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Abstract

Species distribution and endangerment can be assessed by habitat-suitability modelling.
This study addresses methodical aspects of habitat suitability modelling and includes an ap-
plication example in actual species conservation and landscape planning. Models using
species presence-absence data are preferable to presence-only models. In contrast to spe-
cies presence data, absences are rarely recorded. Therefore, many studies generate pseu-
do-absence data for modelling. However, in this study model quality was higher with null
samples collected in the field. Next to species data the choice of landscape data is crucial
for suitability modelling. Landscape data with high resolution and ecological relevance for
the study species improve model reliability and quality for small elusive mammals like Mus-
cardinus avellanarius. For large scale assessment of species distribution, models with low-
detailed data are sufficient. For regional site-specific conservation issues like a conflict-free
site for new wind turbines, high-detailed regional models are needed. Even though the over-
lap with optimally suitable habitat for M. avellanarius was low, the installation of wind plants
can pose a threat due to habitat loss and fragmentation. To conclude, modellers should
clearly state the purpose of their models and choose the according level of detail for species
and environmental data.

Introduction

Habitat-suitability models are used to assess species distribution and endangerment [1]. The
resulting suitability maps permit a scientific statement on the area of suitable habitats of single
species and their potential distribution in the landscape [1]. Model performance depends on
model type and implementation but especially on quantity and quality of species and landscape
data [2, 3].
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It is preferable to model with species data that contain confirmed presences and absences
[4-6]. However, high quality species absence data are scarce as studies usually focus on species
presences [5] and absences are much more difficult to verify [7]. There are several ways to be
still able to model with presence/absence data. Pseudo-absences can be randomly generated
[4]. However, these pseudo-absences might strongly influence final model quality as they
might be e.g. located in suitable habitat [4, 8]. Another possibility to obtain absence data are
voluntary surveyed data sets. These frequently contain null samples where no indication for a
species was found. These are of value when standards for obtaining null samples have been
clearly defined [9]. While this is no guarantee of species absences [7] it might be an improve-
ment over randomly generated absences. In many European countries (e.g. Poland, Denmark,
France, England), voluntarily surveyed data are already integrated into national monitoring
programmes [10-12]. In Germany, voluntary efforts are also increasingly being used, as exem-
plified by the beaver survey in the Spessart [13]. Voluntarily surveyed data often provide a
major basis for species distributions and might offer the possibility to generate accurate and re-
liable suitability maps.

Next to high quality species presences and absences landscape data with high resolution im-
prove model reliability and quality [14, 15]. However, detailed data with high resolution are
unlikely to be available at landscape level [1, 16] and consequently have to be obtained either at
great financial cost and/or with great effort. Models using low-detailed data have already been
proven effective for bird species [17, 18], insects [19], and larger mammals [20, 21], but evi-
dence remains scare for smaller, more elusive mammals [22, 23].

Many of these small and elusive mammals are legally protected and in the Annexes of the
European Council Directive 92/43/EEC on the Conservation of natural habitats and of wild
fauna and flora (Fauna-Flora-Habitats Directive) [24, 25]. In addition to this legal protection,
the Member States of the European Union are obliged to record species condition and to find
measures to contribute to their conservation. However, estimation of their distribution and en-
dangerment is methodically difficult due to their concealed and nocturnal way of life. Reliable
and high quality suitability models can help to improve our understanding of species distribu-
tions. This study addresses the suitability of different modelling performances for landscape
planning and assessment using a current example from Germany: the energy turnaround.

Since the amendment of the German Building Code in August 1997 wind turbines are privi-
leged objectives. To avoid conflicts with public interest wind turbines are mostly erected in out-
lying areas like forests. However, these areas might be suitable habitat for legally protected
species. To minimize this conflict the Building Code incorporates a plan reservation for the
spatial control of wind turbines. Precedence areas are identified and the remaining landscape
areas represent exclusion zones for regionally significant wind turbines. The installation and
operation of wind plants can, therefore, pose a threat to small and elusive mammals by habitat
loss and habitat fragmentation due to the construction of turbines and supply channels [26-
28].

