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Antibodies have emerged as one of the fastest growing classes of biotherapeutic proteins.
To improve the rational design of antibodies, we investigate the conformational diversity of
16 different germline combinations, which are composed of 4 different kappa light chains
paired with 4 different heavy chains. In this study, we systematically show that different
heavy and light chain pairings strongly influence the paratope, interdomain interaction
patterns and the relative VH-VL interface orientations. We observe changes in
conformational diversity and substantial population shifts of the complementarity
determining region (CDR) loops, resulting in distinct dominant solution structures and
differently favored canonical structures. Additionally, we identify conformational changes in
the structural diversity of the CDR-H3 loop upon different heavy and light chain pairings, as
well as upon changes in sequence and structure of the neighboring CDR loops, despite
having an identical CDR-H3 loop amino acid sequence. These results can also be
transferred to all CDR loops and to the relative VH-VL orientation, as certain paratope
states favor distinct interface angle distributions. Furthermore, we directly compare the
timescales of sidechain rearrangements with the well-described transition kinetics of
conformational changes in the backbone of the CDR loops. We show that sidechain
flexibilities are strongly affected by distinct heavy and light chain pairings and decipher
germline-specific structural features co-determining stability. These findings reveal that all
CDR loops are strongly correlated and that distinct heavy and light chain pairings can
result in different paratope states in solution, defined by a characteristic combination of
CDR loop conformations and VH-VL interface orientations. Thus, these results have broad
implications in the field of antibody engineering, as they clearly show the importance of
considering paired heavy and light chains to understand the antibody binding site, which is
one of the key aspects in the design of therapeutics.
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INTRODUCTION

Antibodies are a crucial component of the adaptive immune
system and are now a major class of biopharmaceuticals (1). The
high diversity in the antibody repertoire facilitates the recognition
of a wide variety of different antigens. Understanding the
antibody-antigen binding interface has become a key factor for
advancing the use of antibodies as biotherapeutics, and
accordingly the importance of characterizing and engineering
the structure of antibodies to optimize affinity, specificity, and
certain biophysical properties has increased substantially in the
past decades (2).

An antibody usually consists of two heavy and two light
chains connected via disulfide bonds. In mammals exist five
heavy chain isotypes (IgM, IgD, IgG, IgA and IgE) and two light
chains isotypes kappa (k) and lambda (l), which can result in
distinct physicochemical and structural properties (3, 4).

The antigen binding fragment (Fab) consists of a heavy and a
light chain and can be divided into a constant (CH1 and CL) and
a variable domain Fv (VH and VL). These two domains have a
common folding pattern, often referred to as immunoglobulin
fold, which is formed by the packing of two anti-parallel b-sheets
(2, 5). The antigen-binding site, the paratope, is shaped by a
pairing of the VH and VL domains (6). The paratope is composed
of up to six hypervariable loops, also known as the complementarity
determining regions (CDRs), which contribute to the diversity in
sequence and structure of the antibody repertoire (7, 8). In this
study, for comparability of all antibodies, the term paratope is
defined by all six CDR loops.

The high diversity in length, sequence and structure of the
CDR loops presents a challenge to antibody engineering. Five of
these six CDR loops have been classified into so-called canonical
clusters, assuming that they can only adopt a limited number of
main-chain conformations (7, 9–11). No canonical cluster can be
assigned to the CDR-H3 loop, because of its huge diversity (12–
17). Thus, structure prediction remains challenging. However, to
functionally characterize and capture the high flexibility not only
of the CDR-H3 loop but of all CDR loops, they are more
adequately described as conformational ensembles in solution.
Apart from sampling the majority of canonical cluster structures
within these ensembles, also additional dominant solution
structures have been identified, which are not apparent from
X-ray structures, mostly due to crystal packing effects (18, 19).
Another crucial aspect co-determining the shape of the antigen
binding site is the relative VH-VL interdomain orientation. The
VH-VL interface significantly contributes to the stability of the Fv
and has been shown to affect antigen binding kinetics (6, 20, 21).
Pairing of the heavy and light chains is an additional way of
generating antibody diversity. Still, little is known about the
unique mechanism governing VH-VL pairing. Various studies
tried to elucidate pairing preferences of certain VH and VL gene
families and concluded that the heavy and light chain pairings
occur randomly (22, 23). However, the importance of understanding
the pairing preferences of a particular VH with various distinct light
chain sequences, as well as the respective consequences on the
antigen binding site, specificity and stability should not be
underestimated (24). Thus, together with the CDR loops,
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the VH-VL interface determines the shape and diversity of the
paratope. Already a small number of mutations in the framework
regions, in particular in the VH-VL interface, can result in
structural changes of the binding site, which consequently
influences antigen recognition and can lead to allosteric
conformational rearrangements in the constant domains and the
elbow angle (25–30). The majority of Fab interface dynamics have
been reported to occur in the low nanosecond timescale, while
slower components of the movements are dominated by
conformational rearrangements in the CDR loops in the micro-
to-millisecond timescales (18, 31, 32). Based on these observations,
antibodies were previously described as ensembles of paratope
states in solution, which are characterized by a combination of
correlated CDR loop conformations and interdomain
orientations, which interconvert into each other by synchronous
loop and interdomain rearrangements (33).

