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Forming attitudes via neural activity supporting
affective episodic simulations
Roland G. Benoit 1, Philipp C. Paulus 1,2 & Daniel L. Schacter 3

Humans have the adaptive capacity for imagining hypothetical episodes. Such episodic

simulation is based on a neural network that includes the ventromedial prefrontal cor-

tex (vmPFC). This network draws on existing knowledge (e.g., of familiar people and places)

to construct imaginary events (e.g., meeting with the person at that place). Here, we test the

hypothesis that a simulation changes attitudes towards its constituent elements. In two

experiments, we demonstrate how imagining meeting liked versus disliked people (uncon-

ditioned stimuli, UCS) at initially neutral places (conditioned stimuli, CS) changes the value of

these places. We further provide evidence that the vmPFC codes for representations of those

elements (i.e., of individual people and places). Critically, attitude changes induced by the

liked UCS are based on a transfer of positive affective value between the representations (i.e.,

from the UCS to the CS). Thereby, we reveal how mere imaginings shape attitudes towards

elements (i.e., places) from our real-life environment.
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A remarkable feat of the human mind is its ability to vividly
imagine a plethora of prospective events1,2. The core
brain network supporting such episodic simulations

comprises parts of the medial surface, including the ventromedial
prefrontal cortex (vmPFC), lateral parts of the inferior posterior
and temporal cortices, and the medial temporal lobes1,3,4. This
network has been suggested to mediate episodic simulation by
supporting the integration of elements from disparate episodic
and semantic memories (e.g., of a liked person and a neutral but
hitherto unrelated place) into novel events (e.g., meeting that
person at that place for the first time)1,2,5,6.

Simulating prospective events influences how we anticipate the
future, for example by conveying the anticipated affect of an
imagined event7,8. Here, we examine the hypothesis that it also
changes how we value our immediate present by shaping real-life
attitudes.

Episodic simulation creates an imaginary parallel to a situation
of actually pairing a valenced unconditioned stimulus (UCS) with
an initially neutral conditioned stimulus (CS). Such evaluative
conditioning forms attitudes by changing the liking of the CS to
align with the valence of the UCS9–11. We hypothesize that
imaginings of possible events (e.g., meeting a beloved person at a
specific place) can effectively transfer affective value from one of
the integrated elements (e.g., the person) to the other (e.g., the
place). By this process, episodic simulations modify attitudes
toward the very elements that the simulations had been based on,
thus influencing how we evaluate our real-life environment.

Our hypothesis assigns a key role to the vmPFC in mediating
such presumed attitude change. This region has been shown to
integrate similar memories into schematic representations of the
elements that are shared across those memories12–15. The con-
current reactivation of disparate representations, in turn, can
support simulations of even novel experiences16,17.

Critically, the vmPFC does not only represent “cool” models of
the world18. Activation in this region also generally varies with
subjective value19,20, and it specifically scales with the affective
quality of simulated experiences16,17,21,22. The vmPFC has thus
been associated with both schematic knowledge and the repre-
sentation of affective value. During episodic simulation, these two
functions are supported by overlapping parts of the
vmPFC16,17,23,see also24. This overlap is consistent with the
hypothesis that this region codes for schematic representations
that also entail associated affect, i.e., for “hot” models of the
world18,25.

The vmPFC may thus code for affective representations of
elements from our environment that can be flexibly integrated to
support affective episodic simulations. Here, we hypothesize that
such simulation-based integration induces experience-dependent
plasticity in the neuronal coding of the individual elements16.
This plasticity could then enable the transfer of affective value
from one element (i.e., the UCS) of the episode to the other (i.e.,
the CS).

To test this hypothesis, we combined a novel experimental
procedure with functional MRI (fMRI) and representational-
similarity analysis26 (Fig. 1a). Before the fMRI session, partici-
pants provided names of places and people that they personally
knew. For the latter, we specified that participants should name
both people that they much liked, as well as those that they much
disliked. They then rated the familiarity and liking (as an index of
value) of each place and person (pre-rating). Based on these
ratings, we selected places that the participants felt neutral
towards (i.e., the CS) and paired these with either the most liked
or much disliked people (i.e., the positive and negative UCS).

These elements and their pairings then featured during the
three phases of the fMRI session (Fig. 1a). During phase I, we
presented each person and place, one at a time (i.e., the items

were not presented as pairs during this phase), and participants
vividly imagined interacting with the given person or acting in a
way that would be typical for the location. During phase II, they
encountered each person/place pairings repeatedly, and their task
was to imagine interacting with the person in a location-specific
manner. These simulations thus required the integration of the
two-paired elements. Phase III repeated phase I with a different
presentation order. Finally, outside the scanner, participants rated
the liking of each person and place again (post rating) before they
indicated the plausibility of meeting a given person at its paired
location as well as the anticipated pleasantness of such an event.

