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ABSTRACT

Aims/Introduction: Excessive intake of sucrose can cause severe health issues, such as diabetes mellitus. In animal studies,
consumption of a high-sucrose diet (SUC) has been shown to cause obesity, insulin resistance and glucose intolerance. However,
several in vivo experiments have been carried out using diets with much higher sucrose contents (50–70% of the total calories) than
are typically ingested by humans. In the present study, we examined the effects of a moderate SUC on glucose metabolism and the
underlying mechanism.
Materials and Methods: C57BL/6J mice received a SUC (38.5% sucrose), a high-starch diet (ST) or a control diet for 5 weeks. We
assessed glucose tolerance, incretin secretion and liver glucose metabolism.
Results: An oral glucose tolerance test (OGTT) showed that plasma glucose levels in the early phase were significantly higher in
SUC-fed mice than in ST-fed or control mice, with no change in plasma insulin levels at any stage. SUC-fed mice showed a significant
improvement in insulin sensitivity. Glucagon-like peptide-1 (GLP-1) secretion 15 min after oral glucose administration was significantly
lower in SUC-fed mice than in ST-fed or control mice. Hepatic glucokinase (GCK) activity was significantly reduced in SUC-fed mice.
During the OGTT, the accumulation of glycogen in the liver was suppressed in SUC-fed mice in a time-dependent manner.
Conclusions: These results indicate that mice that consume a moderate SUC show glucose intolerance with a reduction in hepatic
GCK activity and impairment in GLP-1 secretion. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2012.00208.x, 2012)
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INTRODUCTION
The term ‘sugars’ is commonly used to describe mono- and
disaccharides, which represent an important part of total caloric
intake1. Glucose, fructose and sucrose are the most commonly
consumed sugars. Approximately 10% of daily caloric intake
can be attributed to fructose, and fructose consumption has dra-
matically increased2,3. Excessive ingestion of sucrose promotes
the development of type 2 diabetes mellitus, which is associated
with obesity and insulin resistance1. Animal studies have shown
that diets extremely high in sucrose cause numerous metabolic

abnormalities, such as obesity, insulin resistance, glucose intoler-
ance and dyslipidemia4. The impact of a high-sucrose diet
(SUC) on insulin sensitivity remains controversial. Administra-
tion of a SUC (50–70% of the total calories) for 4–8 weeks
induced insulin resistance in the liver and skeletal muscle5,6.
However, in some experiments, mice fed a SUC (35–56% of the
total calories) for 15–40 weeks developed glucose intolerance
with enhanced insulin sensitivity7,8.

It is well recognized that the liver plays an important role in
glucose homeostasis, in the rapid clearance of glucose in the
postprandial state, and in the controlled production of glucose in
the postabsorptive state9. The conversion of glucose into glyco-
gen is a key pathway by which the liver removes glucose from
the portal vein after a meal9. Hepatic glucokinase (GCK) plays a
key role in glucose metabolism, as highlighted by the anomalies
associated with Gck mutations10 and by the consequences of tis-
sue-specific knock-out experiments11. Hepatic GCK, by which
phosphorylation of glucose is a rate-determining step in glucose
uptake and glycogen synthesis12,13, is responsible for postprandial
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glucose disposal14. Insulin positively regulates Gck gene expres-
sion in the liver, and thereby stimulates hepatic glucose uptake
and glycogen synthesis15. Expression of the hepatic Gck gene is
reduced in diabetic animals with insulin deficiency and insulin
resistance16,17.

The incretins glucagon-like peptide-1 (GLP-1) and glucose-
dependent insulinotropic polypeptide (GIP) play a major role in
glucose homeostasis through stimulation of insulin secretion
and suppressing glucagon secretion, thereby contributing to lim-
iting postprandial glucose excursions18,19. Several nutrients,
including triglycerides, fatty acids, proteins and carbohydrates,
stimulate incretin secretion18,20–22. Among these nutrients, glu-
cose is one of the most potent stimulators of incretin secretion
in rodents and humans20–24. The two incretin hormones are
responsible for approximately 50–70% of the postprandial insu-
lin responses in healthy individuals25. Several studies have
shown a significant reduction in GLP-1 levels after mixed-meal
ingestion in type 2 diabetes patients25–27. However, whether
chronic high-carbohydrate ingestion can change incretin secre-
tion remains unknown.