In this study, we use molecular dynamic simulations to
systematically characterize consequences of different heavy and
light chain pairings on the antibody paratope in atomistic detail
and quantify backbone and side-chain flexibilities.
METHODS

Dataset
As starting structures for our simulations, we used 16 germline
Fab crystal structures from the same library. We chose this
dataset as it allows to systematically investigate the influence of
different heavy and light chain pairings. The phage library is
composed of 4 heavy chain germlines IGHV1-69 (H1-69),
IGHV3-23 (H3-23), IGHV5-51 (H5-51) and IGHV3-53 (H5-
53) and 4 light chain germlines (all k) IGKV1-39 (L1-39),
IGKV3-11 (L3-11), IGKV3-20 (L3-20) and IGKV4-1 (L4-1).
These genes were selected based on the frequency of their use,
their cognate canonical structures, which can recognize proteins
and peptides and their ability to be expressed in bacteria.
Another exciting aspect of this dataset is that all 16 Fabs have
the same CDR-H3 loop.

The 16 Fab structures were protonated using the Protonate3D
tool (34, 35). Charge neutrality was ensured by utilizing the
uniform background plasma approach in AMBER (36, 37).
Using the tleap tool of the AmberTools20 (38) package, the
crystal structures were soaked in cubic water boxes of TIP3P
water molecules with a minimum wall distance of 10 Å to the
protein (39). The structures were described with the AMBER
force field 14SB (40). The antibody fragments were carefully
equilibrated using a multistep equilibration protocol (41).

Metadynamics Simulations
To enhance the sampling of the conformational space, well-
tempered bias-exchange metadynamics (42–44) simulations were
performed in GROMACS (45, 46) with the PLUMED 2
implementation (47). We chose metadynamics as it enhances
sampling on predefined collective variables (CV). The sampling
is accelerated by a history-dependent bias potential, which is
constructed in the space of the CVs (42, 44, 48). As collective
August 2021 | Volume 12 | Article 675655
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variables, we used a well-established protocol, boosting a linear
combination of sine and cosine of the y torsion angles of all six
CDR loops calculated with functions MATHEVAL and
COMBINE implemented in PLUMED 2 (14, 19, 28, 47, 49, 50).
As discussed previously, the y torsion angle captures
conformational transitions comprehensively (51). The underlying
method presented in this paper has been validated in various
studies against a large number of experimental results. The
simulations were performed at 300 K in an NpT ensemble using
the GPU implementation of the pmemd module (52) to be as close
to the experimental conditions as possible and to obtain the correct
density distributions of both protein and water. We used a
Gaussian height of 10.0 kJ/mol and a width of 0.3 rad. Gaussian
deposition occurred every 1000 steps and a biasfactor of 10 was
used. 500 ns of bias-exchange metadynamics simulations were
performed for the prepared Fab structures. The resulting
trajectories were aligned to the whole Fv and clustered with the
program cpptraj (36, 53) using the average linkage hierarchical
clustering algorithm with a RMSD cut-off criterion of 1.2 Å
resulting in a large number of clusters. The cluster
representatives for the antibody fragments were equilibrated and
simulated for 100 ns using the AMBER 20 (38) simulation package.
The number of clusters and the accumulated simulation time for
the 16 Fab fragments are summarized in SI Table S1.

Molecular Dynamics Simulations
and Further Analyses
Molecular dynamics simulations were performed in an NpT
ensemble using the pmemd.cuda module of AMBER 20 (36).
Bonds involving hydrogen atoms were restrained with the
SHAKE algorithm (54), allowing a time step of 2.0 fs.
Atmospheric pressure (1 bar) of the system was set by weak
coupling to an external bath using the Berendsen algorithm (55).
The Langevin thermostat (56) was used to maintain the
temperature during simulations at 300 K.

With the obtained trajectories we performed a time-lagged
independent component analysis (tICA) using the python library
PyEMMA 2 employing a lag time of 10 ns. tICA was applied to
identify the slowest movements of the investigated Fab fragments
and consequently to obtain a kinetic discretization of the
sampled conformational space (57). tICA is a dimensionality
reduction technique, detecting the slowest-relaxing degrees of
freedom and facilitating the kinetic clustering, which is crucial
for building a Markov-state model. It linearly transforms a set of
high-dimensional input coordinates to a set of output
coordinates, by finding a subspace of “good reaction
coordinates”. Thereby, tICA finds coordinates of maximal
autocorrelation at a given lag time. The lag time sets a lower
limit to the timescales considered in the tICA and the Markov-
state model. Accordingly, tIC1 and tIC2 represent the two
slowest degrees of freedom of the systems.

