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Epilepsy is a common neurological disease that is not always controlled, and the

ketogenic diet shows good antiepileptic effects drug-resistant epilepsy or seizures

caused by specific metabolic defects via regulating the metabolism. The brain is a vital

organ with high metabolic demands, and epileptic foci tend to exhibit high metabolic

characteristics. Accordingly, there has been growing interest in the relationship between

brain metabolism and epilepsy in recent years. To date, several new antiepileptic

therapies targeting metabolic pathways have been proposed (i.e., inhibiting glycolysis,

targeting lactate dehydrogenase, and dietary therapy). Promising strategies to treat

epilepsy via modulating the brain’s metabolism could be expected, while a lack of

thorough understanding of the role of brain metabolism in the control of epilepsy remains.

Herein, this review aims to provide insight into the state of the art concerning the brain’s

metabolic patterns and their association with epilepsy. Regulation of neuronal excitation

via metabolic pathways and antiepileptic therapies targeting metabolic pathways are

emphasized, which could provide a better understanding of the role of metabolism in

epilepsy and could reveal potential therapeutic targets.
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INTRODUCTION

Epilepsy is a brain disease with neurobiological, cognitive, psychological, and social consequences,
characterized by an enduring pre-disposition to generate epileptic seizures (1). Regardless of its
etiology, epilepsy is widely regarded as a disease of neuronal network excitability unbalance from
altered ionic or synaptic transmission (2). Excessive synchronized discharge of neuronal networks
causes epileptic seizures and is a specific manifestation of network excitability changes, such
explosive electrical activity, that must be supported by enhancing metabolism (3, 4).

Most activities involve and are influenced by metabolism. Numerous individuals have various
diseases caused by inborn or acquired metabolic dysfunctions. Over 500 inborn errors of
metabolism were confirmed and affected ∼1 in 2000 live births (5). Except for some typical
metabolic endocrine diseases, many acquired diseases could involve systemic or focal metabolic
changes that could be helpful in diagnosis or prognosis and as therapeutic targets (6–8). It is
well-recognized that human health is strongly related to metabolism, but this has only started
to attract sufficient attention in the last decade. Scientific developments have led to an in-depth
understanding of metabolism and its role in pathophysiological processes. Metabolic changes both
accompany diseases and can comprise therapeutic targets. Hippocrates first documented calorie
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restriction therapeutics to treat epilepsy (9). Based on this, the
ketogenic diet emerged (10) and has played an important role in
antiepileptic therapy (see section Dietary Therapy in Epilepsy).

Recently, neuroscientists have proposed several antiepileptic
treatment methods that involve metabolic regulation (11–13).
Technological developments have facilitated the detection of
metabolic changes; then, epilepsy foci can be located (14). Today,
researchers have acquired a larger understanding of the brain’s
metabolism and its roles in epilepsy, and recent findings have
shown that there is a significant association between epilepsy
and metabolism, with some researchers defining epilepsy as a
metabolic disease (2, 15, 16). However, the relationship between
metabolism and epilepsy has rarely been examined in detail.
This review focused on the relationship between metabolism and
epilepsy aiming to provide a better understanding of the role of
metabolism in epilepsy and to reveal potential therapeutic targets.

METABOLIC FEATURES IN THE BRAIN

It is an established fact that the brain is the most developed part
of the nervous system, controlling nearly all activity and adjusting
the body to the external environment. Although the adult human
brain accounts for only 2% of body weight, it consumes 20%
percent of the body’s oxygen. Interestingly, the mass of a child’s
brain (5-year-old) accounts for 6% of body weight and consumes
50% of the body’s oxygen (17). Additionally, 12% of the cardiac
output will flow to the brain (18). It was estimated that adenosine
triphosphate (ATP) consumption in the gray matter of the brain
is 30 mmol ATP/Kg tissue/min, which is close to the use of
muscles in the human leg during a marathon (19). These data
suggest that the brain has a stunning energy metabolism. While
the metabolic properties of the brain are not limited to these,
some unique metabolic characteristics are closely relevant to
epilepsy treatment.