The achieved aims of this study were to identify 1) whether models with null samples pre-
dict better than those with randomly generated pseudo-absences and 2) how the inclusion of
landscape detail influenced model accuracy. These insights were then used to assess 3) the po-
tential habitat loss caused by precedence areas of wind turbines for a protected small,
elusive mammal.
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Materials and Methods
Study area

The study was conducted in Hesse, Germany. The landscape scale in this study was represented
by the whole of Hesse. It is located in central Germany with an area of 21119.2 km? (Fig. 1).
The state is characterized by the Central German Uplands (up to 950 m asl) and basin land-
scape (up to 200 m asl). Other federal states have an average of 30% forest area while Hesse is
more arboreous with 41% (8732.4 km?) forest cover. The regional scale of this study was Mid-
dle Hesse (Fig. 1). It lies at the centre of Hesse with an area of 6644.4 km? (31% of Hesse) and a
forest cover of 39% (2611.3 km®). Therefore, Middle Hesse is representative of the state of
Hesse as a whole. The field permit was granted by the Regional Council Giessen.
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Fig 1. Regional (Middle Hesse) and landscape (Hesse) study area in Germany.

doi:10.1371/journal.pone.0120562.g001
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Table 1. Summary of BRTs.

Model
Official
Voluntary
Combined
Combined
Combined

Scale

Landscape
Landscape
Landscape
Regional
Regional

Study species

We chose the common dormouse (Muscardinus avellanarius) as model species for small, elu-
sive mammals. Muscardinus avellanarius has been assigned ‘least concern’ status by the IUCN
Red List of Threatened Species and is listed in annex IV of the Habitats Directive [24, 25]. It oc-
curs in small population densities and requires well networked woodland, as it avoids open
land [29, 30]. It is highly vulnerable to habitat fragmentation as it moves among branches in
2-5 m height avoiding the forest floor [30, 31]. Thus a supply channel for infrastructure e.g.
wind parks in forests can already be a crossing barrier for M. avellanarius [31]. In the Red List
for Germany, a decline and an endangerment of unknown proportions is assumed for Muscar-
dinus avellanarius [32]. A decline is also to be assumed in Hesse, on the basis of the results of a
nationwide monitoring programme conducted since 2006. However, a realistic estimation of
the conservation status of the dormouse on the basis of current officially surveyed data is diffi-
cult [33].

Species records as presence data

The records for the dormouse originate from three data sources (1-3) for Hesse, Germany
(Table 1). The official data set (1) of M. avellanarius was provided by the central, state-wide da-
tabase of Hesse (Hessen Forst FENA) and was supplemented by own records (2). The official
data set (1) was collected based on the standard given by the Hessen Forst FENA (Forest Inven-
tory and Nature Conservation Agency of Hesse) [34]. In 35 monitoring plots over Hesse 50
nest boxes were installed in 4 rows with a distance of 50 m to each other (approx. 16 ha). Since
2006 boxes were controlled for nests or individuals of M. avellanarius in June and September.
Own data (2) were collected since 2011 using nest tubes (n = 50, 25 x 6.5 cm) that were distrib-
uted in up to 11 forest plots in a grid of 120 x 120 m. They were installed below branches with
the opening towards the tree trunks in a height of 1-2 m. To prevent flooding of tubes during
rain tubes were installed slightly slanting. Tubes were controlled monthly from February to
August for nests or individuals of M. avellanarius. On the initiative of the Naturschutzbund
Deutschland Landesverband Hessen e. V. (Hesse branch of the German Society for Nature
Conservation, NABU Hessen), the Great Nut Hunt was conducted throughout Hesse since
2005. As this was a voluntary initiative these data represent the voluntarily surveyed data set
(3). Within this context, hazelnuts were collected by kindergarten and school classes, as well as
local conservation associations, in order to look for species-specific bite marks of M. avellanar-
ius [9]. Hazelnuts were collected in areas of 10 x 10 m around hazel bushes (Corylus avellana)
for 20 min [9]. The whole search duration was 2h and presence detection using this method is
80% even though it is strongly biased by the occurrence of hazel bushes [9]. Hazel nuts thought

Detail Records Cv AUC TSS PCC MRD TN

Low 190/190 0.76 + 0.01 0.67 0.84 +0.02 0.76 5100
Low 167/167 0.82 £ 0.03 0.72 0.86 + 0.02 0.58 6700
Low 357/357 0.83 +0.01 0.73 0.87 £ 0.01 0.55 2300
Low 52/52 0.80 + 0.04 0.67 0.84 £ 0.04 0.73 2450
High 52/52 0.82 + 0.04 0.66 0.81 +0.04 0.67 2600

