its ligand, CX3CL1, which 
is important for the chemotaxis of CX3CR1hi monocytes as well 
as T cells. Furthermore, CX3CR1 expression on monocytes is  
important for their survival59. During RSV infection of mice, 
CX3CR1 deficiency is associated with reduced innate immune 
cell recruitment, notably a significant decrease in NK cells and  
CD11b+ cells (which may represent a monocytic subpopulation)34. 
Interestingly, RSV G protein can bind directly to CX3CR1 and 
influence chemotaxis of lymphocytes60, and CX3CR1 has been  
suggested to be a receptor used by RSV to infect cells1,58.

CCR2 is also an important receptor expressed on monocytes. 
CCR2 binds to CCL2, CCL7, CCL8 and CCL12, and the first two 
chemokines are generally considered to be the most important 
for monocyte recruitment57,61. However, both human and murine  

monocytes express CCR1 and CCR5, which means that they 
can also be recruited by the chemokines CCL3 and CCL557.  
CCL2, CCL3, CCL5 and CX3CL1 have all been found in  
nasal samples or lung tissues of human and mice infected with  
RSV (for example, [7, 12, 14, 22, 23, 25]).

In mouse models, CCL2, CCL7 and CCL12 are produced 
early after RSV infection7,12. In humans, CCL2 levels correlate  
positively with disease severity: infants with RSV bronchiolitis 
who required mechanical ventilation show significantly elevated  
levels of CCL2 in BAL fluid compared with control infants  
intubated for non-infective causes22,23, and children with severe 
RSV disease displayed higher levels of CCL2 in nasopharyngeal 
wash samples than controls25. The source of CCL2 during  
pulmonary inflammation has been under investigation but  
remains controversial. Experiments in Mavs−/− and Ifnar1−/− 
mice show that CCL2 expression is promoted by type I IFNs  
produced by AMs7. In vitro studies show that CCL2 can be  
produced by murine airway epithelial cells but not by AMs10,12. 
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However, it is still unclear whether AMs can produce CCL2  
in vivo or whether they simply promote chemokine expression  
by producing type I IFNs.

CCL5 (RANTES), another monocyte chemoattractant, is also 
considered to be important during initial responses to RSV  
infection. This chemokine binds to a wide range of receptors, 
including CCR1, CCR3 and CCR5, expressed on different types 
of immune cells: Th1 T cells, macrophages, DCs, neutrophils 
and NK cells6. Moreover, it has been proposed that CCL5 has a 
direct anti-viral effect against RSV by blocking RSV fusion  
protein interactions with epithelial cells62. Surprisingly, recent 
studies show that the levels of CCL5 are higher in nasal fluid  
samples of children with moderate RSV bronchiolitis compared 
with children with severe disease37. AMs play a role in CCL5  
production during RSV infection as AM depletion in mice results 
in decreased levels of CCL511,31. It is possible that AMs do not  
produce CCL5 themselves but exert their effects through the  
production of mediators such as type I IFNs that subsequently 
act on other cells to increase CCL5 production. Furthermore,  
in vitro studies show that human cord blood–derived mast  
cells63 and human airway and bronchial epithelial cells can  
produce CCL5 and that CCL5 release depends on live virus12,20.

Monocyte-derived cells consist of inflammatory monocytes 
and monocyte-derived DCs and can constitute up to 40% of 
total lung leukocytes in the mouse model of RSV infection7.  
Furthermore, monocyte-derived cells play a direct role in  
limiting RSV replication7. Monocytes exhibit their anti-bacterial 
effects through the production of tumour necrosis factor (TNF) 
and inducible nitric oxide synthase64, but how they limit RSV  
replication is not yet understood. Contrary to their anti-viral  
activities, monocytes can also have harmful effects on lung 
tissue. In an influenza virus–Streptococcus pneumoniae  
co-infection mouse model, inflammatory monocytes induced  
damage to the lung barrier by killing epithelial cells via a 
TNF-related apoptosis-inducing ligand (TRAIL)-dependent  
mechanism, resulting in decreased control of the infection 
and reduced animal survival65. However, there are no studies  
revealing a harmful role of monocytes during RSV infection.  
Given that viral–bacterial and viral–viral co-infections can 
occur in immunocompromised children or when several viruses  
such as RSV, rhinovirus and influenza virus co-circulate at the  
same time66–69, it would be very interesting to investigate the  
exact role of monocytes during RSV infections.