This procedure allowed us to test the predicted impact of
affective simulations on real-life attitudes in the fMRI study and
in a behavioral replication study. The results from the two studies
indicate that simulations indeed cause a positive change in atti-
tudes, particularly toward those places that had been the location
for imaginary meetings with liked people. At the same time, the
fMRI results support key predictions of the neural basis of this
effect. We first provide evidence for the premise of our hypothesis
that the vmPFC codes for affective representations of individual
elements from everyday life: episodic simulations yield replicable
activity patterns that are specific for individual people and places.
The activation in this region moreover reflects the affective value
of the respective element. We then provide evidence for our
proposal that the attitude change (at least for places imagined
with liked people) is mediated by a transfer of affective value:
during integrative simulations, vmPFC activation reflects the
value of the person (i.e., the UCS) and predicts the ensuing shift
in attitude toward the paired place (i.e., the CS). The current data
thus demonstrate how imaginings, much like real happenings,
can have a powerful influence on our attitudes and, thereby,
shape our models of the world.

Results
Overview. In the following, we first establish whether simulated
episodes, similar to actual encounters9,10, can shape real-life
attitudes by reporting the behavioral results of an fMRI study
(n= 18) and a pre-registered replication (n= 30). We then
examine the complementary hypothesis regarding the involve-
ment of the vmPFC.

Episodic simulation changes real-life attitudes. Based on the
pre-ratings, we had paired each neutral place with either a liked
or disliked person (difference in liking: t17= 47.2, p < 0.001, d=
11.13). The liked people, however, were also more familiar than
the disliked people (difference in familiarity rating: mean= 2.23,
standard error= 0.35; t17= 6.47, p < 0.001, d= 1.53), while the
places in the two conditions were well matched on this dimension
(t17=−0.46, p= 0.65, d=−0.11) (Supplementary Table 1).

Critically, in phase II, participants then repeatedly imagined
interactions with each person at their respective paired place.
Participants experienced episodes featuring liked people as more
plausible (t17= 3.19, p= 0.005, d= 0.75) and, importantly, also as
more pleasant (t17= 15.88, p < 0.001, d= 3.74). Mentally inte-
grating elements into a common episode thus elicited an affective
experience that was aligned with the valence of the UCS.

We predicted that the affective experience, in turn, would
change attitudes toward the episodes’ (initially neutral) locations.
In particular, there should be a greater increase in liking for places
that had been the stage for imaginary meetings with liked than
with disliked people. We quantified the change in liking by
computing the difference scores of the post- and pre-rating.
Though these scores indicated that both kinds of places were
deemed more positive following any simulation (paired with liked
people: t17= 7.9, p < 0.001, d= 1.86; paired with disliked people:
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Overview of the main stages of the procedure
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Fig. 1Main stages of the procedure and behavioral results. a In an initial session, participants provided names of both liked and disliked people as well as of specific
places from their everyday environment. They then rated howmuch they liked the people and places (indexing value) and how familiar they are with each of those.
Based on the ratings, we selected neutral places and combined each of those with either a liked or a disliked person. In a second session, participants were scanned
with fMRI during three phases: In phase I, they imagined interacting with each person and place in isolation. In phase II, they were shown the critical pairings and
imagined interacting with the respective person in a way that would be specific to that place. Phase III was identical to phase I, except for a different presentation
order. Finally, outside the scanner, participants re-rated their liking of each person and place. Moreover, they indicated, for each person–place pairing, the
plausibility of such a meeting and the anticipated pleasantness. b Consistent across a fMRI study and a pre-registered replication study, we observed that places
were deemed more positive following the integrative simulations. Critically, this pattern was stronger for places that had been the imaginary locations of meetings
with liked than with disliked people. Episodic simulation thus induced a change in attitude of the UCS that was contingent on the valence of the CS. Error bars in the
pre- versus post panels indicate the respective standard error of the mean. Boxplots indicate the median, central quartiles, and+ /− 2.7 SD. The dot denotes an
outlier beyond that range
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t17= 3.043, p= 0.008, d= 0.71), this shift in attitude was indeed
greater for places that had been imagined with liked people (t17=
3.68, p= 0.002, d= 0.87) (Fig. 1b) (for concomitant changes in
the attitudes toward the people, see Supplementary Fig. 1).