Scale, detail (included detail of landscape data), records (presence/absence), cv AUC + SE, True Skill Statistic (TSS), Percent Correctly Classified (PCC),
mean residual deviance (MRD), and optimal tree number (TN). Mean total deviance was 1.39. Absences in the official model were pseudo-absences.

doi:10.1371/journal.pone.0120562.t1001
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to be opened by M. avellanarius were send to experts of the NABU Hessen for confirmation
(http://hessen.nabu.de/projekte/nussjagd). These data are high quality presence data [35]. To
keep the data up-to-date only presences from the years 2007 to 2013 were used (temporal veri-
fication). Only points with adequate (+50 m) spatial accuracy were selected. To balance over-
and underrepresentation of areas in modelling we only used presence points with a minimum
distance of 200 m to each other (spatial verification) [30, 36]. A lower value would lead to spa-
tial clustering. A higher value would result in an underrepresentation of densely occupied and,
therefore, most probably optimal habitat. Presence points were mostly in forests (56.6%) or in
green areas like gardens or parks (24.1%). Some presences were found in agricultural areas like
small groves or hedges (19.3%). After spatial and temporal data verification the official data set
thus contained 190 and the voluntary data set 167 explicit presence points. The processed offi-
cial and voluntary data sets were combined (357 points) for the analysis on a landscape scale
(combined model). For the models on a regional scale with detailed forest characteristics only
points in forests where detailed data were available were used. This reduced the combined data
set to 52 presences.

Null samples and random points as pseudo-absence data

Positive species records are generally at the centre of surveys and thus are recorded. Data on spe-
cies absences, however, are rare but important as presence-absence models are preferable to
presence-only models [37, 38]. The voluntary data set contained null samples. These null sam-
ples were interpreted as evidence of absence, since no nuts were found that were opened by

M. avellanarius in these areas. The search effort was the same as for presence points (20 min per
hazel bush, 10 x 10 m squares, 2h overall). As both presence and absence data were sampled in
the same manner they had the same sampling bias (http://hessen.nabu.de/projekte/nussjagd).
Absence probability using this method in 5 squares (10 x 10 m) in one area is 90% [9]. The oc-
currence of dormice cannot be completely ruled out but these absence data are of the highest
quality obtained to date. Absence points were selected by date (2007-2013), spatial accuracy
(250 m), distance to presence points (min. 800 m), and to other absence points (min. 200 m).
For the voluntary (167 points) and the combined (357 points) data set a subsample equal to the
number of presence points were randomly chosen to obtain balanced samples of presence and
absence data. For the detailed models including forest characteristics 52 absence points in forests
were randomly selected. Randomness was assured by using ArcGIS Desktop (ArcMap Version
9.3.1, ESRI Inc., Redlands) and Hawth’s Analysis Tools v3.27 [39].

The official data set contained only presence records (n = 190). To balance presence and ab-
sence data, the same number of pseudo-absence points was generated using Hawth’s Analysis
Tools v3.27 [39] completely at random [4]. This is an often-used method [40], even though it
might strongly influence the quality of the final model [8]. To increase absence probability
points had a minimum distance of 800 m to presence points. To prevent a clustered distribution
of the pseudo-absence points we enforced a minimum distance of 200 m between all points.

Environmental variables

Environmental variables were chosen based on the ecology of the study species [29, 41-43]. In
the landscape models freely available data of climate [44], elevation (German Federal Agency
for Cartography and Geodesy), and landscape (Official Topographical Cartographic Informa-
tion System (ATKIS), Hessian State Office of Land Management and Geological Information)
were used. For 20840.7 km?” of Hesse data were available which comprise the landscape study
area. The costly detailed forest inventory data included in the regional model held information
on forest structure, age, and tree species composition (Hessen Forst FENA). Data were costly
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in terms of financial cost but even more so in time spent acquiring and preparing data for
usage. Of an overall of 2611.3 km? of forest in Middle Hesse we obtained inventory data for
1699.2 km” which is the regional study area. All landscape data were rastered at a resolution of
25 x 25 m. To account for spatial inaccuracy in point and continuous landscape data focal sta-
tistics were calculated over a neighbourhood of 100 m (ArcMap Version 10.1, ESRI Inc., Red-
lands). For categorized landscape data the percentage of occurrence and the diversity
(Interspersion and Juxtaposition Index (IJI), Shannon's Diversity Index (SHDI)) around 100 m
of the point (Fragstats 4.1) was considered in the analysis.