The aim of the present study was to examine the effects of a
moderate SUC (38.5% of the total calories) on glucose metabo-
lism and the effects of chronic high-carbohydrate (corn starch
or sucrose) ingestion on incretin secretion. The present findings
show that consumption of a moderate SUC for 5 weeks results
in glucose intolerance with a reduction in hepatic GCK expres-
sion and activity and impairment in GLP-1 secretion.

MATERIALS AND METHODS
Animals and Diets
Twelve-week-old male C57BL/6J mice were obtained from
Japan SLC (Shizuoka, Japan) and housed in a temperature-con-
trolled room under a standard 12-h light/dark cycle. All proce-
dures were carried out according to a protocol approved by the
Nagoya University Institutional Animal Care and Use Commit-
tee. Mice were fed a normal chow diet of CE-2 (CLEA Japan,
Osaka, Japan), containing 58.2% carbohydrates, 29.2% protein
and 12.6% fat as energy content. After adaptation for 2 weeks,
they were divided into three groups and fed a normal chow diet
(NC), a high-starch diet (ST) supplemented with 38.5% corn
starch or a SUC containing 38.5% sucrose; the latter two diets
were prepared by the addition of corn starch or sucrose, respec-
tively, to CE-2 (Table 1). Mice were fasted for 16 h or were
re-fed for 12 h after 24 h of starvation.

Plasma Biochemical Analyses
Blood glucose levels were measured with ANTSENSE II (Bayer
Medical, Leverkusen, Germany). Plasma levels of insulin were
determined by ELISA kit (Morinaga, Tokyo, Japan). Plasma tri-
glycerides and free fatty acid levels were determined using the
Triglyceride E test and NEFA C test (Wako Pure Chemi-
cal, Osaka, Japan), respectively. Plasma levels of total GIP
and GLP-1 were determined using the GIP (TOTAL) ELISA
kit (Linco Research, St. Charles, MO, USA) and an electro-

chemiluminescent sandwich immunoassay (Meso Scale Discov-
ery, Gaithersburg, MD, USA), respectively.

Glucose Tolerance Test, Insulin Tolerance Test and Pyruvate
Tolerance Test
Oral and intravenous glucose tolerance tests (OGTT and
IVGTT, respectively) were carried out after 5 weeks of feeding
with the NC, SUC or ST. After 16 h of food deprivation, glucose
was given either orally at a dose of 2 g/kg (OGTT) or intrave-
nously at a dose of 2 g/kg (IVGTT). After administration, blood
was collected at 0, 10, 15 and 60 min for the measurement of
glucose and insulin. For the insulin tolerance test (ITT), mice
were deprived of food for 6 h before the test. Insulin was
injected intraperitoneally at a dose of 0.6 U/kg. Blood was
collected 0, 30, 60, 90 and 120 min after insulin injection. For
the pyruvate tolerance test, the mice were deprived of food for
16 h and then injected intraperitoneally with pyruvate dissolved
in saline (2 g/kg). Blood was collected 0, 15, 30, 60 and 90 min
after the injection of pyruvate.

Isolation of Tissue Ribonucleic Acid and Quantitative
Real-Time Reverse Transcription Polymerase Chain Reaction
Extraction of total ribonucleic acid (RNA), synthesis of comple-
mentary deoxyribonucleic acid (DNA) and quantitative real-
time reverse transcription-polymerase chain reaction (RT–PCR)
were carried out as previously described28. The primer
sequences are shown in Table S1. The messenger RNA (mRNA)
levels were normalized with respect to those of 36B4.