Given that the liked and disliked people also differed in
familiarity, we examined the change in liking while controlling for
this possible confound. In particular, for each difference score, we
first regressed out the effect of familiarity. We then examined the
ensuing residual scores, which were indeed still larger for the
places imagined with liked than with disliked people (due to a
deviation from normality, as indicated by Shapiro–Wilk, W=
0.831, p= 0.004, tested with a Wilcoxon test: W17= 143, p=
0.005, matched rank-biserial correlation, r= 0.67). This result
thus indicates that the attitude change toward the places was
based on the valence of the paired people rather than on their
familiarity.

The simulation-induced attitude change is replicable. Due to
the novelty of this behavioral effect, we sought to determine its
replicability by running a pre-registered study (https://
aspredicted.org/9ti3h.pdf). The procedure was identical to the
fMRI study, except for the omission of phases I and III. We also
employed a modified algorithm that successfully matched the
selected liked and disliked people on familiarity (Supplementary
Methods and Supplementary Table 2). Critically, this study yiel-
ded the identical pattern of a more positive change in liking for
places that had been imagined with liked rather than with disliked
people (t29= 3.77, p < 0.001, d= 0.69) (Supplementary Note;
Fig. 1b).

The mere act of imagining interactions can thus change real-
life attitudes. In the following, we examine the hypothesis that
such changes are mediated by a transfer of affective value between
neural representations in the vmPFC. We tested three key
predictions: first, a premise of the hypothesis is that neurons in
the vmPFC code for representations of elements from our
environment. Second, it posits that these representations entail
information about the elements’ affective value. Finally, the
hypothesis proposes that the vmPFC mediates attitude changes by
transferring affective value from the UCS (i.e., the person) to the
CS (i.e., the place).

vmPFC codes for individual people and places. First, if the
vmPFC codes for individual representations, then activation in
the vmPFC should carry information about the identity of specific
people and places. We tested this prediction by examining the
replicability of simulation-induced activity patterns from phase I
to phase III using representational-similarity analysis (RSA)26.

Neuronal representations are assumed to be reflected in
distributed activity patterns that can be assessed with fMRI26,27.
Thus, to the degree that a specific representation is engaged
whenever one imagines a particular person (or place), a similar
activity pattern should get re-instated whenever one simulates an
episode featuring the same person (or the same place).
Accordingly, activity patterns should be more similar for the
comparison of a given element with its repetition (within-item
similarity) than with a different element at the time of the
repetition (between-item similarity)27. Moreover, if the activity
pattern truly reflects the neural representation of a given element
(e.g., a particular liked person)—rather than just category
membership (e.g., all people) or valence (e.g., all liked elements)
—we expect the within-item similarity to be greater even when
restricting the between-item similarity to elements of the same
category (e.g., only other liked people).

We assessed the specific activity pattern associated with each
simulation by modeling the fMRI time series with a separate

regressor for every episode. For each regressor, we then calculated
the t-values of the parameter estimates26 and extracted a vector of
all t-values from the voxels within an anatomical mask of the
vmPFC (Fig. 2a). A vector thus characterizes the activity pattern
for a specific episodic simulation. Next, we quantified the neural
similarity of any two simulations by computing the Pearson
correlation of their activity patterns, yielding values ranging from
1 (i.e., greatest similarity) to −1 (i.e., greatest dissimilarity). We
then analyzed the (Fisher-z-transformed) similarity values with a
repeated-measures ANOVA that included the factors comparison
(within, between), material (people, places), and valence (liked,
disliked) (Fig. 2). In addition to a significant effect of material
(F1,17= 4.94, p= 0.04, η2= 0.23), reflecting overall greater
similarity for people than places, we also obtained the critical
effect of comparison (F1,17= 18.86, p < 0.001, η2= 0.53) (see also
Supplementary Fig. 2 for a control analysis corroborating that the
greater within-item similarity does not merely reflect less
variability of the activity patterns due to less variability in value
for an item with itself than with other items).

Episodic simulations are thus associated with replicable activity
patterns in vmPFC that are more similar for repeated simulations
of the identical element than for any two simulations of different
elements. The results support the premise that this region codes
for representations that can be re-instated during episodic
simulation16,17. In the next section, we examine whether
activation in the same region-of-interest (ROI) also contains
information about associated affect.

vmPFC activity reflects the value of the simulated element. If
vmPFC representations entail the affective value of specific ele-
ments, this should be reflected in the activation profile of this
region19. We performed a parametric-modulation analysis of the
BOLD time series using the liking scores as an index of the ele-
ments’ respective affective value. Given that the integrative
simulation of people and places changed their affective value, we
used the liking ratings of the pre-rating for phase I and of the post
rating for phase III. (Note that the people contribute more var-
iance in value to the analysis: they included liked and disliked
exemplars, whereas the places were selected to be neutral. How-
ever, the model also entails the prediction that activation for the
neutral people falls in between activation for the liked and dis-
liked people).

