
OR I G I N A L R E S E A R C H

Bioinformatics analysis of dysregulated

microRNAs in exosomes from docetaxel-resistant

and parental human breast cancer cells
This article was published in the following Dove Press journal:

Cancer Management and Research

Wei-Xian Chen1,2

Ling-Yun Xu1

Lin Cheng1

Qi Qian1

Xiao He1

Wen-Ting Peng1

Yu-Lan Zhu1

1Department of Breast Surgery, The

Affiliated Changzhou No.2 People’s
Hospital of Nanjing Medical University,

Changzhou 213000, People’s Republic of

China; 2Department of Post-doctoral

Working Station, The Affiliated

Changzhou No.2 People’s Hospital of
Nanjing Medical University, Changzhou

213000, People’s Republic of China

Background: Resistance to docetaxel is a major obstacle to effective treatment of breast

cancer. Exosomal microRNAs (miRNAs) have recently been introduced in cell-to-cell

transmission of chemoresistance between heterogeneous populations of tumor cells with

diverse drug sensitivity. However, a systematic evaluation of the exosomal miRNA signature

remains largely unclear.

Method: miRNA expression profiles in exosomes from docetaxel-resistant (D/exo) and

parental sensitive breast cancer cells (S/exo) were assessed using microarray.

Bioinformatics analysis was performed to predict target genes of the dysregulated miRNAs

and to uncover their potential roles in chemoresistance formation. Signaling pathways, gene

ontology terms, transcription factors, protein–protein interactions, and hub genes were also

constructed.

Results: The selected exosomal miRNAs could modulate target genes responsible for

MAPK, TGF-beta, Wnt, mTOR, and PI3K/Akt signaling pathways. Function enrichment

analysis revealed the involvement of target genes in transcription regulation, protein phos-

phorylation, kinase activity, and protein binding. Enriched transcription factors including

SP1, SP4, and EGR1 were obtained and a protein–protein interaction network was estab-

lished. The hub genes for up-expressed and down-expressed exosomal miRNAs such as

CCND1 and PTEN were identified.

Conclusion: This bioinformatics study provides a comprehensive view of the function of

dysregulated exosomal miRNAs, and may help us to understand exosome-mediated resis-

tance transmission and overcome docetaxel resistance in future breast cancer therapy.
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Introduction
Breast cancer is the most common malignant tumor and the leading cause of

cancer-related death among females worldwide.1 Docetaxel-based chemotherapy

forms an important part of successful cancer treatment; however, drug resistance,

whether innate or acquired over time, is almost inevitable.2 Chemoresistance is

a multifactorial phenomenon involving many mechanisms. Although much effort

has been expended in studying the molecular basis of chemoresistance, reasons for

the failure of docetaxel have yet to be fully elucidated.

Exosomes are nano-sized extracellular vesicles about 50–100 nm in diameter

released from many cell types. Mounting evidence suggests that exosomes play

significant roles in cancer biology, including tumorigenesis, angiogenesis,
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invasion, and metastasis.3,4 Added to these, exosomes

are regarded as powerful transmitters of drug resistance

owing to their ability to shuttle functional proteins, and

especially microRNAs (miRNAs), between cells.5,6 Our

previous group explored the miRNA expression profiles

of three chemoresistant breast cancer cell lines and their

corresponding exosomes, and demonstrated that

a number of resistance-associated miRNAs were con-

centrated in isolated exosomes.7 Our colleagues then

found that exosomes from metastatic breast cancer

cells could release miR-1246, leading to enhanced cell

proliferation, invasion, and chemoresistance in non-

metastatic cancer cells.8 Wei et al reported that exoso-

mal miR-221/222 from tamoxifen-resistant breast cancer

cells could increase tamoxifen resistance in recipient

sensitive cells.9 Our previous work also demonstrated

that docetaxel-resistant breast cancer cells were able to

spread chemoresistance to sensitive cells by releasing

exosomes and transferring specific miRNAs.10 In rela-

tion to treatment, exosomes could function as nanopar-

ticles to deliver anti-miR-214 to reverse chemoresistance

to cisplatin in cancer cells.11 All the above studies have,

thus far, been conducted to support the hypothesis that

exosomal miRNAs were tied to drug sensitivity and

might serve as a potential alternative for breast cancer

therapy.