Modelling

In this study five boosted regression tree (BRT) models were built [45] (Table 1). On the land-
scape level the predictive performance using the pseudo-absences and the null samples of the
voluntary data set were compared. Then the datasets were combined in the overall landscape
model to assess the influence of sample size on model quality. To evaluate the influence of de-
tailed forest inventory data on model performance two models on a regional scale were fitted.
Models were implemented in the statistical program R (R Development Core Team, [46]) with
the gbm libraries [47] and the modifications of gbm.step provided by Elith et al. [48]. The main
parameters of a BRT are model complexity (learning rate), stochasticity (bag fraction), number
of trees contributing to the model, and fitted interactions (tree complexity) [48]. They were de-
termined by 10-fold cross-validation (cv) and the best model was chosen when deviance reduc-
tion was greatest [48, 49]. For all models learning rate was set to 0.001, bag fraction to 0.5 and
tree complexity to 5. All environmental variables were used for all models while the detailed
models included also the forest inventory data. Best environmental predictors were chosen
using the function gbm.simplify [48]. Model performance was evaluated by area under curve
for cross-validation data (AUC > 0.90: excellent; 0.90 > AUC > 0.80: good; 0.80 > AUC >
0.70: fair discrimination ability [50]), deviance reduction (the lower the value the better the
model), the True Skill Statistic [51] (TSS > 0.75: excellent; 0.75 > TSS > 0.40: good; TSS <
0.40: poor discrimination ability [52]), and the percent correctly classified (PCC). The cv AUC
is usually much lower than the AUC but a much better predictor of model performance [2, 53].

Habitat suitability models were spatially predicted using the predict version in the R package
raster'. The result was a habitat suitability map with the suitability ranging from 0 (low suit-
ability) to 1 (high suitability). We categorized suitability based on Jenks natural breaks classifi-
cation method (suitability: optimal > 0.9; 0.9 > moderate > 0.5; low < 0.5) (ArcMap Version
10.1, ESRI Inc., Redlands). This data mining method reduces the variance within categories
and maximizes the variance between categories.

Application example: Wind energy

Precedence areas for wind turbines are areas where turbines can be built and the remaining
landscape areas represent exclusion zones. For Middle Hesse 134 precedence areas were desig-
nated covering an area of 164.7 km” (2.5% of Middle Hesse, Regional Plan for Middle Hesse
2012). They are mainly located in the northern and western part of Middle Hesse in elevations
of 144-674 m (371 + 89 m) with high wind potential. Area size ranges from 0.1 km? to 8.1 km?
and 0.7% is located in urban areas, 15.2% in agricultural landscapes and the vast majority with
84.2% in forests (Fig. 2). The impacts of wind turbines on Muscardinus avellanarius are both
short-term (e.g. disturbance during construction) and long term (e.g. habitat modification, loss
or fragmentation) [28, 54]. To assess the possible long-term impact on M. avellanarius the
overlap between moderate and optimal habitat for M. avellanarius as spatially predicted by the
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Fig 2. Habitat suitability for M. avellanarius in Middle Hesse with precedence areas for wind turbines. The habitat suitability was based on the high-
detailed regional model.

doi:10.1371/journal.pone.0120562.9002

habitat suitability models and precedence areas (Regional Plan for Middle Hesse 2012) for new
wind turbines was calculated by computing the geometric intersection of areas.