Based on the tICA conformational spaces, thermodynamics
and kinetics were calculated with a Markov-state model (58) by
using PyEMMA 2, which uses the k-means clustering algorithm
(59) to define microstates and the PCCA+ clustering algorithm (60)
to coarse-grain the microstates to macrostates. Markov-state
Frontiers in Immunology | www.frontiersin.org 3
models are network models which provide valuable insights for
conformational states and transition probabilities between them, as
it is possible to sufficient accurately identify the boundaries between
two states (58). The states are defined based on kinetic criteria,
which allow to identify the boundaries between free energy wells.
Basically, MSMs coarse-grain the system’s dynamics, which reflect
the free energy surface and ultimately determine the system’s
structure and dynamics. Thus, MSMs provide important insights
and enhance the understanding of states and transition probabilities
and facilitates a quantitative connection with experimental data
(58, 61).

We performed tICA analyses and calculated Markov-state
models for all 16 different germline pairs of the paratope and for
all individual CDR loops following the IMGT nomenclature (62).

The sampling efficiency and the reliability of the Markov-state
model (e.g., defining optimal feature mappings) can be evaluated
with the Chapman-Kolmogorov test (63, 64), by using the
variational approach for Markov processes (65) and
monitoring the fraction of states used, since the network states
must be fully connected to calculate probabilities of transitions
and the relative equilibrium probabilities. To build the Markov-
state model we used the backbone torsions of the respective CDR
loop, defined 150 microstates using the k-means clustering
algorithm and applied a lag time of 10 ns.

The canonical cluster representatives for each CDR loop,
extracted from the PyIgClassify database (10), were projected
into the free energy surfaces of all individual CDR loops. We
then used the respective macrostate ensembles to investigate
correlations between the different paratope states and the relative
VH and VL orientations.

To quantify the CDR loop flexibilities, we performed a
clustering for the individual CDR loops presented in Figures 1, 2.
To cluster the individual CDR loops, we aligned on the respective
heavy or light chain. We used the average-linkage clustering
algorithm and applied a RMSD distance cut-off criterion of 1.5 Å
for the light chain CDR loops and a RMSD distance cut-off
criterion of 2.5 Å for the heavy chain CDR loops. We decided to
use a different distance cut-off criterion as the heavy chain CDR
loops reveal a higher flexibility compared to the light chain
CDR loops.

Quantification of Sidechain Orientations
and Flexibilities
To eradicate the effect of the backbone conformation on the
sidechain orientation, we performed a residue-wise alignment.
Therefore, the backbone nitrogen, Ca and carbonyl carbon
atoms of the respective residue have to be aligned in all frames
of the trajectory. In the next step, the vector from the Ca atom to
the center of mass of the respective sidechain is calculated for
every frame of the trajectory. These calculated vectors reflect the
orientations and the flexibility of the sidechain during the
simulation. To facilitate the comparison between the sidechain
orientations of different residues, we hereby provide an internal
coordinate system for every sidechain. To this end, we rotated
the internal coordinate systems in a standardized orientation in
the unit sphere: The average vectors from the Ca to the Cb atoms
August 2021 | Volume 12 | Article 675655
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are aligned with the x-axis and the Ca to the carbonyl carbon
atoms are oriented in the xy-plane. Thus, the main advantage
from our calculations is that we do not lose the information of
the sidechain orientation and the flexibility.

Relative VH and VL Orientations
Using ABangle
ABangle is a computational tool (6, 20, 21, 32) to characterize the
relative orientations between the antibody variable domains (VH

andVL) using sixmeasurements (five angles and a distance). A plane
is projected on each of the two variable domains. To define these
planes, the first two components of a principal component analysis
of 240 reference coordinates were used for VH and VL each.
The reference coordinate set consists of Ca coordinates of eight
Frontiers in Immunology | www.frontiersin.org 4
conserved residues for 30 cluster representatives from a sequence
clustering of the nonredundant ABangle antibody data set. The
planes were then fit with those 240 coordinates, and consensus
structures consisting of 35 structurally conserved Ca positions were
created for the VH and VL domain. Between these two planes, a
distance vector C is defined. The sixmeasures are then two tilt angles
between each plane (HC1,HC2, LC1, LC2) and a torsion angle (HL)
between the two planes along the distance vector C (dc). The
ABangle script can calculate these measures for an arbitrary Fv
region by aligning the consensus structures to the found core set
positions and fitting the planes and distance vector from this
alignment. This online available tool was combined with an in‐
house python script to reduce computational effort and to visualize
our simulation data over time. The in‐house script makes use of
A B

C

FIGURE 1 | Comparison of all VH-CDR loops consisting of the heavy chain germline H1-69. (A) Shows the free energy surfaces of the CDR-H1 loop paired with
different light chain germlines in the same coordinate system. The available canonical cluster structure representatives from the PyIg database for the CDR-H1 loop
of length 13 are projected into the free energy surface and are depicted in black. In pink the respective crystal structures, which were used as starting structures are
illustrated (PDB accession codes: 5I15, 5I16, 5I17 and 5I18). (B) Displays the resulting free energy landscapes for the CDR-H2 loop projected into the same
coordinate system. The canonical cluster structures of the CDR-H2 loop of length 10 are projected and illustrated in black. The pink dot represents the starting X-ray
structures for the simulations. (C) Shows the free energy landscapes of the CDR-H3 loop. As for the CDR-H3 loop no canonical cluster structures are available, we
projected the 16 CDR-H3 loop crystal structures, which were investigated in this study into the free energy landscape. The pink dot shows the CDR-H3 loop starting
structure for the simulations.
August 2021 | Volume 12 | Article 675655
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ANARCI (66) for fast local annotation of the Fv region and pytraj
from the AmberTools package (38) for rapid trajectory processing.
To better visualize shifts in the relative VH-VL interdomain
orientation we performed the Gaussian kernel density estimation
(KDE) on the HL angle, to obtain probability density distributions.
To calculate the KDE we used the recently published
implementation of KDE in C++ (67).
RESULTS