Remarkably, most studies attempting to detect miRNA

signatures relevant to chemoresistance have focused only

on cellular miRNAs or on individual exosomal miRNA.

A lack of knowledge regarding the miRNA expression

profiles would limit the understanding of exosomal

miRNA’s role in chemoresistance formation. Therefore,

the purpose of this work was to bioinformatically analyze

the miRNA signatures in exosomes from docetaxel-

resistant and parental breast cancer cells.

Materials and methods
Cell culture
Human breast cancer cell line MCF-7 was purchased from

the Cell Bank of the Chinese Academy of Sciences

(Shanghai, People's Republic of China). The docetaxel-

resistant subline (MCF-7/Doc) was successfully estab-

lished from the parental sensitive cell line (MCF-7/S) by

increasing the concentration of docetaxel in our laboratory,

as described previously.12 All cell lines were cultured in

DMEM high glucose (HyClone, South Logan, UT, USA)

containing 10% FBS, 100 U/mL penicillin, and 100 μg/mL

streptomycin, at 37°C and 5% CO2 in a humidified

atmosphere.

Exosome isolation and characterization
Exosomes were isolated from medium of MCF-7/Doc and

MCF-7/S cultured in exosome-free FBS using repeated

centrifugation and ultracentrifugation steps, as described

previously.10 They were respectively named D/exo and S/

exo for simplicity. Characterization of harvested exosomes

was performed by transmission electron microscopy as

previously reported.13 In brief, approximately 10 μL exo-

some samples were placed on parafilm and covered by

a 300-mesh copper grid for 45 minutes. After washing

three times in PBS, the copper grid was fixed in 3%

glutaraldehyde for 10 minutes, washed with double-

distilled water, and then contrasted in 2% uranyl acetate.

Images were captured by using a JEM-1010 electron

microscope (JEOL, Tokyo, Japan) at an accelerating vol-

tage of 80 kV.

Exosomal miRNA extraction and

microarray
Exosomal RNA was extracted using the Total Exosome

RNA and Protein Isolation Kit (Invitrogen, Waltham, MA,

USA) in accordance with the manufacturer’s protocols.

RNA was quantified spectrophotometrically (Thermo

Scientific, Waltham, MA, USA), and its quality was

assessed by an Agilent 2100 Bioanalyzer (Agilent

Technologies, Santa Clara, CA, USA). MicroRNA expres-

sion profiles were generated and hybridization using the

Affymetrix GeneChip miRNA 3.0 Array was carried out

as previously described.14 In brief, hybridization was per-

formed using the Affymetrix Fluidics Station 450

(Affymetrix, Santa Clara, CA, USA) and Hybridization

Oven 640. Image processing was conducted using the

Affymetrix Gene Array 3000 scanner. The raw data were

treated using miRNA QC tool software (Affymetrix), and

data output was received in Excel spreadsheets containing

the normalized miRNA expression profiles. Differentially

expressed exosomal miRNAs in D/exo were filtered to

exclude those changes less than 2.0-fold different com-

pared with exosomal miRNAs in S/exo.

Real-time PCR
Real-time PCR was conducted using the SYBR PrimeScript

RT-PCR kit (Takara Bio, Tokyo, Japan) on a Light Cycler

480 (Roche, Sydney, Australia) according to the
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manufacturer’s protocols. All reactions were performed in

a 20 μL reaction volume in triplicate. The primers for U6 are

as follows: forward, 5ʹCGCAAGGATGACACG3ʹ; reverse,

5ʹGAGCAGGCTGGAGAA3ʹ. The relative miRNA expres-

sions were calculated using theΔΔCtmethod and normalized

to U6.

Target gene prediction
We followed the methods of Zhong et al, as previously

reported.7 The starBase version 2.0 (http://starbase.sysu.

edu.cn/browseClipSeq.php) generates possible miRNA–

target interactions by gathering information from five

existing prediction software packages (TargetScan,

PicTar, RNA22, PITA, and miRanda).15 In the present

study, starBase was used to predict target genes of the

selected miRNAs. Only the common target genes listed

by at least four independent tools were taken into account.