Results
Better model performance with null samples and higher sample size

The model based on the official data set for Hesse (species records, n = 190) in combination
with random pseudo-absence points (n = 190), had a cv AUC of 0.76 £ 0.01 standard error
(SE) and a TSS of 0.67. Mean total deviance was 1.39, mean residual deviance 0.76 and cv devi-
ance 1.14 £ 0.03 SE. Optimal tree number for the model was reached at 5100 trees (Table 1).
The voluntary data set with presence data (species records, n = 167) and absence data (null
samples, n = 167) for Hesse produced a cv AUC of 0.82 + 0.03 SE and a TSS of 0.72. The mean
total deviance (1.39) was markedly reduced to 0.58 and the cv deviance was with 1.04 + 0.06 SE
lower than for the official dataset. The number of trees included in the model was 6700
(Table 1).
Combination of the two data sets (combined species records: n = 357, null samples: n = 357)
led to a better model compared with the individual models, with a cv AUC of 0.83 £ 0.01 SE
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Fig 3. Response curves of the combined landscape model. Optimal habitat for M. avellanarius has a low
percentage of urban area (a), ideally 4-5°C in March (b), cold ambient temperatures in October (c) and low
precipitation in September (d).

doi:10.1371/journal.pone.0120562.9003

and TSS of 0.73, accompanied by a high mean deviance reduction (1.39 to 0.55) and cv devi-
ance of 1.02 + 0.03 SE. Optimal tree number for the model was 2300 (Table 1). The model con-
sisted of the ten most influential predictors: percentage of urban area (Fig. 3a) and landscape
diversity (IJT) 100 m around the data point, ambient temperatures in March (Fig. 3b), April,
October (Fig. 3¢), and December, ambient temperature seasonality, and precipitation in June
and September (Fig. 3d). Based on the combined model a map of the potential distribution at
landscape scale (Hesse) was visualised (Fig. 4). This map can be used to differentiate between
habitats with low (model prediction < 0.5), moderate (model prediction > 0.5), or optimal
(model prediction > 0.9) suitability or occurrence probability of M. avellanarius (Table 2).

High-detailed landscape data produced more realistic models

Two regional models were calculated with each 52 presences and absences. In one detailed for-
est characteristics were included. The regional model with low detail had a cv AUC of 0.80 +
0.04 SE and a TSS of 0.67. It reduced mean total deviance from 1.39 to 0.73 and had a cv devi-
ance of 1.12 + 0.09 SE. Optimal tree number for the model was reached at 2450 trees (Table 1).
The model with high detail had a slightly higher cv AUC of 0.82 + 0.04 SE and reduced mean
deviance to 0.67. It had, however, a slightly lower TSS of 0.66. The cv deviance was 1.15 + 0.07
SE. Model tree number was optimal at 2600. There was a high overlap of variables in the two
models. However, the two most influential variables differed. In the low-detailed model it was
urban area and precipitation in September. These two variables were moved to third and forth
position in the high-detailed model as canopy cover within the forest at main and pioneer level
became better predictors for habitat suitability of M. avellanarius. Forest species composition
was also included in the high-detailed model (Table 3, Fig. 5a-d). The low-detailed regional
model predicted 687.9 km* (40.5%) of the regional study area as optimal habitat for M. avella-
narius. This area was reduced to 592.1 km* (34.8% of the regional study area) in the high-
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Fig 4. Habitat suitability for M. avellanarius in Hesse. Darker colours indicate more suitable habitat,
triangles null samples collected in the field, and circles species presence data.

doi:10.1371/journal.pone.0120562.g004

Table 2. Areas and percentages for all five BRT models.

Optimal suitability Moderate suitability Low suitability

[km%/%] [km?%/%] [km?%/%]
Official landscape model 2822.7/13.5 8346.7/40.0 9671.3/46.5
Voluntary landscape model 4235.3/20.3 8379.3/40.2 8226.1/39.5
Combined landscape model 8283.9/39.7 8184.1/39.3 4372.7/21.0
Low-detailed regional model 687.9/40.5 906.2/53.3 105.1/6.2
High-detailed regional model 592.1/34.8 870.2/51.2 236.9/13.9

Percentages are calculated in relation to the respective reference area (landscape or regional study area).

doi:10.1371/journal.pone.0120562.1002
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Table 3. Predictors for the combined landscape model and the two regional BRT models.