Mirroring the ROI of the RSA analysis, we averaged across all
parameter estimates within the anatomical mask of the vmPFC.
Importantly, this analysis demonstrated that, for both time
periods, activation in this region was modulated by the value of
the simulated event (phase I: t17= 4.23, p < 0.001, d= 1; phase III:
t17= 2.85, p= 0.011, d= 0.67) (Fig. 3). The results were further
corroborated by complementary whole-brain analyses. These
revealed consistent modulation of brain activation in a cluster
that included parts of the vmPFC (Fig. 3; Supplementary Table 3).

The foregoing analyses support the hypothesis that the vmPFC
codes for affective representations of our environment that are
engaged during episodic simulations. In the following, we
examine the proposal that a transfer of affective value between
such representations mediates the observed changes in attitude.

vmPFC activity predicts simulation-induced attitude shifts.
Our hypothesis posits that simulations change attitudes by
transferring affective value from the UCS (i.e., the person) to the
CS (i.e., the place). On one hand, during integrative simulations,
activation in the vmPFC should thus be modulated by the liking
of the UCS, reflecting its affective value. On the other hand, the
activation should be predictive of the ensuing change in attitude
toward the CS, indicating the transfer of affective value.
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To test these two predictions, we performed a parametric-
modulation analysis of the fMRI time series obtained during
phase II. As a first modulator, we included the liking of the
person (averaged across the pre- and post rating). This regressor
thus yields regions where activation varies with the affective value
of the UCS. As a second modulator, we included the change in
liking for the respective place (i.e., post- minus pre-rating). This
regressor thus identifies regions where greater activation during
the joint simulations predicts a more positive shift in attitude for
the CS (even when controlling for linear effects of UCS value).
Both regressors yielded the predicted modulations of vmPFC
activation in our ROI (liking of UCS: t17= 3.16, p= 0.006, d=
0.75; change in liking of CS: t17= 2.7, p= 0.015, d= 0.64) (Fig. 4).
Again, this pattern was also evident in exploratory whole-brain
analyses (Fig. 4; Supplementary Table 4).

The predictive signal in the vmPFC was also reliable when
we analyzed the ROI data without controlling for the affective
value of the UCS (a Shapiro–Wilk test suggested a deviation from
normality: W= 0.83; p= 0.004, thus using a Wilcoxon test:
W17= 141, p= 0.014, matched rank-biserial correlation r=
0.65). It was moreover significant when we controlled for the
plausibility of the pairing (t17= 2.48, p= 0.024, d= 0.58)
(Supplementary Fig. 3).

Critically, given the difference in familiarity for liked versus
disliked people, it is important to note that we also obtained this

effect when controlling for familiarity of the paired person—
either by including it as a first parametric regressor (t17= 2.65,
p= 0.017, d= 0.62) or by first regressing out the contribution of
familiarity from the individual change scores and then perform-
ing the parametric-modulation analysis based on the residuals
(using a Wilcoxon test: W17= 136, p= 0.027, matched rank-
biserial correlation r= 0.59 due to a significant Shapiro–Wilk
test: W= 0.88; p= 0.029) (Supplementary Fig. 3).

Beyond the vmPFC, previous studies have associated the
hippocampus with the transfer of value between arbitrary and
novel stimuli11,28. We did not observe such a concomitant effect
for an anatomical mask of this control region (t17= 0.04, p=
0.97, d= 0.009).

In summary, activation in the vmPFC was modulated by the
affective value of the UCS and predicted the subsequent positive
change in liking of the CS. The results therefore provide support
for the hypothesized transfer of affective value, at least from the
liked UCS to their paired CS. At the same time, they provide
more general insights into the functions supported by
the vmPFC.