Measurement of Hepatic Glycogen and Triglyceride Content
For the determination of hepatic glycogen content, 100 mg of
liver sample was digested in 0.5 mL of 1 mmol/L potassium
hydroxide for 30 min in a 70�C water bath. The samples were
briefly centrifuged, and 100 lL of the supernatant was removed
and neutralized with 17 lL of 17.4 mol/L acetic acid. Glycogen
was enzymatically cleaved to glucose by addition of 500 lL of
0.3 mol/L acetate buffer with 0.5% amyloglucosidase at 37�C.
Glucose concentration was then measured using a Glucose C II
test (Wako Pure Chemical)29. For the determination of hepatic
triglyceride content, 100–200 mg of liver sample was homo-
genized for 10 min in 4 mL isopropanol with a Polytron dis-
rupter. Triglyceride content was measured using a Triglyceride
E test (Wako Pure Chemical)30.

Table 1 | Composition of experimental diets

NC ST SUC

Protein 29.2 18.0 18.0
Fat 12.6 7.7 7.7
Carbohydrates 58.2 74.3 74.3
(Sucrose) – – (38.5)

Data are expressed as % of total energy. NC, a normal chow diet;
ST, a high-starch diet; SUC, a high-sucrose diet.
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Measurement of GCK Activity
GCK activity was measured as previously described31. Briefly,
liver was homogenized with the sample buffer, and a part of the
homogenate was centrifuged for 90 min at 40,000 g at 4�C.
Thereafter, the supernatant was harvested. The final glucose con-
centration in the assay mixture (200 mmol/L HEPES, 50 mmol/L
KCl, 5 mmol/L MgCl2, 1 mmol/L NAD+, 5 mmol/L adenosine
triphosphate, 100 lg/mL bovine serum albumin and 1 unit/mL
glucose 6-phosphate dehydrogenase) was adjusted to 0.5 or
50 mmol/L. The assay mixture (990 lL) was incubated for
5 min at 37�C, and the reaction was then started by the addition
of 10 lL of the supernatant. The reaction velocity was measured
as the rate of increase in absorbance monitored at 340 nm
2–3 min after initiation of the reaction. One unit was the amount
of enzyme that catalyzed the phosphorylation of 1 lmol of glu-
cose per minute. GCK activity was calculated using subtraction.

Immunoblotting Analysis
After 16 h of food deprivation, 5 units of human regular insulin
(Eli Lilly, Indianapolis, IN, USA) were injected intravenously.
The liver and skeletal muscle tissues samples were rapidly
extracted 3 min after the injection. Immunoblotting analysis was
then carried out as previously described28, by using an antitotal
AKT antibody (at a dilution of 1:1000; Cell Signaling Technol-
ogy, Beverly, MA, USA), an antiphospho-AKT (Ser 473) anti-
body (at a dilution of 1:1000; Cell Signaling Technology), an
antiglycogen synthase kinase-3b (GSK-3b) antibody (at a dilu-
tion of 1:1000; BD Biosciences, Sparks, MD, USA), or an anti-
phospho-GSK-3b (Ser 9) antibody (at a dilution of 1:1000; Cell
Signaling Technology). The intensity of the signals was quanti-
fied using NIH image software (National Institutes of Health,
Bethesda, MD, USA). Phosphorylation was expressed as a per-
centage of the amount of phospho-AKT or phospho-GSK-3b
relative to the total amount of AKT or GSK-3b, respectively.

Statistical Analysis
Results are expressed as mean ± SEM of values obtained from
several experiments, and statistical significance was evaluated
using analysis of variance (ANOVA) with Bonferroni post-hoc
tests. P < 0.05 was considered statistically significant.