Model

Combined landscape model

Low-detailed regional model

High-detailed regional model

Ta: Ambient temperature

doi:10.1371/journal.pone.0120562.t003

Predictor

Closed development

Mean T, in Mar

T, seasonality

Minimal T, in Oct

Open development
Precipitation in Sep
Maximal T, in Dec

Minimal T, in Apr
Landscape diversity (1J1)
Precipitation in Jun

Closed development
Precipitation in Sep
Landscape diversity (SDHI)
Hedges

Precipitation in Apr

Mixed forest

Minimal T, in Oct
Precipitation of Wettest Month
Precipitation in Dec
Precipitation in Aug
Canopy cover (main layer)
Canopy cover (pioneer layer)
Closed development
Precipitation in Sep
Landscape diversity (SDHI)
Mixed forest

Minimal T, in Oct

Mean T, of wettest quarter
Tree species composition
Hedges

Relative influence [%]

18.04
11.36
10.26
9.81
9.32
8.90
8.55
8.41
7.87
7.48
15.76
15.24
12.84
10.43
9.09
8.49
8.48
717
6.34
6.17
22.97
22.16
12.70
8.63
8.13
6.21
5.82
5.02
4.94
3.42

detailed model (Table 2). Overlap of optimal and moderately suitable areas of the two regional

models was high (96%). Looking only at optimal habitats area overlap was lower (54%).

Overlap of optimal habitat and wind energy precedence areas

Using the moderately suitable area of the low-detailed regional model (906.2 km?) as reference
area 5.2% (47.2 km?) of suitable area was within the precedence areas. For the optimal habitats
(687.9 km?) it was 6.2% (42.7 km?). Based on the high-detailed regional model 5.7% (49.6 km?)
of moderately suitable area (870.2 km?®) and 5.9% (34.9 km?) of optimally suitable area (592.1
km?) were within precedence areas. Precedence areas (164.7 km?) consisted of 28.7% / 30.1%
moderately and 25.9% / 21.2% optimally suitable area as predicted by the low- / high-detailed
regional model, respectively (Figs. 2 and 6).
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Fig 5. Response curves of the high-detailed regional model. Optimal habitat for M. avellanarius has a
high tree species diversity (sg: species group) (a), a high proportion of mixed forest (b), a low landscape
diversity i.e. only forest areas (c), and a more open canopy (d).

doi:10.1371/journal.pone.0120562.g005

Discussion
Optimal habitat for Muscardinus avellanarius

On a landscape level environmental and landscape variables accurately predict habitat suitability
for M. avellanarius. Two landscape variables were good determinants of habitat suitability: urban
area and landscape diversity. Both values should be low as M. avellanarius is a forest-dwelling
species with low dispersal ability outside of forests or grooves [55, 56]. Muscardinus avellanarius
is sensitive to ambient temperature and precipitation [57] which became apparent in the differ-
ent models as many explanatory variables concern these two factors. Ambient temperature data
were most important during early spring and winter suggesting that they play a role in hiberna-
tion patterns [57]. For a successful hibernation ambient temperatures should be steady and low
(1-4°C [57]) as was also determined in the models of this study. Precipitation values might also
be connected to hibernation patterns but also seems to be important during summer. Muscardi-
nus avellanarius is sensitive to rain due to its fur characteristics and drier summers increase food
availability [57]. Therefore, suitable habitats are characterized by lower precipitation values.

The importance of these variables is retained in the regional models. However, detailed forest
characteristics like canopy cover or forest species composition have a predominant role in deter-
mining habitat suitability for M. avellanarius. This is to be expected as M. avellanarius is a silvico-
lous species and small scale data better describe resource availability like food or shelter [29, 42].

Better model performance with null samples and higher sample size

Sampling bias in species presence data is a serious problem for species distribution modelling
as in the worst case not the species distribution is modelled but sampling effort [4]. This bias
has a higher impact on presence-only models than on presence-absence models which in turn
makes the latter models preferable [4]. There are several types of absence data. They can be
randomly generated as in this study, they can be selected with the same bias as the presence
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Fig 6. Blowup from Fig. 2 to compare the habitat suitability for M. avellanarius based on the high- (a)
and low-detailed (b) regional model. Overlap of precedence areas for wind turbines and optimal habitat for
M. avellanarius can lead to severe habitat loss and fragmentation.

