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disease characteristics and neuropathological changes associated 
with cognitive dysfunction in obstructive sleep apnea 
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AbSTRACT
Obstructive sleep apnea (OSA) is a common sleep-disordered 
breathing disease that often leads to many comorbidities (e.g., 
cognitive dysfunction), which adversely affect the quality of life 
for patients with OSA. Thus far, the underlying mechanisms of 
this dysfunction remain unclear. Many studies have focused on 
OSA-related characteristics, including intermittent hypoxemia 
and sleep fragmentation. There is increasing emphasis on 
neuroimaging studies to explore underlying relationships between 
neuropathological changes and cognitive dysfunction. This article 
reviews recent research progress concerning cognitive dysfunction 
associated with OSA to reveal potential mechanisms that contribute 
to this dysfunction.
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Introduction
Obstructive sleep apnea (OSA) is one of the most common 
sleep-disordered breathing diseases that is characterized 
by prolonged partial upper airway obstruction (hypopnea) 
and/or complete obstruction (apnea), both of which disrupt 
ventilation and normal sleep patterns.1 Its prevalence 

is 1.2%–5.7% in children2,3 and 24% in adult men aged 
30–60 years along with 9% in adult women.4,5 Chronic 
OSA is typically accompanied by comorbidities such 
as cardiovascular diseases and cognitive dysfunction; 
common adverse effects of cognitive dysfunction include 
irritability, attention deficit, and memory and execution 
disorders.6-10 These learning and behavioral disorders 
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presumably have severe adverse effects on physical 
and mental health. Furthermore, irreversible cognitive 
Impairments may occur in some patients with OSA.11,12 
Notably, children are in an important period of continuous 
development and maturation of the nervous system; 
thus, neuropathological changes in the nervous system 
may adversely affect children’s long-term growth and 
development.8,13 The American Academy of Pediatrics has 
emphasized the necessity of assessing cognitive function in 
children with OSA, before and after treatment.2 Therefore, 
cognitive dysfunction is an important consideration in 
patients with OSA.

However,  the mechanisms underlying cognit ive 
dysfunction associated with OSA remain unknown. In 
recent years, there has been an increasing number of 
studies involving cognitive dysfunction in patients with 
OSA. The findings have confirmed that this dysfunction 
is associated with OSA characteristics and specific 
neuropathological changes. This review discusses the 
relevant studies regarding these characteristics and the 
neuropathological changes in patients with OSA, with the 
aim of providing a reference to explore the underlying 
mechanisms. 

The existing literature mainly suggests that cognitive 
dysfunction might be associated with OSA-related 
characteristics, including intermittent hypoxemia (IH) 
and sleep fragmentation. Moreover, with the development 
of neuroimaging technologies, there has been increasing 
use of tools based on magnetic resonance imaging 
in clinical studies of patients with OSA. Substantial 
neuropathological changes have been observed in brain 
metabolites, brain morphology structure, and brain 
functions in patients (both children and adults) with OSA; 
these changes have been observed using tools such as 
magnetic resonance spectroscopy, high-resolution T1-
weighted images, diffusion tensor imaging, and resting-
state functional magnetic resonance imaging. The findings 
may aid in understanding of the underlying mechanisms of 
cognitive dysfunction. 

OSA-related characteristics

Intermittent hypoxemia  

IH refers to intermittent collapse of the upper airway 
during sleep and recurrent hypoxic episodes. It is 
currently considered a potential major pathogenic factor 
for OSA-related comorbidities,14 especially cognitive 
dysfunction.15,16 Many studies have shown that OSA 
might cause cognitive dysfunction due to IH during 
sleep.14,17 The underlying mechanisms may be related 
to the oxidative stress response promoted by IH, such 
as increased presence of reactive oxygen species and 
angiogenesis, stimulation of sympathetic activation, and 
onset of systemic and vascular inflammation.18-20

Furthermore, the high-frequency IH associated with OSA 
is characterized by adverse cycles of hypoxemia with re-
oxygenation, and considerably differs from sustained low-
frequency hypoxia14; high-frequency IH is presumably 
associated with greater risk for ischemia-reperfusion injury 
in the brain, which may result in important pathological 
changes. For example, using an ischemia-reperfusion 
injury rat model, Ravindran and Kurian17 compared 
cognitive performance after short-term (15 min) and long-
term (30 min) exposure to ischemia. They found that the 
long-term exposure caused significantly more cognitive 
dysfunction in terms of learning and memory. Zhu et al21 
studied dynamic changes in mice subjected to ischemia-
reperfusion injury; they confirmed that perinuclear and 
dendritic cavitations of neurons were induced, while 
the response of multiple wake-active neurons to c-Fos 
stimulation was markedly impaired, following 8 weeks 
of exposure to a hypoxia/re-oxidation environment. 
Moreover, the number of catecholaminergic wake-
active neurons associated with executive and emotional 
function was reduced by 40 percent after 6 months of 
exposure. These results suggested that high-frequency IH 
and cerebral ischemia-reperfusion injury associated with 
OSA may cause cognitive dysfunction, which might also 
explain the mechanisms underlying neuronal injury in 
patients with OSA.