RESULTS
Effects of Carbohydrates on Metabolic Parameters
To examine the effects of a diet containing high levels of not
only sucrose, but also carbohydrates, we divided mice into three
groups: NC, ST and SUC. After 5 weeks on the respective diets,
no differences in bodyweight or energy intake were observed
among the groups. Furthermore, no significant differences in
the levels of plasma glucose, triglycerides or free fatty acids in
either a fasted or a fed state were observed, although insulin
levels in the fed state were higher in ST-fed mice than in the
other groups (Table 2).

Glucose Tolerance Test and Insulin Tolerance Test
The OGTT showed no differences in blood glucose levels at
baseline or 60 min among the groups (Figure 1a). Plasma glu-
cose levels in SUC-fed mice were significantly higher 10 and
15 min after oral glucose administration than those in NC- and
ST-fed mice (Figure 1a), whereas insulin levels were similar
among the groups at all times (Figure 1b). To investigate the
ability of pancreatic islets to secrete insulin, we carried out an
IVGTT. An IVGTT shows glucose-stimulated insulin secretion
in vivo, because glucose does not pass through the portal vein
after an intravenous glucose injection32. The IVGTT showed no
differences among the groups in glucose concentrations after
intravenous administration of glucose at the indicated periods
(Figure 1c). Insulin levels did not differ among the groups at
any time (Figure 1d). The ITT showed that blood glucose levels
after insulin injection were significantly lower in the SUC-fed
mice than in the NC- and ST-fed mice (Figure 1e). Insulin-
induced phosphorylation of AKT in the skeletal muscle was
enhanced in SUC-fed mice (Figure 1f). These results show that
the ability to secrete insulin is conserved, and that peripheral
insulin sensitivity is enhanced in SUC-fed mice.

Effects of Carbohydrates on Incretin Secretion
No differences in plasma GLP-1 levels in the fasting state were
observed among the groups (Figure 2b). Oral glucose adminis-
tration induced GLP-1 secretion, and peak plasma GLP-1
levels were observed at 15 min (Figure 2a). An unexpected
finding is that plasma GLP-1 levels 15 min after oral glucose

Table 2 | Bodyweight, insulin and metabolic parameters in fasted and fed state

Fasted Fed

NC ST SUC NC ST SUC

Bodyweight (g) 26.7 ± 0.3 27.6 ± 0.8 27.5 ± 0.3
Energy intake (kJ/day) 48.0 ± 1.6 46.6 ± 0.4 47.5 ± 0.8
Glucose (mmol/L) 5.76 ± 0.21 5.69 ± 0.05 5.74 ± 0.29 11.4 ± 0.8 11.8 ± 0.5 12.5 ± 0.6
Insulin (pmol/L) 70.6 ± 14.8 63.4 ± 14.0 43.6 ± 7.8 145.6 ± 13.8 204.4 ± 11.1* 138.9 ± 15.7
Triglycerides (mmol/L) 1.05 ± 0.08 1.23 ± 0.13 1.21 ± 0.07 1.28 ± 0.15 1.13 ± 0.09 1.17 ± 0.17
Free fatty acids (mmol/L) 1.54 ± 0.09 1.59 ± 0.11 1.45 ± 0.13 0.63 ± 0.09 0.61 ± 0.07 0.56 ± 0.08

Data are expressed as means ± SEM of values. *P < 0.05 compared with normal chow diet (NC)-fed mice and high-sucrose diet (SUC)-fed mice,
n = 4 or more per group. ST, a high-starch diet.
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administration were significantly lower in the SUC-fed mice
than in the NC- and ST-fed mice (Figure 2b). Plasma GIP
levels at baseline were similar among the groups (Figure 2d).
Peak GIP levels were observed 15 min after oral glucose
administration (Figure 2c), and GIP levels at 15 min were not
suppressed in the SUC-fed mice (Figure 2d).