Dendritic cells during RSV infection
DCs are the main antigen-presenting cells that initiate the  
adaptive immune responses to infections. This function makes 
DCs especially important for the clearance of viral infections 
such as RSV. DCs are resident in the lung during homeostasis  
and can respond to RSV immediately. However, immature 
DCs (not clear whether these are monocyte-derived) can also 
be recruited to sites of inflammation by many inflammatory  
chemokines binding to CXCR1, CXCR3, CCR1, CCR2, CCR5  
and CCR66,70,71, and DCs are recruited to the nasal tissue in  
children with RSV infection72. One chemokine associated 
with DC recruitment during RSV infection is CXCL10 as  

antibody-mediated neutralisation of CXCL10 results in impaired 
DC recruitment and maturation with reduced levels of type I 
IFN and IL-12p70 in the lungs of RSV-infected mice35. Similar  
responses were observed after neutralisation of CXCR3, the only 
known receptor for CXCL1035. Additionally, RSV-infected mice 
treated with neutralising antibodies against CCL20 or CCR6−/−  
mice, another DC chemoattractant and chemokine receptor  
respectively, recruit fewer conventional DCs but show reduced 
lung pathology36. These data suggest that DCs can have both a  
beneficial and detrimental role in the lungs.

Innate lymphoid cells during RSV infection
NK cells, part of the innate lymphoid cell 1 (ILC1) group, are 
important anti-viral innate lymphoid cells that activate other 
immune cells or kill virus-infected cells. NK cells, like other 
immune cells, express an extensive variety of chemokine  
receptors and can be attracted to the sites of inflammation via  
several distinct pathways6,73. The CCR5/CCL5 axis plays an  
important role in the accumulation of NK cells at virally infected 
sites, and during influenza virus infection, both CXCR3 and CCR5  
have been shown to be important for NK cell recruitment74.

NK cells are recruited to the lungs of RSV-infected mice and 
get activated to produce IFN-γ75. Ex vivo, human NK cells can 
be infected by RSV, especially in the presence of RSV-specific  
antibodies76. However, the number of human NK cells has also  
been shown to decrease with severe RSV disease77, and if NK  
cells are depleted from mice, IFN-γ production is suppressed and 
more of a Th2 response develops78.

RSV has also been shown to activate IL-13–producing ILC2s 
via the production of TSLP79, and STAT-1 signalling was shown  
to be important for the activation of ILC1s and the repression 
of ILC2s and ILC3s80. Overall, very little is known of the  
recruitment of ILCs during RSV infection, and more informa-
tion will aid in the understanding of how they are recruited and  
their contribution to viral clearance or lung damage.

Adaptive immune responses during RSV infection
Cells of the adaptive immune response infiltrate the lung both 
during primary and secondary infections. These are mostly  
T cells: CD8+ (CTL) T cells and CD4+ T cells (both T helper 
cells and regulatory T [Treg] cells)1. After naïve T cells have been  
primed in lymph nodes, they migrate to the lungs in response 
to chemotactic signals. In mice, it is known that RSV infections  
lead to increased numbers of T cells in the lung tissue, which 
typically peak at day 7 or 8 following a primary infection81,82.  
T cells accumulate at a similar time (8 to 10 days after  
infection) in the human airways after RSV infection of healthy 
volunteers83. Interestingly, the final lung viral clearance, 
both in mice and humans, occurs on days 8 to 10 after RSV 
infection, corresponding to the peak of adaptive immune  
responses1,83,84.

Chemokines, such as CCL3, CXCL9 and CXCL10, regulate 
the infiltration of effector T cells into the lungs and they are all  
produced during RSV infection in mice and humans8,13,19,23,33,82. 
Memory T cells are formed after the first encounter with 
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RSV. These are both effector memory cells and lung-resident  
memory T cells (Trm cells). The Trm cells provide a quick  
response during subsequent infections85, whereas the effector  
memory cells need to be recruited upon re-infection1,84.  
Chemokine signalling is therefore considered to be an important 
regulatory mechanism in the formation of, especially,  
long-term memory CD8+ T-cell populations in the lung86. It has 
been observed that, following influenza virus infection, mice  
deficient in either CXCR3 or CCR5 have significantly elevated 
numbers of memory CD8+ T cells. Although it is not completely 
clear for RSV infections, these data suggest that chemokine  
signalling through CXCR3 and CCR5 can regulate the effector  
versus memory T cell recruitment into the lung86.