KEGG pathway and GO analysis
The web-based program Database for Annotation,

Visualization and Integrated Discovery (DAVID, http://

david.abcc.ncifcrf.gov/) was used to perform functional

enrichment analysis including Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway analysis and Gene

Ontology (GO) annotation for the target genes.16–18 A count

number larger than 2 and Bonferroni P-value <0.05 were

chosen as cut-off criteria. Cytoscape software (http://cytos

cape.org/) was applied to construct possible networks.19

Screening of transcription factors
FunRich (http://www.funrich.org) is a standalone func-

tional enrichment and interaction network analysis tool

that identifies the enriched transcription factors for target

genes.20 In the present work, FunRich was used to screen

transcription factors that regulate target genes of dysregu-

lated exosomal miRNAs.

Integration of protein–protein interaction

(PPI) network
Target genes of dysregulated exosomal miRNAs were

uploaded to the Search Tool for the Retrieval of

Interacting Genes (STRING) database (http://www.string-

db.org/) to evaluate PPI information, and only the interac-

tions with a combined score >0.4 were considered as

significant.21 The plug-in Molecular Complex Detection

(MCODE) was used to screen the hub modules of the PPI

network in Cytoscape with the default parameters (degree

cut-off ≥2, node score cut-off ≥0.2, K-core ≥2, and max-

imum depth =100). MCODE automatically calculates the

node numbers, edge numbers, and MCODE scores in the

network. The degree of connectivity was also analyzed to

obtain the hub genes.

Statistical analysis
Statistical analysis was performed using the SPSS 20.0

package (IBM Corp., Armonk, NY, USA). All experiments

were carried out in triplicate and the data presented were

representative of three independent experiments. Student’s

t-test was used to assess the statistical significance of

differences between groups in PCR analysis. A value of

P<0.05 was considered significant.

Results
Exosome characterization and miRNA

profiling
D/exo and S/exo had the same morphology and size,

ranging from 20 to 100 nm in diameter, as observed by

transmission electron microscopy (Figure 1A and B).

Expressions of small RNAs in D/exo and S/exo were

screened by microarray and then categorized into

miRNA, CDBox, HacaBox, scaRNA, and snoRNA.

A total of 66.5% from D/exo and 52.6% from S/exo

were mapped onto miRNAs. Compared to S/exo, 208

and 99 miRNAs were significantly up-expressed and

down-expressed (at least 2.0-fold changes), respec-

tively, in D/exo. In all the differentially expressed

miRNAs, D/exo had 44 novel miRNAs with increased

expression levels >16.0-fold and five novel miRNAs

with reduced expression levels >16.0-fold of the corre-

sponding miRNAs in S/exo (Table 1). Hierarchical clus-

tering analysis of miRNA signal intensities showed

evidence of significant changes of miRNA expression

in D/exo and S/exo (Figure 1C). The miRNA microar-

ray data were further validated by PCR using the fol-

lowing selected exosomal miRNAs (miR-23a, miR-27a,

miR-30a, and miR-222), and all trends of miRNA

expression by PCR coincided with microarray (not

shown).

Target gene prediction and pathway

analysis
From the top 10 most differentially expressed miRNAs in

D/exo, the nine most up-expressed miRNAs (let-7a, let-7b,

let-7c, miR-103a, miR-16, miR-23a, miR-23b, miR-27a,
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and miR-30a) and eight most down-expressed miRNAs

(miR-130a, miR-20b, miR-25, miR-425, miR-455-3p,

miR-4725-5p, miR-551, and miR-92), which could be

found in the starBase database, were selected for evalua-

tion. The starBase tool was used for prediction, generating

1,857 potential target genes, including 953 genes for up-

expressed miRNAs and 904 genes for down-expressed

miRNAs.

To explore which pathways might be involved in che-

moresistance formation, the predicted genes were assigned

into the KEGG pathway, and Cytoscape software was applied

to decipher the possible network. The enriched pathways for

target genes of up-expressed miRNAs included “MicroRNAs

in cancer”, “Signaling pathways regulating pluripotency of

stem cells”, “MAPK signaling pathway”, “TGF-beta signal-

ing pathway”, “FoxO signaling pathway”, and “Wnt signal-

ing pathway”. For down-expressed miRNAs, the enriched

pathways included “MAPK signaling pathway”, “TGF-beta

signaling pathway”, “Pathways in cancer”, “FoxO signaling

pathway”, “mTOR signaling pathway”, “PI3K/Akt signaling

pathway”, and “Proteoglycans in cancer” (Figure 2). In breast

cancer, these signaling pathways have been found to partici-

pate in drug resistance and treatment failure.22–26

GO enrichment and transcription factor

analysis
To explore the role that predicted target genes play in biolo-

gical functions, GO enrichment analysis was performed. The

results showed that the selected miRNAs were significantly

enriched in biological processes, including “protein phos-

phorylation/dephosphorylation”, “positive/negative regula-

tion of transcription, DNA-templated”, “positive/negative

regulation of cell proliferation”, and “positive/negative reg-

ulation of transcription from RNA polymerase II promoter”