Hepatic Glucose Metabolism in SUC-Fed Mice
To investigate the effects of carbohydrates on hepatic glucose
metabolism, we carried out a pyruvate tolerance test. As shown
in Figure 3a, glucose levels throughout the pyruvate tolerance
test were significantly lower in the SUC-fed mice than in the
NC- and ST-fed mice. Glucose-6-phosphatase (G6pc) mRNA
expression in the fasted state was comparable among the groups,
whereas phosphoenolpyruvate carboxykinase (Pepck) mRNA
expression increased in the SUC-fed mice (Figure 3b). The
expression of G6pc and Pepck mRNA in the re-fed state was
comparable among the groups (Figure 3b). Thereafter, we
assessed glycogen content in the liver. Storage of glycogen in
the liver did not differ among the groups in the fed state
(NC 60.7 ± 2.6 mg/g liver; ST 55.3 ± 3.2 mg/g liver; SUC
61.3 ± 2.5 mg/g liver), and after 16 h of fasting, glycogen

content was undetectable in all groups. However, accumulation
of glycogen throughout the OGTT was significantly suppressed
in the SUC-fed mice 60 and 120 min after oral glucose adminis-
tration (Figure 3c). The expression levels of Gck mRNA were
lower in the fasting SUC-fed mice than in the NC-fed mice
(Figure 3d). Total GCK activity during fasting was reduced by
approximately 50% in the SUC group compared with the other
groups, showing decreased GCK expression in the SUC-fed
mice (Figure 3e).

Lipid Metabolism in the Liver
Next we examined lipid metabolism. Hematoxylin–eosin stain-
ing showed no vacuolization in the liver in the SUC-fed mice
(data not shown). However, hepatic triglyceride content in the
fed state was significantly higher in the SUC-fed mice than in
the NC- and ST-fed mice (Figure 4a). In the fed state, gene
expression of lipogenic enzymes, including fatty acid synthase,
acetyl-CoA carboxylase a (Acaca) and stearoyl-CoA desaturase
1 (Scd1), was significantly higher in the livers of the SUC-fed
mice than in the livers of the NC-fed mice; furthermore, the
expression of Acaca and Scd1 mRNA was higher than in the
NC- and ST-fed mice (Figure 4b). Gene expression of lipolytic
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enzymes, including acyl-CoA oxidase, medium-chain acyl-CoA
dehydrogenase and carnitine palmitoyltransferase 1a, in the liver
was comparable among the groups (Figure 4c). However, the
ratio of insulin-induced phosphorylation of AKT and GSK-3b
in the liver was similar among the groups (Figure 4d,e), showing
that the insulin signal was conserved in the liver of the SUC-fed
mice.

DISCUSSION
In the present study, we observed hyperglycemia in the early
phase after oral glucose administration. The liver is known to
play an important role in the disposal of an oral glucose load in
the early phase, whereas peripheral tissues play a role in the late
phase after oral glucose loading33,34. These findings suggest that
abnormal glucose metabolism in the liver caused glucose intoler-
ance in the SUC-fed mice.

The impaired hepatic glucose metabolism in type 2 diabetes
involves both the fasting state, in which gluconeogenesis appears
to be increased35,36, and the fed state, in which insulin suppres-
sion of glucose production is reduced37. Experimental studies
have shown that consumption of sucrose enhances gluconeo-
genesis with impaired insulin sensitivity, resulting in impaired
glucose metabolism in the liver38–40. We found that liver glyco-
gen was completely depleted after a 16-h fast, indicating that
glucose production through glycogenolysis was minimized. Fur-
thermore, we showed that glucose production from pyruvate
was suppressed, which conflicts with the expression of G6pc and
Pepck mRNA in a fasting state. The pyruvate tolerance test is
known to measure the capacity of the liver to convert pyruvate
to glucose, which would normally be inhibited by insulin. In the
present study, hepatic lipogenesis was enhanced in SUC-fed
mice. Enhanced lipogenesis in the liver might increase fatty acid
synthesis, and thereby reduce glucose production, from pyru-
vate. Therefore, the present results show that gluconeogenesis in
SUC-fed mice is suppressed in a fasted state.