Glycolysis Is Essential for Brain/Neuronal
Function
Glucose is the most important energy source in the brain, with
some additional energy substrates having been reported, e.g.,
ketones and lactate (20, 21). These alternative energy substrates
substitute glucose when glucose deficiency occurs, but they can
only partially compensate for glucose. Evoked population spikes
were attenuated by decreasing the glucose levels in a culture
medium even without altering the intracellular concentrations
of ATP or phosphocreatine (PCr); abnormal synaptic function
could not fully recover by replacing glucose with pyruvate,
lactate, or other energy substrates (22). This evidence showed that
decreased glycolysis due to insufficient glucose concentration
impairs neuronal function, and glycolysis is crucial for sustaining
synaptic function. Conversely, to support increased synaptic
vesicle circulation, the glycolysis levels in activated neurons were
significantly increased (2-fold change from baseline), especially
in the pre-synaptic terminals (23). These results may have
been derived from brain slices but are suitable for the entire
brain. Glucose does not consume oxygen in anaerobic glycolysis,
while 1mol of glucose consumes 6mol of oxygen gas (O2) in

aerobic oxidation: 1 glucose + 6O2 = 6CO2 + 6H2O. The
ratio of O2/glucose consumed by the brain is called the oxygen–
glucose index (OGI) and is maintained at a value close to six
during rest, until stimulation leads to metabolic changes. Even
if sufficient oxygen is delivered to the brain, the OGI decreases
during brain activation by several types of stimulation, such as
vigorous motor and complex cognitive tasks or by pathological
conditions (seizures and depression). This marks a preferential
increase in glycolysis in the activated brain, even if oxygen
availability is sufficient (17). Furthermore, this may account
for the antiepileptic effect of glycolysis inhibition (see section
Inhibiting Glycolysis to Reduce Seizures).

Astrocyte-Neuron Lactate Shuttle (ANLS)
The cerebrum is composed of ∼100 billion neurons and one
trillion neuroglia cells. Astrocytic endfeet are a fundamental
and important component of the blood–brain barrier (BBB);
almost 99% of the surface of blood capillaries are enwrapped
by astrocytes end feet (24), signifying that most of the neurons
in the brain do not directly contact the capillaries. Then, how
could neuronal energy uptake substrates and other nutritional
materials sustain a high-intensity metabolism become a question.
Although the classical theory holds that glucose is the main
energy source for neurons, new viewpoints are emerging. In
1994, Pellerin and Magistretti first proposed the mechanism of
ANLS (25) that has been frequently discussed in recent years and
may thoroughly explain the neuroenergetics at the cellular and
molecular levels.

Most neurons in the brain do not directly contact the
capillaries; astrocytes are employed as a bridge to connect
the capillaries and neurons and transport energy substrates.
Glucose is absorbed by astrocytes through glucose transporters
from the capillaries or extracellular fluid, and then translated
to lactate via glycolysis. Lactate was traditionally regarded
as a waste product of glycolysis. However, new studies have
indicated that lactate is an important energy substrate for normal
tissues and/or tumors (26, 27); in the brain, lactate produced
in astrocytes fuels the mitochondrial tricarboxylic acid (TCA)
cycle of neurons in a proprietary way, i.e., the ANLS (28).
According to the ANLS, astrocytes absorb glucose and convert
it to lactate. Then, lactate is transferred out of the astrocytes
through the type 1 and 4 of monocarboxylate transporter (MCT1,
4) and carried into the neighboring neurons through MCT2.
Lactate originating from the astrocytes is again catalyzed to
pyruvate by lactate dehydrogenase, and the pyruvate could be
carried into the mitochondria and be utilized as an energy
metabolite in the Krebs cycle (Figure 1). Although this theory
remains controversial, the concentration of lactate in astrocytes
was significantly higher than that in neurons, and this lactate
gradient provided a pre-condition for the flow of lactate from
astrocytes to neurons mediated by carriers (31). Furthermore,
the ANLS theory makes perfect use of the astrocytes’ support
function; it reduces neuronal dependence on glycolysis, i.e., a
multifarious biochemical reaction process that produces a very
small amount of ATP. Hence, neurons can derive more energy
with as few biochemical steps as possible (17). This pattern of
energetics mainly exists in activated excitatory neurons and is
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very important in sustaining the energy metabolism of neurons
during high synaptic activity; therefore, it may be involved in
certain diseases, such as epilepsy (32). Targeting the LDH-a key
enzyme in the ANLS exhibited an antiepileptic effect (13) (see
section Targeting Lactate Dehydrogenase to Treat Epilepsy).