(Figure 3). For molecular function, the selected miRNAs

were mainly related to “protein binding”, “kinase binding”,

“DNA binding”, “ATP binding”, and “kinase activity”

(Figure 4). In addition, cellular component analysis indicated

that the selected miRNAs were involved in “cytoplasm”,

“nucleoplasm”, “nucleus”, “membrane”, “cytosol”, and

“cell–cell adherens junction” (Figure 5).

Figure 1 Exosome characterization and miRNA profiling. Representative transmission electron microscopy images of D/exo (A) and S/exo (B), showing the same

morphology and a diameter of 20–100 nm (scale bar, 200 nm). (C) Hierarchical cluster analysis of miRNA expression profiles in D/exo with respect to S/exo. Yellow and

blue colors stand for a transcript level above and below the median level, respectively.

Abbreviations: D/exo, exosomes from docetaxel-resistant cells; S/exo, exosomes from parental sensitive cells.
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Based on data obtained from FunRich, the top 10

enriched transcription factors for the target genes of up-

expressed miRNAs were SP1, SP4, KLF7, EGR1,

HNF4A, POU2F1, ETS1, NF1C, NFYA, and MEF2A

(Figure 6A). For the target genes of down-expressed

miRNAs, the top 10 enriched transcription factors were

SP1, SP4, EGR1, KLF7, POU2F1, ETS1, NFYA, NFIC,

RREB1, and MEF2A (Figure 6B).

PPI construction and selection of hub

genes
According to the information obtained from STRING data-

base, target genes of the selected miRNAs interacted with

each other, and the PPI network consisted of 1,414 nodes and

12,272 edges. For better visualization, the top three modules

with the top three highest MCODE scores were selected

using the plug-in MCODE (Figure 7A–C). Enrichment path-

way analysis indicated that the genes in the modules were

mainly associated with “PI3K/Akt signaling pathway” and

“mTOR signaling pathway” (Figure 7B and C). For the up-

expressed miRNAs, the hub genes were CCND1, PTEN,

BCL2, KRAS, MAP2K1, BTRC, XPO1, ACTA1, NRAS, and

CREB1. CCND1 showed the highest node degree (degree

=86). For the down-expressed miRNAs, the hub genes were

PTEN, CCND1, CALM2, CDKN1A, STAT3, RB1, ITCH,

ACTR1A, SP1, and CNOT6L. PTEN exhibited the highest

node degree (degree =79) (Table 2).

Discussion
Resistance to docetaxel is a major barrier for successful

treatment of breast cancer. Understanding the molecular

machinery is of critical importance for reversing drug

insensitivity.2 Exosomal miRNAs have been confirmed to

play important roles in the development of

chemoresistance.4,5 Our previous group explored the

miRNA expression profiles of three breast cancer cell

lines, respectively resistant to docetaxel, epirubicin, and

vinorelbine, and their exosomes, and demonstrated that

a number of resistance-associated miRNAs were concen-

trated in the corresponding exosomes.7 Moreover, we con-

firmed that docetaxel-resistant breast cancer cells could

transmit resistance capacity through altering gene expres-

sion in sensitive cells by transferring specific miRNAs

contained within exosomes.10 It was also reported by our

team that exosomal miR-1246 could promote cell prolif-

eration, invasion pathways, and drug resistance in breast

Table 1 Novel miRNAs with expression levels >16.0-fold in D/

exo with respect to S/exo

Up-expressed
exosomal
miRNAs

Log2
(fold
change)
*

Down-
expressed exo-
somal miRNAs

Log2
(fold
change)