Discussion
It is a long-standing view that the PFC supports control processes
that operate on representations stored in posterior brain

vmPFC activation reflects liking of simulated element
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affective value. Note that the greatest source of variance in value stems from the inclusion of liked and disliked people, though the model also predicts that
BOLD signal for the neutral places falls in between those extremes. Boxplots indicate the median, central quartiles, and+ /− 2.7 SD. The dot indicates an
outlier beyond that range. For display purposes, exploratory whole-brain maps are thresholded at p < 0.001, uncorrected, with a cluster extend of at least 15
voxels. a.u., arbitrary units
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regions29. Somewhat contrary to this ostensible dichotomy, it has
been suggested that the medial PFC also creates (schematic)
representations of the environment, presumably by extracting
commonalities across different episodes12–14. However, though
activity patterns within this region have been shown to carry
information about, for example29, individual people30,31, loca-
tions32, or the degree of connectedness within a social network33,
there is scarce evidence that the vmPFC codes more generally for
representations of our environment. The current data provide
such evidence: in the vmPFC, replicable activity patterns emerged
for both, particular known people and specific familiar places.

Though the current data indicate that the vmPFC represents
information about individual entities (i.e., of individual people
and places), this observation does not preclude the possibility that
the representations are organized in a higher-level structure.
Indeed, we further observed an overall greater pattern similarity
for people than places, indicating that this region also codes for
categorical information. More generally, neuroimaging evidence
indicates that the medial PFC acts as a hub that integrates diverse
information that is distributed across the brain15,17,34–36. The

integration may take the form of a dimension reduction that only
codes for the information that is currently most relevant35,37.
Accordingly, the vmPFC may represent information along (hid-
den) dimensions rather than coding for distinct entities per se.

A dimensional coding is also consistent with previous obser-
vations that the relative activation in the vmPFC, when thinking
about oneself versus other people, scales with the perceived
similarity of the other person to oneself38,39. This suggests that
the vmPFC does not code for individual people per se but for
individual features along continuous dimensions that, in turn,
differentiate individual people34.

Importantly, in phases I and III, we observed that activation in
the vmPFC also reflects the affective value of the constituting
elements of an episode, with an increase in activation from dis-
liked via neutral to liked elements. The data are thus consistent
with the hypothesis that the vmPFC codes for a continuum of
value ranging from negative to positive rather than for other
features, such as salience19,40.

More specifically, the data support the proposal that repre-
sentations in the vmPFC integrate conceptual information with
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Fig. 4 Transfer of affective value from the UCS to the CS during integrative simulations. a BOLD signal in the vmPFC was modulated by the liking of the
UCS (i.e., the person), reflecting the contribution of its affective value to the simulation. (For display purposed, exploratory whole-brain maps are
thresholded at p < 0.001, uncorrected with a cluster extend of at least 15 voxels.) b Even controlling for (a), BOLD signal in the vmPFC further predicted the
ensuing change in liking of the CS, thus indicating a transfer of affective value (from the liked UCS to their paired CS). (For display purposes, exploratory
whole-brain maps are thresholded at p < 0.005, uncorrected with a cluster extend of at least 15 voxels.) Boxplots indicate the median, central quartiles,
and+ /− 2.7 SD. a.u., arbitrary units
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associated affect and thus code for “hot“ models of the
world17,18,25. In phase II of this study, the affective value of an
episode was likely determined by the valence of the UCS (i.e., the
person), given that the paired CS (i.e., the place) had been selected
to be initially neutral. This point was corroborated by the finding
that vmPFC activation during the integrative simulations was
modulated by the liking of the respective featured person.
Behaviorally, it was also reflected in a greater experienced plea-
santness for episodes featuring liked than disliked people.

Importantly, the value signal in the vmPFC during episodic
simulation has previously been shown to go beyond the value of
the individual elements of the episode. That is, even when con-
trolling for the nominal value of the constituting elements, this
region signals the anticipated emergent value of the imagined
scenario17. Episodic simulation may contribute to the processing
of such emergent value by emphasizing the elements’ features that
are particularly salient in the imagined event22,23. It thus affords
an estimate of context-specific value that can deviate from the
value that is more commonly attached to a given element.
Similarly, in this experiment, we observed that vmPFC activation
did not just reflect the value of the UCS. It moreover predicted
the ensuing shift in attitude toward the CS. We suggest that this
vmPFC signal reflects a prediction error regarding the CS that
indicates the degree to which the experienced affect deviates from
the expectation (e.g., more pleasant than expected; see also
refs. 22,41). This signal may then drive plasticity in the repre-
sentation of the CS and lead to the updating of its value41.

Given that the vmPFC signal codes for a continuum from
negative to positive value19,40, this mechanism may generally
support both downward and upward value-updating. However, in
these experiments, the CS that had been imagined with disliked
UCS also showed a positive—albeit weaker—shift in liking (see
below). It thus remains to be determined whether this mechanism
can also lead to a downward shift via a transfer of negative
affective value.