We applied a well-established protocol combining enhanced
sampling techniques with classical molecular dynamics
simulations to systematically elucidate the effect of different heavy
Frontiers in Immunology | www.frontiersin.org 5
and light chain pairings on the antibody binding site and the
relative VH-VL interface (14, 15). As starting structures, we used the
available 16 Fab structures, which were generated combining four
different heavy and four light chain germline genes, all originating
from the same human germline library (68). All 16 Fab fragments
have the same CDR-H3 loop sequence, while the other CDR loops
vary in their loop length and sequence composition.

As described in the methods section, we performed 500 ns of
bias-exchange simulations for all 16 Fabs. We clustered the
trajectories individually and used the resulting cluster
representatives as starting structures for each 100 ns of
molecular dynamics simulations.

SI Table S1 summarizes the obtained number of clusters and
the aggregated simulation time for all 16 antigen-binding
A B

C

FIGURE 2 | Comparison of all VL-CDR loops consisting of the heavy chain germline L1-39. (A) Shows the free energy surfaces of the CDR-L1 loop paired with
different heavy chain germlines in the same coordinate system. The available canonical cluster structures for the CDR-L1 loop of length 11 are projected into the free
energy surface and are depicted in black. In pink the respective crystal structures, which were used as starting structures are illustrated (PDB accession codes: 5I15,
5I19, 5I1E and 4KMT). (B) Displays the resulting free energy landscapes for the CDR-L2 loop projected into the same coordinate system. The canonical cluster
structures of the CDR-L2 loop of length 8 are projected and illustrated in black. The pink dot represents the starting X-ray structures for the simulations. (C) Shows
the free energy landscapes of the CDR-L3 loop. The canonical cluster representatives of the CDR-L3 loop, consisting of 9 residues, are projected into the free
energy surfaces and colored in black. The pink dot shows the CDR-L3 loop starting structure for the simulations.
August 2021 | Volume 12 | Article 675655
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fragments. To directly investigate the effect of different heavy and
light chain pairings, we compare the CDR loop dynamics of the
different antibodies with the same heavy chain and light
chains respectively.

We present the results of one heavy chain (H1-69) and one
light chain germline in detail in Figures 1, 2, while all other
germline comparisons can be found in the supporting
information (SI Figures S1–S35). Figure 1 shows the free
energy surfaces of the CDR-H1, CDR-H2 and CDR-H3 loops
of four antibodies with the heavy chain germline H1-69 (PDB
accession codes: 5I15, 5I16, 5I17 and 5I18 – SI Table S1). The
free energy landscapes in Figure 1A show strong population
shifts of the dominant solution structures of the CDR-H1 loop
upon exchanging the paired light chain germlines. The strongest
effect can be seen for the CDR-H1 loop of the H1-69:L3-20
(5I17) germline pairing. Even though, the CDR-H1 loop has the
same length and sequence in all four free energy landscapes, we
observe significant differences in flexibility, which are also
reflected in differently sampled canonical clusters and shifts in
dominant solution structures. The majority of available
canonical clusters (H1-13) are present within our ensemble,
only with varying probabilities. Especially interesting are the
CDR-H1 loops of the H1-69:L3-20 and H1-69:L4-1 (5I17 and
5I18), as they sample an additional canonical cluster (H1-13-6),
which is not captured within the ensembles of other CDR-H1
loops. Figure 1B illustrates the free energy landscapes of the
CDR-H2 loops. Also, for the CDR-H2 loop an effect of different
light chain pairings on the respective CDR-H2 loop ensembles
can be identified. In line with the observations for the CDR-H1
loop, we find strong pairing specific population shifts of the
CDR-H2 loops. This is especially true for the H1-69:L3-20 and
H1-69:L4-1 (5I17 and 5I18) Fab fragments, where we sample two
additional canonical clusters (H2-10-2 and H2-10-4), compared
to the other CDR-H2 loops consisting of germline H1-69. The
free energy landscapes of the CDR-H3 loop are depicted in
Figure 1C. While the CDR-H3 loops of H1-69:L1-39 and H1-69:
L3-11 (5I15 and 5I16) cover a similar conformational space,
again H1-69:L3-20 and H1-69:L4-1 (5I17 and 5I18) differ
substantially in their flexibility and state populations. As for
the CDR-H3 loop no canonical clusters could be assigned, we
projected the available 16 X-ray structures into the tICA space,
which already reveal a high conformational diversity. The
majority of these 16 Fab crystal structures are present within
the obtained CDR-H3 loop ensembles in solution and additional
pairing specific CDR-H3 loop solution structures can be
observed. The results presented in Figure 1 clearly show a
strong correlation between the three heavy chain CDR loops
and reveal a strong dependency of the VH - CDR loop ensembles
on the respective light chain pairing.