Various Energetics in the Brain
Organisms can survive in various complex environments because
organs can change their metabolism for adaptation purposes.
Glucose in plasma or extracellular fluid remains the most
important energy substrate for the brain, with numerous other
substrates fueling the brain via various pathways. Glycogen
stored in the liver or muscles is an important alternative energy
source for the human body. It is also present in human brain
tissue (33) and plays a crucial role in memory formation, learning
capacity, and regulation of the sleep-wake cycle (34–36). As a
matter of fact, glycogen is an energy reserve selectively localized
in astrocytes (37). It is lactate that fuels the neurons through
the ANLS and plays important roles in the brain. In some
special circumstances, such as high-intense memory tasks, sleep
deprivation, and hypoglycemia, lactate derived from astrocytic
glycogen fuels the brain during exhaustive conditions (30). In
general, blood glucose could contribute to brain energetics, and
lactate in the blood can also be utilized as an energy source for the
brain during moderate or intense exercise (20, 29). In addition,
ketone bodies comprise an important alternative energy substrate
for the brain and could be directly utilized to maintain the
energy metabolism in a starvation condition or when following
a ketogenic diet (21). Various energy supply modes enable the
nervous system to adapt to various states and offer the potential
to better understand and treat diseases (the energy metabolism in
the brain is illustrated in Figure 1).

CHANGES IN METABOLIC
CHARACTERISTICS IN EPILEPSY

There are often metabolic changes in a diseased organ or tissue.
Sometimes, these metabolic changes contribute to diagnosis or
treatment, which could be applicable to epilepsy. Similar to the
energy changes associated with earthquakes, epileptic foci are
often accompanied by significant energy metabolism changes
during seizures (4, 38). With the development of detection
methods and technological progress, evidence supporting this
point is accumulating.

Neuroimaging
The lesions caused by general diseases can be found by
CT or MRI, while the location of epilepsy lesions is more
complicated. Sometimes, epileptic lesions do not show structural
abnormalities, but can be detected through differences in
metabolic levels or combined with electroencephalography
(EEG) to locate the epileptic foci. 18F-FDG positron-emission
tomography (PET) makes it possible to intuitively observe
the metabolic differences in brain regions and locate the
epileptogenic foci. PET is usually used as interictal investigation,
and epileptic foci show characteristic hypometabolism in the
inter-ictal phase (39). PET scanning is almost impossible to

perform in epileptic patients with motor symptoms during the
seizure period, but it can be used for absence epilepsy. During the
ictal phase of absence epilepsy, the metabolism of the thalamus
is obviously enhanced, and cerebral blood flow is increased in
the whole brain (40–42). Animal experiments have supported
that there is enhancement of brain metabolism during epileptic
seizures. In a rat seizure model induced by pilocarpine, FDG-
PET imaging showed significant hypermetabolism in the area of
the hippocampus and entorhinal cortex during status epilepticus
(43). Single-photon emission computed tomography (SPECT)
also constitutes a technique to evaluate brain metabolism
and to locate epileptic foci. SPECT imaging can monitor
dynamic changes in cerebral perfusion, thereby reflecting the
metabolic changes before, during, and after seizures. True ictal
SPECT imaging has shown that hyperperfusion emerges in
the epileptogenic region, and indirectly reflects increased brain
metabolism through changes in cerebral perfusion (44).

Biochemical Changes in Epilepsy
Epilepsy manifests as a change in consciousness and/or behavior,
with abnormal EEG activities being at the root of seizure
causality. The electrical activity must be accompanied by changes
in energy; in fact, the conversion between substances will produce
energy changes. Therefore, epilepsy must be accompanied
by changes in energy-related substances; some abnormal
neurochemical changes occur in the epileptic brain. However,
elevated peripheral blood lactate levels are considered to be
correlated with the extent of disease or injury (45). Comparing
with the non-epileptogenic hippocampus, the concentration of
lactate in the epileptogenic hippocampus increased from 4.6
± 0.4 to 6.8 ± 0.7mM (P < 0. 001) (46–48). An increase
in anaerobic glycolysis was also shown in the epileptogenic
brain. In addition, status epilepticus causes a significant increase
in cerebrospinal fluid (CSF) lactate, and the magnitude of
lactate elevation could play an important role in predicting the
morbidity and mortality of status epilepticus (49).