We had hypothesized a particular involvement of the vmPFC
in mediating simulation-induced attitude changes due to the
region’s dual contribution to the representation of schemas12–15

and the processing of value19. However, we do not suggest that
this region performs this function in isolation. Specifically, the
striatum has long been associated with the transfer of value from
a UCS to a CS42. Our data indicate that striatal activity also tracks
the value of the imagined UCS during the simulation of new
events (see also ref. 17). This information may then be conveyed
to the vmPFC and interact with the existing schematic repre-
sentation of the CS to process an updated value estimate.

It is noteworthy that we did not observe concomitant effects in
the hippocampus. This region, and its interactions with the
striatum, has previously been implicated in the transfer of
value11,28. We think it is critical to note that these studies
examined such transfer between arbitrary combinations of novel
stimuli. The hippocampus may be particularly important in such
situations, because they require the rapid encoding of both the
individual items and their relations43,44, see also ref. 45. By con-
trast, in this study, we examined changes in attitude towards well-
established elements from participants’ real-life environment. As
such, the integrative simulations could be based on the co-
activation of established knowledge structures that are already
represented in the vmPFC12,17. Therefore, simulation-induced
attitude changes may be less reliant on hippocampal processes
than more episodic forms of value transfer (as in ref. 45). It will be
an important avenue for future studies to systematically delineate
the contributions of the striatum, hippocampus, and vmPFC as
well as their interactions46,47.

Episodic simulation has previously been shown to have pow-
erful influences on how we perceive and plan for the future. It

increases the perceived plausibility of a prospective scenario48,49

and conveys its anticipated affective experience8,17,21. This
experience, in turn, can foster more farsighted decisions by
increasing the salience of future rewards7. Similarly, simulations
of even unlikely future threats can help avoiding grave
danger50,51. However, such simulations may also contribute to
the development of depression and anxiety52,53. The current data
show that imaginings can further have a fundamental impact on
how we evaluate our environment in the present.

In the fMRI study, we observed that merely imagining meeting
a known person at a familiar place can boost the value that we
attach to that location. Importantly, we obtained the same effect,
with a similar effect size, in a pre-registered study with a larger
sample size, thus demonstrating the replicability of the
simulation-induced attitude change. The extent of this effect was
associated with vmPFC activation during the integrative simula-
tions. This observation indicates that the attitude change was
induced at that stage rather than as a process of deliberative
revaluation during the post test.

Somewhat surprisingly, we also consistently observed a positive
change in liking for places imagined with disliked people. We
caution that our design did not include a baseline condition (such
as neutral places imagined with neutral people) that would have
allowed us to infer simple effects, such as mere exposure54, that
could potentially account for a general positive shift in liking.
Such an effect may boost the value of even those places that had
been imagined with disliked people, thus possibly masking any
downward impact of simulations. Importantly, however, the
change in attitude was more positive for places that had been the
location for meetings with liked than with disliked people, indi-
cating a critical influence of the UCS’s valence. The results thus
demonstrate how mere imaginings can have a similar impact on
our attitudes as real happenings9,10.

The observation that episodic simulations can change our
attitudes toward the very basic elements that the simulations had
been based on has potentially wide-ranging implications. Exag-
gerated simulations of prospective rewards and threats can pro-
vide adaptive benefits by inducing biases that motivate farsighted
decisions50,51. Critically, however, the current data suggest that
exaggerated simulations can also produce a distorted model of the
environment that becomes decoupled from actual experiences.
This mechanism going awry may thus contribute to the devel-
opment and maintenance of mental health problems such as
depression, bipolar disorder, and anxiety that are often char-
acterized by pronounced prospective thoughts52,53,55. More gen-
erally, the findings highlight the powerful function of simulations
not just in guiding future-oriented decisions but also in creating
our models of the world.

Methods
Participants. All participants reported no history of psychiatric or neurological
disorders and gave informed consent as approved by the Harvard University
Institutional Review Board (fMRI study) and the ethics committee of the Uni-
versity of Leipzig (replication study). All thirty participants of the fMRI study were
right-handed, native English speakers, who all had normal (or corrected to normal)
vision. Twelve participants had to be excluded either because of falling asleep in the
scanner (two) or excessive head movements (ten) (defined as maximal absolute
motion > 3 or more than five individual movements > 0.5 mm in any functional
run). We thus included data from 18 participants (3 male; mean age: 21.33 y; range:
18–27 y). The replication study included 30 native German speakers (17 male;
mean age: 23.97 y; range: 20–32 y) (as pre-registered to provide 80% power to
detect an effect size of ~2/3 the original; https://aspredicted.org/9ti3h.pdf).