On the other hand, Figure 2 depicts the direct comparison of
all VL - CDR loop ensembles containing the L1-39 germline
(5I15, 5I19, 5I1E and 4KMT). The free energy surfaces of the
CDR-L1 loop projected into the same coordinate system clearly
show a strong influence of paired heavy chains. While the two
antibodies H1-69:L1-39 and H3-23:L1-39 (5I15 and 5I19) with
the highest experimentally determined melting temperatures
Frontiers in Immunology | www.frontiersin.org 6
(SI Table S1) are mainly restricted to one dominant minimum
in solution, H3-53:L1-39 and H5-51:L1-39 (5I1E and 4KMT)
reveal a substantially higher flexibility, which is also reflected in
the higher number of clusters (SI Table S2). Apart from the
presented free energy surfaces, we quantified flexibility by
clustering on the individual CDR loops and aligning on the
respective heavy or light chain. For the clustering we used the
average linkage clustering algorithm and applied a RMSD
distance cut-off criterion of 2.5 Å for all heavy chain CDR
loops and a RMSD distance cut-off criterion of 1.5 Å for all
light chain CDR loops (Table S2). Three canonical clusters exist
for the CDR-L1 loop with a loop length of 11 residues (L1-11).
Two of these three canonical clusters contain k light chain
antibodies (L1-11-1, L1-11-2), while the third is composed of
mainly l light chain antibodies (L1-11-3) (10, 11). Astonishingly,
depending on the paired heavy chain germline, all three
canonical clusters become accessible, as can be seen for the
H5-51:L1-39 antibody. Figure 2B shows the free energy
landscapes of the CDR-L2 loops with the same L1-39 germline.
Also, for the CDR-L2 loop we observe that the same sequence
can adopt different solution structures, depending on correlated
CDR loop movements and germline pairings. We do not only
sample the majority of available canonical clusters, but also
identify other dominant minima in solution. The CDR-L3 loop
conformational space is illustrated in Figure 2C and clearly
shows, in line with all other observations, germline-pairing
specific ensembles in solution. Again, the flexibility of the two
most stable Fab variants (5I15 and 5I19) reveal only one distinct
CDR-L3 loop minimum, while the other two Fabs cover a
broader conformational space and additional minima in
solution. All of these individually described germline-pairing
specific conformational changes in the CDR loops can be
combined to paratope states in solution.

Furthermore, Figure 3 illustrates the respective paratope free
energy surface of the Fab H1-69:L1-39 (5I15), with the
corresponding macrostate representatives, state probabilities
and VH-VL interface angle distributions. We observe a shift in
the relative VH-VL distribution upon conformational
rearrangements in the paratope and identify other dominant
paratope ensembles in solution (Figure 3B). Additionally, we
investigated the Fab H5-51:L1-39 (4KMT), which has the same
light chain germline as the 5I15.

We obtained three paratope states and find changes in the
relative VH-VL orientations upon rearrangements in the CDR
loops (Figure 4B). By comparing the two Fabs 5I15 and 4KMT,
we observe a small shift in the interface angle upon different
heavy chain germline pairings. The crystal structure interface
angle differed only 1.8°, while we capture a substantially broader
conformational variability in this angle and observe a shift
between different macrostates of up to 8°. Figure 5 illustrates
the paratope states of H3-23:L3-20 Fab (5I1C), which represents
an example of completely differently paired heavy and light chain
germlines, compared to Figure 3. Here, we observe four paratope
states with small shifts in the VH-VL interface angle distributions
of about 3° as a consequence of conformational changes in the
paratope (Figure 5B). Figure 6 shows the free energy surfaces
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and interface angle distributions of the paratope states of the 5I1I
(H3-53:L4-1). Compared to the results in Figures 3–5, we again
find pairing specific interface angles (Figure 6B). The relative
interdomain orientation calculated with ABangle, which is
determined by six measures, also reveals substantially higher
variations (6). This is in line with the experimentally determined
stability measurements for the 5I1I, as it is one of the least stable
variants (SI Table S1) (68). We provided all six interdomain
orientation descriptors, for all 16 Fab fragments in SI Figure S36,
showing the mean and standard error. We find that the variances
in the distance vector between the two domains might be
indicators for thermal stability, as we see a correlation between
the experimentally determined melting temperatures and the
fluctuations in the distance (SI Figure S37).

Apart from capturing the backbone rearrangements of the
CDR loops we were also interested in investigating pairing
specific sidechain conformations and their respective flexibilities.