METABOLISM DYSFUNCTION LEADS TO
EPILEPSY

We so far discussed the metabolic characteristics of the brain and
energy metabolism changes in epilepsy. Additionally, metabolic
disorders can lead to epilepsy. Next, we introduce several types
of common epileptic diseases, including the glucose transporter
(GLUT1) deficiency syndrome, hypoglycemia, creatine deficits,
and mitochondrial encephalomyopathies.

GLUT1 Deficiency Syndrome
As discussed above, the brain is an important organ with high
energy demand and glucose uptake via GLUT1 on the endothelial
cells of the BBB. Although there are several subtypes of GLUTs
in the brain, mainly including GLUT1 on the endothelial cells
of the BBB, GLUT2 on astrocytes, and GLUT3 on neurons
(50, 51), GLUT1 is the one most importantly associated with
epilepsy (52). Defects of GLUT1 will impair glucose transport
into the brain and result in Glut-1 deficiency syndrome (53).
Glut1 deficiency syndrome is an autosomal dominant hereditary
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FIGURE 1 | A summary of energy metabolism patterns in neurons. Glucose and ketone (KET) are recognized as energy substrates, which are labeled as ① and ②

respectively. Lactate in the blood can also be utilized as an energy source for the brain during moderate or intense exercise (marked as ③) (20, 29). Glycogen stored in

astrocytes generated lactate via glycogenolysis and lactate was then shuttled to neurons (marked as ④) (30). The astrocyte-neuron lactate shuttle is very important in

sustaining the energy metabolisms of neurons during high synaptic activity (marked as ⑤) (13). G6P: glucose 6 phosphate, Pyr, pyruvate; PDH, pyruvate

dehydrogenase; Ace-CoA, acetyl-coenzyme A.

neurologic disorder characterized by low glucose (<40 mg/dL)
and low lactate levels in the CSF. Seizures, which often
initiate in the first 4 months of life, are the most common
presenting symptom in this disorder. Patients also often have
stunting, acquired microcephaly, ataxia, and muscle spasms.
Sudden onset of confusion, lethargy, sleep disturbances, and
headaches may also occur. The extent of cognitive impairment
could vary with the condition. Epilepsy caused by Glut1
deficiency syndrome shows different types: complex-partial
seizures (53), absence epilepsy (54), generalized tonic-clonic
seizures (55), and others. In addition, mutations in GLUT1
(also known as SLC2A1) can also cause a syndrome called focal
epilepsy (FE) and paroxysmal exercise-induced dyskinesia (PED)
(56), whose attacks may be associated with increased glucose
consumption caused by exercise. Ketogenic diet therapy is the
gold standard treatment for patients with GLUT1 deficiency
syndrome (57). The age at the correct diagnosis is the most
important factor determining prognosis, and early diagnosis is
very important as well as initiating the ketogenic diet as soon as
possible (58).

Hypoglycemia
Hypoglycemia is a common, acute life-threatening illness in
diabetic patients that may cause seizures. Not all patients with
hypoglycemia have epileptic seizures; neonates and children
appear to be more susceptible to epileptic seizures induced by
hypoglycemia, which may be associated with brain immaturity
(59). Furthermore, hypoglycemia-induced seizures may be linked
to genetic susceptibility. In the background of DBA mice prone
to epileptic seizures, insulin injection that reduced blood sugar
levels to 60%, increased spike-and-wave discharge (SWD) by
>300%, whereas the same dose of insulin could not induce SWD
events in C57Bl6 mice with epileptic seizure resistance (60).
This difference decided by genetic susceptibility has not been
confirmed in the population, but patients with systemic epilepsy
are more sensitive to hypoglycemia; Increased cortical excitation
was much more obvious in epileptic patients than in healthy
individuals under starvation conditions, which indicated that the
neuronal networks in the epileptic brain were more susceptible to
hypoglycemia (61). The mechanism of this sensitivity difference
is not clear at present. In general, most epileptic seizures caused
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by hypoglycemia can be quickly relieved after blood glucose
level recovery. However, attention is required in that children
with diabetes with hypoglycemic convulsions could eventually
develop perpetual abnormal EEG. Good control of blood glucose
did not improve the abnormal EEG caused by hypoglycemia.
Severe hypoglycemia in infantile or early-onset diabetes mellitus
appears to be an important risk factor for persistent EEG
abnormalities (59). Hence, the prevention of hypoglycemia is
very important, especially in infants.