A previous study showed that hepatic glucose uptake was
reduced, and that hepatic glucose excursion was increased in
patients with type 2 diabetes, because inadequate activation of
hepatic GCK presumably decreased the uptake of extracellular
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glucose15. Clamp studies in animals with euglycemic hyperinsu-
linemia showed that impaired insulin action in the liver reduced
glucose disposal in SUC-fed rats, although a change in hepatic
GCK activity was not examined5,6,41. Thus, we investigated GCK
activity and glycogen storage in the liver, which represents glucose
uptake. We showed that hepatic GCK expression and activity
were attenuated in the SUC-fed mice, and that glycogen storage
was suppressed during the OGTT, suggesting that reduced
glucose disposal through the reduction of GCK activity is respon-
sible for glucose intolerance in mice fed a moderate SUC.

As mentioned previously, impaired insulin action is thought
to modify GCK activity in the livers of SUC-fed mice. An unex-
pected finding from the present study was that insulin-induced
phosphorylation of AKT and GSK-3b did not change in the
SUC-fed mice, showing that the insulin signal is conserved in
the liver. Thus, this finding suggests that a SUC reduces hepatic
GCK expression and activity independent of insulin action.
Further investigations are required to clarify the mechanism of
reduced GCK expression in the liver of SUC-fed mice.

We found elevated triglyceride content and lipogenic enzyme
expression with conserved hepatic action of insulin in the SUC-
fed mice. Liver fat accumulation is proposed to link obesity and
insulin resistance. Whether liver fat accumulation is a result or a
cause of peripheral insulin resistance and glucose intolerance
remains controversial42. Exposure of the liver to large quantities
of fructose (and sucrose-containing fructose) leads to rapid stim-
ulation of lipogenesis and accumulation of triglycerides, which
in turn contributes to reduced insulin sensitivity and hepatic
insulin resistance/glucose intolerance43. Accordingly, our obser-
vations suggest that liver fat accumulation is not a result of
insulin resistance.

Previous studies have shown that SUC feeding for a long
period decreases insulin secretion41,44. In our experiments, no
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apparent decrease in insulin secretion was observed. However,
we assumed that insulin secretion was relatively impaired in this
model. In fact, we found that serum insulin levels were similar
throughout the OGTT, although serum glucose levels in SUC-
fed mice were higher in the early phase after oral glucose
administration, but not after intravenous glucose administration.
We further showed impaired GLP-1 secretion in response to
oral glucose loading in SUC-fed mice. These findings therefore
suggest that insulin secretion is relatively impaired throughout
the OGTT in SUC-fed mice.

An animal study showed lower basal plasma GLP-1 levels
and diminished GLP-1 response to oral glucose administration
in mice on a high-fat diet compared with those on a low-fat
diet45. High levels of non-esterified fatty acids during fasting
and after meals, accompanied by insulin resistance, have been
speculated to inhibit nutrient-mediated GLP-1 secretion in obese
individuals46. However, the effects of a high-carbohydrate diet
on incretin secretion have not yet been reported. In the present
study, we found impaired GLP-1 secretion, but not GIP secre-
tion, in response to oral glucose loading in the SUC-fed mice,
but not in the ST-fed mice; ours is the first study that deter-
mined the effects of chronic high-carbohydrate ingestion on

incretin secretion. Our observations are consistent with those of
previous studies in humans that postprandial GLP-1 levels were
reduced in patients with type 2 diabetes compared with healthy
subjects, but that GIP secretion remained relatively intact26,27,47.
This finding suggests that excess ingestion of sucrose contributes
to impaired GLP-1 secretion in patients with type 2 diabetes. A
reduction in insulin signaling in the peripheral tissues could not
explain impaired GLP-1 secretion in this model. Therefore, fur-
ther investigations of the effects of a SUC on the function of
intestinal L-cells are required to clarify this mechanism.

In conclusion, we showed that a moderate SUC results in glu-
cose intolerance with a reduction in hepatic GCK expression
and activity, and impaired GLP-1 secretion.
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