hsa-let-7a_st 8.50 hsa-miR-1263_st −4.13

hsa-let-7b_st 9.01 hsa-miR-1281_st −4.14

hsa-let-7c_st 8.04 hsa-miR-3162-3p_st −4.15

hsa-let-7d_st 4.06 hsa-miR-3613-5p_st −5.93

hsa-let-7e_st 6.38 hsa-miR-455-3p_st −5.69

hsa-let-7f_st 6.01

hsa-let-7i_st 5.55

hsa-miR-103a_st 6.83

hsa-miR-107_st 6.49

hsa-miR-1246_st 9.60

hsa-miR-125a-

5p_st

4.06

hsa-miR-125b_st 5.57

hsa-miR-126_st 4.42

hsa-miR-1290_st 5.72

hsa-miR-155_st 6.71

hsa-miR-15b_st 5.96

hsa-miR-16_st 8.13

hsa-miR-17_st 4.60

hsa-miR-181a_st 5.64

hsa-miR-181b_st 5.22

hsa-miR-182_st 4.31

hsa-miR-185_st 4.36

hsa-miR-18a_st 4.52

hsa-miR-191_st 5.16

hsa-miR-193b_st 5.48

hsa-miR-19b_st 5.57

hsa-miR-20b_st 4.55

hsa-miR-21_st 4.36

hsa-miR-221_st 5.24

hsa-miR-222_st 5.49

hsa-miR-23a_st 9.88

hsa-miR-23b_st 7.72

hsa-miR-25_st 4.29

hsa-miR-26a_st 6.58

hsa-miR-27a_st 7.39

hsa-miR-27b_st 6.26

hsa-miR-29a_st 6.23

hsa-miR-30a_st 7.21

hsa-miR-30c_st 4.62

hsa-miR-3135b_st 4.69

hsa-miR-3188_st 4.20

hsa-miR-31_st 5.70

hsa-miR-92a_st 5.25

hsa-miR-93_st 4.15

Note: *Fold change = (D/exo)/(S/exo).

Abbreviations: D/exo, exosomes from docetaxel-resistant cells; S/exo, exosomes

from parental sensitive cells.
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cancer.8 Therefore, the differential exosomal miRNA

expression could partly explain docetaxel resistance in

breast cancer cells. In the current study, bioinformatics

analysis of miRNA signatures in exosomes from doce-

taxel-resistant and parental MCF-7 breast cancer cells

was performed to investigate key pathways and biological

functions associated with chemoresistance. To the best of

our knowledge, this is the first report of integrative bioin-

formatics analysis of the dysregulated exosomal miRNAs

in docetaxel-resistant MCF-7 breast cancer cells.

The microarray is increasingly valued as a promising

tool in medical oncology, with many applications. In our

previous study, we screened differentially expressed

miRNAs between docetaxel-resistant and sensitive breast

cancer cells.14 In the present work, miRNA expression

profiles of D/exo and S/exo were also analyzed by micro-

array to explore which miRNAs might be responsible for

exosome-mediated resistance transmission. With respect to

S/exo, a total of 208 and 99 miRNAs were up-expressed

and down-expressed in D/exo, indicating that D/exo were

characterized by significant changes in miRNA expression

and were miniature maps of their cells of origin. This

result, along with our previous observation, is consistent

with that of Zhong et al, who explored the miRNA expres-

sion profiles of three drug-resistant breast cancer cell lines

and their exosomes and demonstrated that a number of

resistance-associated miRNAs were concentrated in the

isolated exosomes.7

During bioinformatics analysis, we followed the methods

as previously described.7 KEGG pathway analysis was per-

formed to check potentially involved pathways of target

genes of the nine most up-expressed miRNAs and eight

most down-expressed miRNAs in D/exo. From the results,

a single exosomal miRNA could influencemultiple pathways

Figure 2 Analysis of involved pathways. KEGG pathway analysis of target genes of the nine most up-expressed miRNAs and eight most down-expressed miRNAs in D/exo

cells showed a functional network.

Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; D/exo, exosomes from docetaxel-resistant cells.
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Figure 3 Analysis of biological processes. Gene Ontology (GO) enrichment analysis of biological processes of the target genes showed a functional network.