Sleep fragmentation and subsequent cytokine regulation

Sleep fragmentation is a sleep deprivation behavior 
caused by repeated nocturnal awakening during sleep in 
patients with OSA. Some studies have also confirmed 
that sleep fragmentation is associated with sustained 
attention deficit and excessive daytime somnolence in 
patients with OSA.22,23 These impairments may be caused 
by enhancement of sleep regulatory substances including 
interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), 
nerve growth factor, epidermal growth factor, IL-4, 
and IL-10.24-27 Notably, these cytokines are involved in 
inflammatory reactions, as well as regulation of the sleep 
biochemical network.

For example, in the brain, adenosine triphosphate released 
from neuroglia induces the release of gliotransmitters 
(e.g., IL-1β and TNF-α). IL-1β then induces the release of 
growth hormone-releasing hormone and the production 
of an inhibitory neurotransmitter (γ-aminobutyric acid) 
to further activate sleep-active neurons and inhibit wake-
active neurons; these substances promote entry into 
non-rapid-eye-movement sleep.27-30 Additionally, these 
cytokines promote their own proliferation and interact 
with various other substances by means of nuclear factor-
κB (NF-κB).31,32 Multiple molecules (e.g., adenosine, nitric 
oxide, and prostaglandins) in downstream mechanisms 
activated by NF-κB have been recruited into the 
biochemical cascade of sleep regulation.33,34 Among these 
molecules, adenosine acts on adenosine A1 receptors on 
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postsynaptic neurons to promote neurotransmitter release 
and regulate the sleep state (see Figure 1 for details).24,35 
Although the underlying biochemical mechanisms have 
not been fully elucidated, patients with OSA might exhibit 
sleep fragmentation and subsequent cytokine regulation by 
means of a complex network of neuronal factors. 
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FIGURE 1 The role of cytokines in sleep biochemical network 
regulation. Adenosine triphosphate released from neuroglia induces 
the release of gliotransmitters (e.g., IL-1β and TNF-α). IL-1β then 
induces the release of growth hormone-releasing hormone and the 
production of γ-aminobutyric acid (an inhibitory neurotransmitter) by 
activating sleep-active neurons and inhibiting wake-active neurons; these 
substances promote entry into non-rapid-eye-movement sleep. These 
cytokines promote their own proliferation and interact with various 
other substances by means of NF-κB. Multiple molecules including 
adenosine, nitric oxide, and prostaglandins in downstream mechanisms 
activated by NF-κB are also recruited into the biochemical cascade of 
sleep regulation. Overall, adenosine acts on adenosine A1 receptors on 
postsynaptic neuron to promote neurotransmitter release and regulate 
sleep state. IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α; NF-
κB, nuclear factor-κB; ATP, Adenosine triphosphate.

Specific neuropathological changes in the 
brain 
Brain metabolites changes

Magnetic resonance spectroscopy has been applied 
to noninvasively detect brain metabolic changes and 
assess neuronal damage before the occurrence of 
morphological changes.36 For example, Alkan et al36 
found that the metabolites ratios (i.e., N-acetyl aspartate/
creatine, choline/creatine, and N-acetyl aspartate/choline) 
significantly differed in multiple brain regions, including 
hippocampus and putamen, between mild and severe 
OSA groups; these abnormalities were more pronounced 
as OSA severity increased. O’Donoghue et al37 showed 
that patients with OSA had significant differences in 
hippocampal choline/creatine ratios before morphological 
changes; these changes were no longer statistically 
significant after 6 months of continuous positive 
airway pressure (CPAP), highlighting the importance 
of early diagnosis and treatment of OSA. Furthermore, 
Macey et al38 confirmed that patients with OSA showed 

reduced levels of N-acetyl aspartate, which indicated 
neuronal injury or dysfunction. These studies revealed 
microstructural changes in the brains of patients with OSA 
and provided insights into exploring neuropathological 
changes.

Brain morphology structural changes

Many studies have reported that the morphological 
structures of different brain areas substantially changed 
in children with OSA; moreover, these changes may be 
associated with cognitive dysfunction.39-44 Chan et al39 

observed that the gray matter volumes were reduced in 
prefrontal and temporal regions in children with moderate-
to-severe OSA who exhibited impairments involving 
attention and visual-fine motor coordination. Another 
study40 revealed statistically significant changes in cortical 
thickness among multiple regions including the frontal, 
insular, and parietal cortices. Based on the findings in that 
study,40 both thinning and thickening of the brain cortex 
were presumed to contribute to cognitive and behavioral 
dysfunction in pediatric patients with OSA. Kumar et 
al41 found that the gray matter volume in the putamen 
and its subregions changed significantly in children and 
adults with OSA; these regional changes were associated 
with specific OSA-related deficits in motor, autonomic, 
and neuropsychological functions. Similarly, a reduced 
mammillary body volume was associated with emotional 
and impaired cognitive function in patients with OSA.43 
Canessa et al44 also found that cognitive function of 
memory, attention, and execution impaired in untreated 
patients with OSA and these impairments were associated 
with reduced gray matter volumes in multiple brain areas 
including the left hippocampus, left posterior parietal 
cortex, and right superior frontal gyrus. 