Tasks and procedure—fMRI study. The procedure, adapted from ref. 17, com-
prised a preparation and a simulation session (Fig. 1a). During the preparation
session, participants provided 100 places and 150 people that they were personally
familiar with. Of the people, 100 had to be ones that they much liked, 30 people
that they felt neutral toward, and 20 people that they much disliked. Participants
then rated on nine-point scales (i) how familiar they were with each person and
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place (1: unfamiliar; 5: intermediate; 9: very familiar), indicating the degree of
knowledge, and (2) how much they liked that given item (1: much dislike; 5:
neutral; 9: much like), indicating the affective value.

We then selected 28 neutral places (i.e., with a rating of 5 and, if necessary,
additional places with the next smaller and greater ratings), the 14 most liked
people, and 14 of the least liked people. Piloting indicated that, overall, disliked
people tended to be less familiar than liked people. To minimize this gap, we
selected the disliked people (of all those that had received a likableness rating
smaller than 4, or, if necessary, with the next greater ratings) that were most
familiar. (However, the mean Pearson correlation between liking and familiarity
across liked and disliked people remained at r= 0.58, SD= 0.31). Finally, we
randomly combined each neutral place (i.e., the CS) with either a liked or disliked
person (i.e., the UCS), thus creating 14 pairings in each condition.

At the beginning of the simulation session, participants received training on the
tasks for the different phases (with items that were not part of the critical pairings).
On any trial of phases I and III, they were presented with a fixation cross for
500 ms, followed by a person or a place from the critical pairings for 7.5 s. During
this time, participants imagined an episode of interacting with the person or place.
They were instructed to imagine the episode as vividly as possible, ensuring that
they have a clear mental picture of the respective item. They then rated the
vividness of their imagination on a five-point scale within a maximum of 3 s. The
remainder of the maximal response time, if any, was added to the subsequent ITI,
which lasted for at least 3 s plus an additional jittered period (0–8 s in 2 -s
intervals). The screen during the ITI was blank. In phase II, participants were
presented with both the person and place of a given pairing, and then imagined an
interaction with the person that would be specific to the given place as in ref. 17.

The MRI session began with a resting-state scan (not reported), before
participants entered phase I. Here, they imagined each person and place across two
functional runs. The person and place of a given pairing appeared in the same run
in a pseudorandom order, with the constraint that one item appeared in the first
and the other in the second half. During phase II, participants encountered each
pairing three times in as many functional runs (pairs were presented in a different
random order for each run). Participants were instructed to keep imagining the
same episode for a given pairing, adding in more details and attempting to make it
as vivid as possible. We had chosen three repetitions, because piloting indicated (i)
that this was not too strenuous for the participants and (ii) that it was sufficient to
yield the behavioral effect. Phase III repeated phase I, though with a newly pseudo-
randomized presentation order and the additional constraint that the items that
had been presented in the first run of phase I were also presented in the first run of
phase III. Following this phase, participants performed a localizer task as in ref. 17

(results not reported).
Outside the scanner, we assessed the main behavioral-dependent measure:

Participants were shown each person and place in a random order and indicated
their respective liking on the same scale as in the preparation session. Finally,
participants were shown each pairing in a random order and rated the plausibility
of such a meeting and its anticipated pleasantness (both on nine-point scales).

Tasks and procedure—replication study. The overall procedure of the pre-
registered replication (https://aspredicted.org/9ti3h.pdf) was identical to the fMRI
study, except for the omission of phases I and II. Moreover, to match the liked and
disliked people in terms of familiarity, we used an alternative selection approach
(Supplementary Methods).

fMRI acquisition. Using a 3 Tesla Siemens Magnetom TimTrio MRI scanner with
a 32-channel head coil, we acquired anatomical images with a T1-weighted mag-
netization-prepared rapid gradient multi-echo sequence (MEMPRAGE, 176 sagit-
tal slices, TR= 2530 ms, TEs= 1.64, 3.50, 5.36, and 7.22 ms, flip angle= 7°, 1 mm3

voxels, FoV= 256 mm). During each of seven functional runs, we acquired 220
volumes of blood-oxygen-level-dependent (BOLD) data with a T2*-weighted echo-
planar imaging (EPI) pulse sequence that employed multiband RF pulses and
Simultaneous Multi-Slice (SMS) acquisition56,57 with the following parameters: 69
interleaved axial–oblique slices (angled 17° toward coronal from ACPC), TR=
2000 ms, TE= 27 ms, flip angle= 80°, 2 × 2 × 2mm3 nominal voxels, 6/8 partial
fourier, FoV= 216 mm, SMS= 3. The first five volumes of each run were discarded
to allow for T1 equilibration effects.