Creatine Deficits
Creatine deficiency syndrome comprises a group of disorders
caused by creatine (Cr) synthesis or transport defects. The main
symptoms of creatine deficiency syndrome include intellectual
impairment, severe language delay, behavioral abnormalities, and
seizures (62). Creatine is the most important material for the
synthesis of the high energy compound, creatine phosphate.
L-arginine glycine amidine transferase (AGAT) and guanidine
acetate methyltransferase (GAMT) are key enzymes in creatine
synthesis. Creatine synthesized in the liver is transported by
creatine transporter 1 (CT1) to muscle and brain tissues with
high energy metabolism (63). Hence, deficits in the synthesis
or transport of creatine can lead to creatine deficiency. The
biosynthesis dysfunction of creatine comprises two autosomal
recessive disorders: AGAT deficiency and GAMT deficiency.

AGAT deficiency is a rare disease with only individual
cases having been reported and involves non-specific symptoms
including intellectual disability and epilepsy (63). Various GAMT
mutations have been reported (64, 65). GAMT deficiency can
lead to severe early epileptic encephalopathy and a range of
developmental, behavioral, and motor disorders. Approximately
50% of patients develop seizures, which are the second most
common symptom in GAMT deficiency. The most common
types of epilepsy reported include febrile convulsions, generalized
tonic-clonic seizures, and myoclonic seizures (63). CT1 defect is
a relatively common X-linked disease due to SLC6A8 mutation.
Intellectual disability and epilepsy are common in CT1 defect,
and the types of seizures include febrile, myoclonic, generalized
tonic-clonic seizures; convulsive status epilepticus, and partial
seizures with secondary generalization (63, 65). Oral creatine
supplementation was shown to effectively improve the clinical
symptoms of disorders of creatine biosynthesis (66). Treatment
for GAMTdeficiency that corrects creatine depletion and reduces
the accumulation of the enzyme product guanyl acetic acid
(GAA) can be successful (64, 67). Most evidence suggests that
creatine supplementation is not effective in patients with CT1
defect, and conventional antiepileptic drugs could control well
epilepsy in CT1 defect (68).

Mitochondrial Encephalomyopathies
Traditionally, mitochondrial diseases refer to a group of
hereditary disorders in which mitochondrial DNA (mtDNA)
or nuclear DNA (nDNA) deficiencies cause oxidative
phosphorylation dysfunction of the mitochondrial respiratory
chain (69). Mitochondrial encephalomyopathies are the most
serious mitochondrial disease involving the brain and muscles.
Myopathy, encephalopathy, lactate acidosis, and stroke-like

episodes (MELAS), myoclonus epilepsy and ragged red fibers
(MERRF), and polymerase gamma (POLG)-related disease are
the three most common mitochondrial encephalomyopathies
and are closely associated with epilepsy (70). In MELAS, epilepsy
is one of the most frequent and early onset symptoms that
mainly occurs in the group of patients with stroke-like lesions,
and seizures are often accompanied by migraine-like headaches.
Patients with MELAS are prone to status epilepticus, which
may be the first symptom (70). Just as its name implies, patients
with MERRF are usually characterized by progressive myoclonic
seizures, and epilepsy in most patients tends to develop to
generalized tonic-clonic seizures (71). As for POLG-related
disease, it is caused by POLG defect and related to Alpers-
Hüttenlocher syndrome or to adult-onset encephalopathy,
spinocerebellar ataxia, and epilepsy (72). Myoclonic seizures
are a common and obligatory feature in both multisystemic
disorders, and epilepsy in POLG-related disease is often resistant
to drug therapy (73).