Figure 7 depicts the conformational states of the different
CDR-H3 loop sidechains. We analyzed the sidechain flexibilities
of the CDR-H3 loop, since all 16 Fabs share the same CDR-H3
loop sequence. We included in Figure 7 the CDR-H3 loop chains
of the 5I15, 5I17 and 5I19. We chose these Fabs as they either
differ in their paired light chain or heavy chain. As a consequence
of different pairings, the strongest population shifts and biggest
Frontiers in Immunology | www.frontiersin.org 7
conformational variations of the CDR-H3 loop can be seen for
the glutamate 105, leucine 106, aspartate 107 and tyrosine 103.
The reason for the different sidechain conformations can be
explained by different interaction partners in the light and heavy
chain, which consequently also contribute to distinct CDR loop
conformations and interface orientations.
DISCUSSION

This study presents a structural and dynamic characterization of
a phage germline library, by investigating the effect of different
heavy and light chain pairings on the antibody paratope and the
VH-VL interface distributions. We provide a new understanding
of the antibody paratope and show that both sidechain and
backbone CDR conformations can vary depending on the paired
heavy or light chain. Antibody CDR loops are flexible and can
adopt various distinct conformations in solution (15). Recent
studies also revealed that various biophysical properties of
antibodies are governed by their conformational diversity (14,
31, 69–71). To capture this high flexibility and diversity of the
CDR loops, they need to be described as conformational
ensembles in solution (18). For all CDR loops conformational
A B

FIGURE 3 | Germline pairing specific paratope states in solution for the H1-69:L1-39 (5I15) Fab. (A) Shows the resulting paratope states, the free energy landscape,
the macrostate ensembles and the respective VH and VL orientations for the 5I15 antibody. The thickness of the arrows corresponds to the transition timescales. The
ticker the arrows the faster the transition. The macrostate ensembles are arranged according to the shape of the tICA. (B) We also observe a significant shift in the
interdomain angle distributions upon conformational changes in the paratope, which are visualized as probability density distributions. The starting X-ray structure for
the underlying simulations is depicted as black dot in the free energy surfaces and as black line in the plots showing the VH-VL angle distributions.
August 2021 | Volume 12 | Article 675655

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Fernández-Quintero et al. Germline-Dependent Antibody Paratope States
transitions between different canonical clusters and additional
dominant solution structures have been observed. In previous
simulation studies these conformational transitions between
different CDR loop conformations have been shown to occur
in the micro-to-millisecond timescale (15, 18). Figures 1, 2 are in
perfect agreement with these findings and emphasize that one
single static structure is not sufficient to capture the high
conformational variability of the CDR loops. SI Figures S1–
S35 show very similar findings and consistently show pairing
specific CDR loop conformations and differently favored
canonical cluster structures. The pink dot projected into the
free energy surfaces represents the starting X-ray structure.
However, the structure characterizing an antibody the best is
the dominant conformation in solution, which not necessarily
coincides with the apo X-ray structure. Especially, since the apo
crystal structure can be distorted by crystal packing effects.

Additionally, we show that even identical sequences can
adopt different germline-specific conformations depending on
the type of paired heavy and light chain, respectively. This is
especially interesting for the CDR-H1 and CDR-H2 loop, as
these loops are not directly interfacial with the paired light chain,
Frontiers in Immunology | www.frontiersin.org 8
however, their conformational variability is still affected. The
reason for that is the strong structural correlation between the
CDR-H3 and the CDR-H1 loop. These results emphasize that a
different understanding from single static canonical structures to
dynamic ensembles in solution is inevitable, as antibody
specificity and affinity are strongly dominated by the shape and
dynamics of the binding site.

Apart from the CDR loops also the relative interdomain and
elbow angle orientations have been shown to contribute
substantially to the flexibility of the antigen-binding site (20,
31, 32, 71, 72). By combining all these findings, the antibody
binding site exists as multiple paratope states in solution, which
are characterized by strongly correlated CDR loop and
interdomain movements (SI Figure S40) (33). These backbone
rearrangements in the paratope occur in the micro-to-
millisecond timescale. Figures 3–6 depict paratope states in
solution of different germline pairings and do not only
describe shifts in the VH-VL interface distributions, but
also reveal germline pairing specific interface orientations.
These characteristic VH-VL orientations are defined by CDR
loop backbone and sidechain rearrangements, which result in
A B

FIGURE 4 | Germline pairing specific paratope states in solution for the H5-51:L1-39 (4KMT) Fabs. (A) Illustrates the paratope states, free energy surface,
macrostate ensemble and the respective VH and VL orientations for the 4KMT antibody. (B) We observe shifts in the VH and VL orientations upon rearrangements in
the paratope, which are visualized as probability density distributions. The starting X-ray structure for the underlying simulations is depicted as black dot in the free
energy surfaces and as black line in the plots showing the VH-VL angle distributions.
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unique interactions stabilizing the VH-VL interface (33, 73).
Astonishingly, we observe the highest variations in the relative
VH-VL distributions for the least stable Fab. This can be
explained by different interactions between the CDR loops and
higher variability in interfacial contacts.