doi:10.1371/journal.pone.0120562.g006

data if the bias is known [4], and they can be sampled in the field (also this study). Even though
this field data cannot be considered as certain absences they have when sampled in a standard-
ized way a higher quality than randomly generated absences as was shown in this study. How-
ever, even with these null samples a bias is introduced into the model as detection failure is
influenced by sampling effort, habitat structure, accessibility of the sampling location and elu-
siveness of the studied species [7, 58]. Especially in voluntarily surveyed data sets bias might be
considerable as sampling effort is focussed on easily accessible sites. In this study the abun-
dance and occurrence of hazel bushes also biased voluntary data. Hazel bushes are, however,
abundant and occur in most forests throughout Hesse [59] minimizing the bias on presence
and absence data. Model performance was better with null samples in this study and therefore
choosing even biased null samples might sometimes be preferable to generated absences.
Furthermore, available data sets should be merged to increase sample size as this positively in-
fluences model accuracy [3, 60, 61]. To conclude null samples are preferable to random pseu-
do-absences and might be obtained by including standardized voluntarily surveyed data sets in
the analysis. This in turn also increases sample size. The reduction of TSS values in the detailed
models clearly showed that an increased sample size is valuable for robust models.

High-detailed landscape data produced more realistic models

It is probably not surprising that models using high-detailed landscape data produce more real-
istic species distribution models. This is, however, only the case when the detailed data include
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ecologically valuable information for the target species [62]. In this case we included detailed
forest characteristics since M. avellanarius is a forest-dwelling species [63]. Even though these
data were costly in time and money, the effort was well worth as it improved the species distri-
bution models. The most influential factors both described canopy cover. A more open canopy
is important because it permits the growth of shrubs providing food and M. avellanarius can
move in 2-5 m height on branches avoiding the forest floor [30]. In the sense of dimensional
reduction it is therefore necessary to rely more on the ecological understanding of a species
than purely on statistical functions [2]. The problem with high-detailed landscape data is that
it is rarely area-covering or available on a larger scale. Therefore, we assessed if the model
based on low detail is sufficient for conservation efforts. The results showed that the regional
models covered almost the same (96% overlap) areas with a moderate to optimal habitat suit-
ability. However, the lower overlap of optimal areas indicated that different model variables in-
fluence the determination of optimal habitats. Therefore, we concluded that low-detailed
landscape models are valuable tools for large scale assessment of species distribution or preva-
lence modelling [64]. However, for effective regional species conservation e.g. selection of sites
for the construction of new wind turbines high-detailed regional models must be used as the
determination of optimal habitats is more realistic.

Overlap of optimal habitat and wind energy precedence areas. A serious
threat?

The different modeling approaches produced different overlaps with optimally suitable habitat
for M. avellanarius. When analyzing habitat suitability in landscape planning the quality of spe-
cies presence/absence data, sample size and included detail in the landscape data must be con-
sidered and evaluated. Landscape alterations are a serious threat to M. avellanarius [41, 63].
This species is sensitive to habitat loss, but also and maybe to a higher degree to habitat frag-
mentation due to e.g. road building or urban expansion [41, 63]. Due to its way of locomotion
even newly installed or broadened forest tracks in the course of construction events might frag-
ment suitable breeding or foraging habitats [30, 31]. These gaps might be crossed during migra-
tion as it is known that M. avellanarius can cross spaces of up to 100 m on the ground [31, 65].
However, during breeding and foraging the ground is avoided and therefore these gaps frag-
ment potential habitat [57]. Even though the overlap of suitable habitats and precedence areas
for wind turbines can be considered as low on a landscape-scale the fragmentation effect in op-
timal habitats might be substantial. The loss of 6% of optimal habitat can pose a serious threat
on a regional scale and might lead to the extinction of local populations. The precedence areas
were designated based on expert opinions but this study clearly demonstrated the necessity to
include habitat suitability maps for endangered species in those considerations [66-71]. Even
after designation of precedence areas high-detailed habitat suitability models can be used to
choose less suitable habitat within a precedence area. This is, however, only possible when mod-
els use high-detailed site-specific data with ecological relevance for the study species.

Conclusions

To increase sample size and model accuracy all available data sets for a given species should be
merged including voluntarily surveyed data sets. These mostly include null samples that further
improve model quality. Depending on the aim of the study e.g. assessment of large scale distri-
bution low-detailed, freely available data sources as explanatory variables might be sufficient.
For detailed regional conservation efforts high-detailed regional models should be used as the
assessment of optimal habitats is more realistic. Modelers should be aware of the aim of their
models and choose species and environmental data with the according level of detail.
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