fMRI analysis. Data were analyzed using SPM12 (www.fil.ion.ucl.ac.uk/spm). The
functional images were realigned, corrected for slice acquisition times, and cor-
egistered with the structural image. This was spatially normalized and the resulting
parameters served to normalize the functional images by fourth-degree B-spline
interpolation (preserving the functional voxel resolution of 2 × 2 × 2 mm3 iso-
tropic) to the Montreal Neurological Institute reference brain. The images were
then smoothed by an isotropic 8 mm full-width half-maximum Gaussian kernel for
the general linear models (GLM) assessing parametric modulations. The GLM that
provided the input for RSA was based on unsmoothed data.

The GLMs analyzed regional activity by decomposing the variance in the BOLD
time series, separately for each functional run58. Each model included six regressors
representing residual movement artifacts and the mean over scans. A further
regressor coded for the onsets and durations of trials for which participants did not

provide a rating in time, if applicable. The additional regressors in a given GLM
coded for the respective effects-of-interest by analyzing the remaining trials.

A first GLM assessed brain activation associated with the affective value of
simulated items during phases I and III. We therefore entered a regressor coding
for the duration of all simulation trials plus an additional parametric regressor
coding for the liking of the respective simulated item. Given that the paired
simulations in phase II changed attitudes, we used the pre-ratings for phase I and
post ratings for phase III.

A second GLM assessed brain activation associated with the transfer of affective
value during the integrative simulations in phase II. We entered (i) a regressor
coding for the duration of all simulations, (ii) a first parametric modulator coding
for the affective value of the UCS (i.e., liking of the person, averaged across pre-
and post rating), and (iii) a second parametric modulator coding for the change in
value of the CS (i.e., post- minus pre-rating liking of the place). The first parametric
regressor reveals regions where activation is modulated by the value of the UCS,
whereas the second regressor indicates where the residual activation is greater in
case of a more positive change in liking of the CS. Additional GLMs corroborated
effects of affect transfer without controlling for the effect of the UCS and
controlling for the plausibility of the pairing. In two additional analyses, we further
established this effect by controlling for the familiarity of the UCS—either by
including it as a first parametric regressor or by computing the analysis based on
the residuals of the change scores after regressing out possible effects of familiarity.

A final GLM estimated activity patterns separately for each simulation during
phases 1 and 3 (thus including 112 regressors, one for each of the two simulations
of the 28 places and 28 people). The ensuing parameters were used for the RSA26,59

that tested for individual representations in vmPFC.
All trial regressors were convolved with the canonical hemodynamic response

function. A 1/128-Hz high-pass filter was applied to the data and the respective
model, and parameter estimates for each regressor were calculated from the least-
mean-squares fit of the model to the data.

Following Liu, Grady, and Moscovitch60, an anatomical mask of our region-of-
interest, the vmPFC, was created by merging the gyrus rectus and the medio-orbital
section of the frontal gyrus of the AAL template61 using the WFU-Pickatlas
toolbox62 (Fig. 2a). For univariate effects, we extracted parameter estimates, for
each participant, from this a priori ROI. For complementary and exploratory
whole-brain analyses, the respective contrast estimates were entered into a second-
level analysis, where we used cluster-level inference at p < 0.05 (FWE-corrected)
with a cluster forming threshold of p < 0.001 and at least 15 contiguous voxels.
These analyses also employed the vmPFC mask for targeted small-volume-
correction. In addition, for an exploratory analysis, we also used the AAL
template61 to create a bilateral mask of the hippocampus.

The RSA analyses were conducted using the toolbox by Nili et al.59. We only
included trials on which participants had provided a response within the allotted
time. Analyses were based on the t-values of the estimated parameter estimates
from each voxel within our ROI. Within-item similarity was assessed, for each
person and place, by computing the Pearson correlation of these values between
phases 1 and 3. Between-item similarity was only based on the correlations between
elements of the same material and valence (e.g., only between liked people), to
ensure that the results are not driven by category differences in neural coding.
Moreover, due to temporal autocorrelations of noise, the activity patterns of
proximal events tend to be more similar than of those events that are more distant
in time63. To quantify between-item similarity, we therefore only included
similarity values of the same functional run as for the corresponding within-item
comparison (i.e., correlating events from the 1st and 6th as well as from the 2nd
and 7th functional runs only). Inferential statistics were based on Fisher-z-
transformed correlation values.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used for the analyses is available from the corresponding author upon request.
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