Importantly, Chen et al45 analyzed diffusion tensor 
imaging-related indicators (e.g., fractional anisotropy, 
axial diffusivity, radial diffusivity, and mean diffusivity) 
in patients with severe OSA, compared with healthy 
participants. They found that white matter integrity was 
impaired in various regions; moreover, this impairment 
was associated with enhanced OSA severity. Another 
study46 confirmed that white matter integrity and structural 
connectivity were substantially altered in patients with 
OSA; notably, white matter integrity was associated 
with brain network properties (i.e., strength, global 
efficiency, and local efficiency), which helped to explain 
neurocognitive impairments in affected patients. Cha 
et al42 compared the mean diffusivity and fractional 
anisotropy between children with OSA and health controls 
they found that the volume of the left dentate gyrus was 
significantly reduced in the OSA group, while a reduced 
mean diffusivity in the dentate gyrus was positively 
correlated with a lower verbal learning score. Moreover, 
Castronovo et al47 observed that the white matter integrity 
was reduced in multiple brain areas in patients with OSA; 
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these abnormalities were completely reversed after 12 
months of CPAP. Based on these findings, early diagnosis 
and treatment are essential for patients with OSA. These 
changes in brain structure may reflect the progression from 
onset of OSA to chronic disease, perhaps associated with 
hypoxia or changes of glial perfusion and  disruption of 
neural development.41,44

Brain functional changes

Several studies have been published in the past 10 years 
regarding brain functional changes in adult patients with 
OSA. For example, Li et al48 analyzed the intensity of 
spontaneous brain activity in men with severe OSA, 
measured by amplitude of low-frequency fluctuation 
(ALFF). They observed significantly enhanced ALFF in 
the left inferior frontal gyrus, along with reduced ALFF in 
the right precuneus and bilateral posterior cingulate gyrus; 
the reduced ALFF in this cluster was positively correlated 
with Montreal Cognitive Assessment (MoCA) score. 
Additionally, Peng et al49 compared the local synchronicity 
of spontaneous neural activity between men with severe 
OSA and controls, measured by regional homogeneity 
(ReHo). They found that patients with OSA showed lower 
ReHo in the right medial frontal gyrus, right superior 
frontal gyrus, right precuneus and angular gyrus, and left 
superior parietal lobule; they also showed higher ReHo in 
the right posterior lobe of the cerebellum, right cingulate 
gyrus, and a bilateral cluster comprising the lentiform 
nucleus, putamen, and insula. In a study including 14 
patients with OSA and 16 healthy participants (all Tibetan 
men), Kang et al50 reported that patients with OSA showed 
higher ALFF in multiple brain areas including the frontal 
and insular lobes and the cingulate and paracingulate 
gyri, as well as enhanced ReHo in the superior frontal 
dorsolateral gyrus, left middle frontal gyrus, and superior 
frontal medial gyrus; these patients also exhibited reduced 
ReHo in the left fusiform gyrus and cerebellum lobule 
6. These results in adult men with OSA may have been 
influenced by factors such as disease severity and living 
environment (e.g., high altitude and hypoxia associated 
with residence on the Qinghai-Tibet Plateau).50 

Notably, functional connectivity is reportedly impaired 
between the hippocampus and other brain areas (e.g., 
thalamus, parahippocampal gyrus, medial and superior 
temporal gyri, insula, and posterior cingulate cortex) 
in adult patients with OSA51; these changes have been 
associated with behavioral and neuropsychological 
performance. Chen et al52 confirmed that patients with 
OSA showed abnormal functional connectivity in several 
network regions including the default mode network, 
salience network, and central executive network; these 
topological properties could contribute to altered Epworth 
Sleepiness Scale and MoCA score. Another study53 

revealed that the functional connectivity patterns in 
amygdala subregions showed substantial and complex 

changes in men with severe with OSA, compared with 
healthy controls. The changes included both enhanced 
and reduced functional connectivity; moreover, these 
abnormalities might reveal mechanisms of OSA-related 
emotional and executive disorders. These findings might 
aid in exploration of the underlying neuropathological 
mechanisms of cognitive dysfunction in adults with OSA. 
However, there are limited data regarding brain functional 
changes in children with OSA,54 indicating a need for 
further research in these patients.

Conclusion
OSA is an independent sleep-disordered breathing disease 
with high prevalence, which leads to cognitive dysfunction. 
Recent studies have confirmed that this dysfunction is 
not limited to characteristics of OSA; it is also related to 
neuropathological changes in brain metabolism, neuronal 
morphology, and neuronal function. These changes may 
be regarded as biomarkers for detection and evaluation 
of cognitive dysfunction. Although these findings 
provide some insights that may aid in the investigation of 
neuropathological mechanisms of cognitive dysfunction 
related to OSA, more prospective clinical studies are 
needed to clarify the specific mechanisms of cognitive 
dysfunction in patients with OSA.
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