Thus, apart from interdomain interactions of the CDR loops,
also contacts within the interface are involved in VH-VL pairing.
Among all human antibodies exist a small set of interdomain
interactions that are conserved (L-Gln38 und H-Gln39, H-Leu45
and L-Phe98, L-Pro44 and H-Trp103, L-Ala43 and H-Tyr91).
These interactions ensure a stable structural basis to the VH-VL

dimer to even tolerate variations in the amino acid sequence of the
CDR loops, in particular the CDR-L3 and CDR-H3 loops (68). The
occurrence of these contacts for all the investigated 16 Fab
fragments is illustrated in SI Table S3. We find that upon
changes in the relative VH-VL interdomain orientation, these core
interactions are maintained, however the duration and fluctuations
in these contacts can be higher, depending on the paired germlines
Frontiers in Immunology | www.frontiersin.org 9
of the respective antibody (SI Table S3). By considering not only the
occurrence of the core interactions, but actually the fluctuations of
all interdomain interactions formed between the differently paired
heavy and light chains, we find that also the variability of the
contacts in the interface are determinants for stability (SI Figure
S38). While the paratope states presented in Figures 3–6 kinetically
and thermodynamically describe the backbone rearrangements of
the CDR loops, Figure 7 displays the influence of different heavy
and light chain pairings on the resulting sidechain dynamics of the
CDR-H3 loop. We observe substantial shifts in the populations of
certain sidechain conformations of the identical CDR-H3 loop as a
consequence of different germline pairings. Residue E105, as well as
the D100 and D107 form hydrogen bond interactions with the
neighboring CDR-L1, CDR-L2 and CDR-L3. For the Fabs 5I15 and
5I19, which are paired with the same light chain, we observe
hydrogen bond interactions of the CDR-H3 loop residues (D100,
E105 and D107) with the tyrosine (Y32) and the asparagine (N34)
located at the CDR-L1 loop (SI Figure S39). Additionally, also the
A B

FIGURE 5 | Germline pairing specific paratope states in solution for the H3-23:L3-20 (5I1C) Fab. (A) Shows the paratope states, the free energy landscape, the
macrostate ensembles and the respective VH and VL orientations for the 5I1C antibody. The thickness of the arrows corresponds to the obtained transition
timescales. The thicker the arrow the faster the transition. The macrostate ensembles are arranged according to the shape of the tICA. (B) We also observe a small
shift in the interdomain angle distributions upon conformational changes in the paratope, which is visualized as probability density distributions. The starting X-ray
structure for the underlying simulations is depicted as black dot in the free energy surfaces and as black line in the plots showing the VH-VL angle distributions.
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A B

FIGURE 6 | Germline pairing specific paratope states in solution for the H3-53:L4-1 (5I1I) Fab. (A) Illustrates the paratope states, free energy surface, macrostate
ensemble and the respective VH and VL orientations for the 5I1I antibody. (B) Also, here we find small shifts in the VH and VL orientations upon rearrangements in the
paratope. Especially interesting is the fact that different germline pairings favor specific interdomain orientations. The highest variations in these interdomain angle
distributions can be observed for the 5I1I, which is also one of the least stable Fab fragments. The starting X-ray structure for the underlying simulations is depicted
as black dot in the free energy surfaces and as black line in the plots showing the VH-VL angle distributions.
A

B

FIGURE 7 | Sidechain flexibilities of the CDR-H3 loop. (A) Exemplary illustration of an amino acid projected into the sphere from which the polar coordinates (q and j)
are calculated. (B) The same CDR-H3 loop can adopt pairing specific CDR-H3 loop conformations. Here we provide a detailed analysis of sidechain orientations and
which sidechains are strongly influenced by different light and heavy chain pairings respectively. We also color-coded the different sidechain orientations according to their
populations: dark grey represents the highest populated sidechain conformation, while in light grey the least populated one is illustrated. On the left, the respective
sidechain orientations and conformations are depicted and colored respectively. The X and Y axes show the projection of the vectors on the polar angle and azimuth
angle on the surface of a unit sphere (spherical coordinates). This allows to determine not only the flexibility of the sidechain but also the orientation. A more detailed
description can be found in the methods section.
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backbone of leucine 106 interacts with the sidechain of tyrosine
32. A crucial residue that distinguishes the L1-39 germline from all
other investigated germline light chains is the N34 at the end of the
CDR-L1 loop (Table S4). This residue strengthens the interaction
network in the VH-VL interface and thus, contributes to the high
stability of both 5I15 and 5I19. Additionally, also the glutamine 55
(Q55) located at the CDR-L2 loop forms a hydrogen bond with the
D107 of the CDR-H3 loop (SI Figure S39). Both residues are
unique for the L1-39 germline and a more detailed and quantitative
analysis of the interaction network formed is depicted in Table S4.
Astonishingly, even though the L4-1 light chain contains a
glutamate at position 55, no hydrogen bonds or salt bridges are
formed with the heavy chain, as all potential interaction partners in
the close proximity are negatively charged (SI Table S5).
Furthermore, the CDR-L3 loop contains unique residues, which
play a central role in stabilizing the interface between the heavy and
the light chain. Residue S91 forms hydrogen bonds with Y103 and
E105, respectively, and thereby contributes to stabilize the interface
between the two chains. Q89 makes mainly backbone interactions
with the CDR-H3 loops. Another aspect that might contribute to
the increase in Fab stability of germline L1-39, compared to other
germlines, is that the CDR-L3 loop contains smaller residues at
position 91 and 94, which allow more room to accommodate the
CDR-H3 loop (68). Some of these key residues contributing to
specific interdomain and CDR loop conformations are missing in
the 5I17 Fab (H1-69:L3-20). Even though Y103 and D107 of the
CDR-H3 loop can still form an interaction with Y32 of the CDR-L1
loop, the key interaction partner N34 at the end of the CDR-L1 loop
is missing, which might contribute for the decrease in stability (SI
Table S4). Also, instead of smaller residues in the center of the
CDR-L3 loop, we find bulky residues, which might be less beneficial
for the interplay with the CDR-H3 loop. Thus, interactions with the
VL-CDR loops can influence the sidechain flexibility of the CDR-H3
loop and help to elucidate structural determinants for differences
in stability.