Interestingly, CCL17 and CCL22 can recruit both Th2 cells and 
Treg cells into the lungs87. CCL17 recruits Th2 cells, especially in 
mice sensitised by vaccinia virus expressing the RSV G protein 
before RSV infection88, and serum CCL17 is increased in  
RSV-infected children compared with children with other 
respiratory infections or healthy controls40. Furthermore,  
RSV-specific CD8+ T cells present in the lung can inhibit 
the production of CCL17 and CCL22 and therefore limit the  
recruitment of Th2 cells89.

Thus, chemokines are important during both primary and  
secondary RSV infection as they regulate effector, memory T 
and Treg cell recruitment and thereby can determine the extent  
of disease severity during RSV infection. More detailed studies 
of how the chemokines also determine the exact localisation of  
effector, Treg and memory T cells and thereby direct their  
effector functions will be important for future work.

Eosinophils during RSV infection
Generally, eosinophils are not considered to have an important 
role during primary viral infections. However, during memory  
responses to RSV infection, eosinophils can infiltrate the  
lungs. This was especially the case when children, or mice, 
were vaccinated with formalin-inactivated RSV (FI-RSV). This  
vaccination induced a Th2-biased memory response with Th2  
cells and pulmonary eosinophilia following RSV challenge,  
resulting in increased disease severity1,90–92. For a long time, it  
was believed that lung eosinophilia was the driving factor of 
the FI-RSV vaccine-enhanced disease. However, more recent  
studies and re-evaluation of the initial vaccine trials revealed 
that eosinophilic infiltration was not the only characteristic  
component of vaccine-enhanced disease, suggesting that other  
factors may be important91,93.

Eosinophils can be attracted to the lungs by chemokines 
such as CCL2 or CCL11. CCL2 and its role in chemotaxis of  
monocytes were extensively discussed above. CCL11, also 
called eotaxin, is considered to be the main chemokine for  
eosinophil recruitment. Mice sensitised by vaccinia virus 
expressing the RSV G protein showed eosinophils in the lungs  
following subsequent RSV infection but after administration 

of anti-CCL11 antibodies showed significantly reduced lung  
eosinophil numbers. Moreover, CCL11 depletion resulted in  
subsequent decrease in CD4+ T-cell influx to the lungs and 
decreased IL-5 production with no influence on the viral load19,38. 
However, more recent studies of vaccine-enhanced RSV dis-
ease suggest that eosinophils are pro-inflammatory and have 
direct anti-viral functions during RSV infection. Experiments in  
eotaxin knockout mice show complete absence of eosinophils in 
the lungs of FI-RSV immunised mice following RSV infection  
with reduced lung inflammation. However, the eotaxin  
knockout mice had significantly higher lung RSV titres  
compared with wild-type mice, and when lung eosinophilia 
was restored, by either intratracheal rCCL11 administration or  
adoptive transfer of eosinophils, this resulted in increased viral 
clearance39. These data raise the question again, do eosinophils 
have a positive or negative influence on the course of RSV  
infection?

Conclusions
Chemokines are key drivers of the anti-viral inflammatory  
response during RSV infection. Many chemokines are produced 
during the infection, and specific cell types are recruited via  
several unique chemokine/chemokine receptor interactions. 
The redundancy of chemokines in cell recruitment denotes the  
importance for the host of being able to attract immune cells 
into the lungs to help combat the infection. We still know very  
little about the cellular sources of chemokines in the lung, and in  
order to identify the main cellular source (or sources) of a  
chemokine during the course of infection, several lung cell 
types have to be compared side by side which can be performed  
only in vivo or from biopsies. Also, how chemokines direct the 
migration of immune cells within the lung tissue to determine  
their precise localisation, which will have implications for their 
effector functions, is an important future research avenue.

Almost all chemokines correlate positively with disease  
severity during RSV infection25,26. This observation is most likely 
explained by the scenario that excessive inflammatory responses 
in the delicate lung tissue will drive immunopathology via cell  
activation and mediator release. We are still far from being 
able to use chemokine receptor blockade as a treatment for 
RSV-induced disease (as discussed in more detail in 94).  
However, greater in-depth knowledge of which cell types 
act as the main sources of chemokines and how chemokine  
production is regulated will help the understanding of the  
initiation and maintenance of inflammation in the lung 
and possibly a more targeted approach for reducing lung  
inflammation via chemokine/chemokine receptor inhibition in the  
future.
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