Figure 4 Analysis of molecular function. Gene Ontology (GO) enrichment analysis of molecular functions of the target genes showed a functional network.
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(eg,miRNA-16 andmiRNA-20b) and the same pathway could

be regulated bymultiple miRNAs. Several classical signaling

pathways associated with chemoresistance were identified

from the top enriched KEGG terms, namely MAPK, TGF-

beta, Wnt, mTOR, and PI3K/Akt signaling pathways. Breast

cancer arises from a subpopulation of malignant cells with

high tumor initiation and self-renewal capability, known as

cancer stem cells, which are implicated to be a cause of

metastasis, tumor relapse, and therapy resistance.27 The

enriched pathways for target genes of both up-expressed

exosomal miRNAs and down-expressed miRNAs contained

“FoxO signaling pathway”. FoxO gene is considered to limit

cell proliferation and induce apoptosis, serving as a mediator

of tumor response to various therapies.24 Therefore, under-

standing the target genes involved in “signaling pathways

regulating the pluripotency of stem cells” and “FoxO signal-

ing pathway” may help to uncover the mechanisms of doc-

etaxel resistance.

Figure 5 Analysis of cellular components. Gene Ontology (GO) enrichment analysis of cellular components of the target genes showed a functional network.
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miRNAs are presented
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GO annotation and enrichment analysis demonstrated

that the target genes of selected exosomal miRNAs were

significantly enriched in functions involving transcription

regulation, protein phosphorylation, kinase activity, and

protein binding. Numerous studies have confirmed that

defects of biological processes, molecular functions, and

cellular components would influence cancer biology, pro-

mote cell proliferation, invasion, and metastasis, and

change chemosensitivity.28 How these GO terms are impli-

cated in drug resistance needs further investigation.

SP1, SP4, and EGR1 were the common enriched tran-

scription factors for the target genes of up-expressed and

down-expressed exosomal miRNAs. There is evidence

that transformation of normal cells to malignant cells is

associated with increased SP1 and SP4, which are highly

expressed in cancer and responsible for cell growth, survi-

val, migration, and drug resistance.29 A 2016 study indi-

cated that EGR1 is an important regulator in a triple-

negative breast cancer cell line and is a promising marker

for docetaxel resistance.30 Therefore, exploring the possi-

ble transcription factors may represent another useful way

toward the understanding of chemoresistance.

A PPI network was constructed and it was found that

CCND1 and PTEN were the hub genes with the highest

node degree among the targets of up-expressed and down-

expressed exosomal miRNAs, respectively. CCND1 is

A

B

C

Pathway ID
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has04350 TGF-beta signaling 
pathway
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Figure 7 Analysis of the protein–protein interaction network. (A) Module 1 and the enriched pathways. (B) Module 2 and the enriched pathways. (C) Module 3 and the

enriched pathways.
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required for the transition of cells from G1 to S phase and

is overexpressed in up to 50% of human breast cancers.31

CCND1 orchestrated expression of a miRNA signature that

induced the Wnt signaling pathway, serving both upstream

and downstream of the Wnt cascade.32 Given the emerging

nature of this field, we are currently trying to determine the

association between exosomal miRNAs, CCND1, and the

Wnt signaling pathway, and to verify their effects using

gain- and loss-of-function assays. PTEN has emerged as

the key functional antagonist to PI3K, controlling activa-

tion of the PI3K/AKT/mTOR signaling pathway.

According to a 2017 meta-analysis, PTEN loss was of

particular significance for predicting breast cancer aggres-

siveness and poor outcome.33 Our previous studies demon-

strated that miR-222 could decrease the expression of

PTEN, through which miR-222 may confer chemoresis-

tance in breast cancer cells.14 In addition, we have con-

firmed that D/exo from docetaxel-resistant breast cancer

cells were able to down-regulate PTEN expression.10

Analysis of the top three highest modules revealed the

involvement of the genes in the PI3K/Akt signaling path-

way and the mTOR signaling pathway. These results sup-

port that PTEN and the PI3K/Akt signaling pathway may

be central points in exploring exosomal miRNA’s role in

chemoresistance formation. More experiments are neces-

sary to support this conclusion.

Conclusions
In summary, our work provides a comprehensive bioinfor-

matic analysis of the dysregulated miRNAs in exosomes

from docetaxel-resistant and parental sensitive breast can-

cer cells. After target gene prediction, KEGG pathways,

GO terms, transcription factors, PPI network, and hub

genes were evaluated. Further laboratory studies are

needed to more precisely investigate the functions of target

genes and pathways of exosomal miRNAs in the formation

of chemoresistance.

Data availability
The data sets analyzed during the current study are avail-

able from the corresponding author on reasonable request.
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