Apart from the interdomain interactions of the CDR loops
that substantially influence the VH-VL interface, also certain
framework residues have been discussed to have an effect on
the paratope (24, 26, 33, 71, 72, 74–77). Various studies have
already investigated the role of framework mutations on the CDR
loops and the relative VH-VL interdomain orientations based on
X-ray structures (68, 78, 79). Even allosteric effects involving
mutations in the CH1-CL and the elbow angle have been reported
to impact the antibody binding site and consequentially affinity
and specificity (24, 26, 33, 71, 72, 74–77). In particular, residue
71H [Kabat nomenclature (80)], has been shown to co-determine
the canonical conformation of the CDR-H2 loop, according to
whether there is a bulky residue or a small side-chain present and
thus bringing the CDR-H1 and CDR-H2 loops closer to each
other (27, 30, 81). Especially interesting is that the 71H residue is
part of the Vernier-zone residues, which have been reported to
play a critical role in the humanization process and for rational
design of antibodies in general as they can influence antibody
specificity and affinity (73, 79, 82, 83). Differences in these
framework residues might contribute to the distinct backbone
and sidechain dynamics observed in the 5I15 and 5I19. The 5I19
Frontiers in Immunology | www.frontiersin.org 11
Fab contains an arginine at Kabat position 71H, while 5I15 has an
alanine at this position. Even though they have the same CDR-
H2 loop length, distinct CDR-H2 loop conformations can be
observed. What becomes apparent is that already single amino
acid residues can result in changes in the dynamics of the whole
paratope. Thus, to determine the influence of distinct heavy and
light chain germline pairings, dominant solution structures
should be considered. This dataset was particularly notable,
because the identical CDR-H3 loop grafted on different heavy
chains and paired with diverse light chains allowed to directly
compare the obtained dynamics and ensembles of this loop. We
find that different heavy and light chain pairings result in
different CDR-H3 loop dynamics, which can also lead to
different paratope states favoring distinct interdomain
orientations. The antibodies investigated were designed and
chosen to study the influence of different germline pairings.
This synthetic human germline library lacks binding data but
provides very valuable structural information showing no
obvious difference to natural antibodies. Thus, despite the lack
of binding data, we assume that our findings are also applicable
to natural antibodies. The presented results show that there are
indeed cases where considering unpaired sequences is not
sufficient to structurally and dynamically understand the
respective antibody functions and properties.

The flexibility of the antibody binding site has already been
considered in antibody structure prediction and in antibody-
antigen docking (84). However, characterizing conformational
ensembles obtained from molecular dynamics simulations,
allows to identify the dominant structure in solution and to
retain the probabilities of the respective conformations. Thus,
especially antibody-antigen docking might profit from including
these probabilities, as not every conformation is equally probable
and involved in the antigen-binding process. As the dominant
solution structure has already been shown to frequently coincide
with the binding competent conformation, ensembles can also
guide the antibody humanization process, by elucidating the
influence of the antibody framework or single point mutations
on the paratope (85, 86). Thereby, conformational shifts and
differences in flexibilities might be indicators for changes in
antigen-recognition and/or differing biophysical properties such
as specificity, which would allow to anticipate unfavorable effects
upon antibody humanization (28, 87).
CONCLUSION

In conclusion, we observe that identical loop sequences can result
in distinct conformational CDR loop ensembles, depending on
the paired heavy or light chain, respectively. Different heavy and
light chain pairings do not only affect the CDR loop backbone
and sidechain conformations but also favor specific VH-VL

interface orientations.
However, we emphasize that sequence information alone is not

sufficient to describe the strongly structurally correlated CDR loop
dynamics and VH-VL pairing specific conformational states. We
find germline pairing specific paratope states in solution that
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should lead to a change in the field of antibody engineering and
design as they escape the view of single static structures to
ensembles in solution, which are characterized by correlated
CDR loop rearrangements and specific VH-VL interface
orientations. Additionally, we discuss potential determinants for
stability and find germline-specific interactions in the CDR loops
which help to explain differences in stability. These kinetically
dominant conformational ensembles in solution do not only help
to elucidate the effect of different heavy and light chain pairings
but can further be used to fine-tune antibodies in terms of their
specificity and developability and might lead to improvements of
protein-protein docking and antibody humanization.
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