Possible Mechanism of Seizures Caused
by Metabolism Dysfunction
A common characteristic of these relatively widespreadmetabolic
disorders leading to epileptic seizures is a decrease in energy
substances, with the ultimate result being a decrease in ATP
levels. Continued severe energy crisis could lead to epileptic
seizures. The possible mechanisms are as follows. First, the
resting potential of neurons determines neuronal excitation. The
sodium-potassium pump (Na+-K+ ATPase) plays an important
role in retaining the resting potential through ATP consumption.
The function of the sodium-potassium pump will become
impaired when ATP produced in neurons decreases, which
will lead to a decrease in the absolute value of the resting
potential. The relative depolarization of neurons increases
excitability and leads to epileptic discharges (74). Second, neural
networks in the hippocampus can be inhibited by the activation
of intermediate neurons by purine receptors. ATP reduction
may reduce the inhibition effect, facilitating the spreading of
excitation in the neural network (75, 76). Furthermore, Na+-K+

ATPase dysfunction reduces the GABAergic potentials, thereby
enhancing the excitatory post-synaptic potentials and spike firing
leading to reduced inhibition and increased excitation; this is
also an important mechanism underlying hyperexcitability and
is associated with increased epilepsy sensitivity (77). Therefore,
energy metabolism dysfunction will lead to epileptic seizures,
especially for energy deficiency in normal cells.

METABOLITES AFFECT NEURONAL
EXCITABILITY

Epilepsy can cause systemic or focal metabolic changes, and some
metabolic disorders can lead to seizures. It is the metabolites
that affect the excitability of neurons. Next, we will introduce the
effects of two important metabolites on neuronal excitation.
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Lactate
Traditionally, lactate was considered a metabolic waste produced
by anaerobic glycolysis and a sign of the severity of some diseases
(49). However, a recent study suggested that lactate is the energy
substrate of some cancer or normal tissue cells, and its priority
may be higher than glucose (26). In the past two decades, lactate
was in the spotlight, as researchers focused on its metabolic role
in the brain. Besides this still debated metabolic role, lactate
could act as a signal molecule in brain cells (78). In 2008, lactate
was found to be a natural ligand for the hydrocarboxylic acid-
1 receptor [HCAR1, also named G protein-coupled receptor
(GPR) 81 receptor], a GPR primarily regulating the cAMP
signaling pathway (79). Thus, the possibility that lactate plays a
physiological and pathological role through G protein-coupled
receptors was greatly expanded. Moreover, increasing numbers
of studies have shown that lactate is a by-product of metabolism
and an important signal molecule in regulating neuronal
excitation. However, its effects on neuronal excitation in different
brain regions differ, even being completely opposite. Although
exogenous lactate was excitatory to locus coeruleus neurons,
further research showed it may act through an unknown receptor
or pathway; however, it is highly unlikely that GPR81, which was
described in the adipose tissue previously, could be responsible
for the effects on LC neurons induced by lactate (Figure 2A)
(80). Lactate over physiological levels acted as an inhibitor for
cortical neurons as it inhibited the excitability of cortical neurons
through a metabolic or a GPR81-mediated pathway (Figure 2B)
(81–83). Exogenous lactate may also act as an inhibitor in
hippocampal neurons. According to a recent research, exogenous
lactate induced outward currents mediated by G protein–gated
inwardly rectifying potassium(GIRK) through activating GPR81,
resulting in hyperpolarization and epileptiform firing decreasing
in the subicular neurons of hippocampal slices (Figure 2C)
(84). Furthermore, lactate could regulate some ion channels
by decreasing pH. Lactate increases TREK1 channel activity
by reducing intracellular pH (86), and reduced the damage to
neurons caused by hyperexcitation. However, acid-sensing ion
channel-1a (ASIC1a) is sensitive to extracellular pH and regulates
neuronal excitation (Figure 2D). It was revealed that ASIC1a
on inhibitory interneurons is activated by reducing extracellular
pH and could terminate seizures (85). Lactate as a substrate
for energy metabolism affects neuronal excitation. The latter
will be explained in section Control of Epilepsy by Regulating
Metabolic Pathways.

In sum, lactate can affect neuronal excitation as a signal
molecule. However, its physiological concentration is not
sufficient to activate the known GPR81 receptor (78) and its
direct effect on epilepsy as a signal molecule is uncertain.

ATP
ATP is the universal energy currency of life. However, it is
an important signaling molecule involved in apoptosis (87)
and autophagy (88). ATP in the nervous system is involved in
ischemia, epilepsy, Parkinson’s disease, infection, amyotrophic
lateral sclerosis, Alzheimer’s disease, etc (89). As a signal
molecule, ATP plays an important role in affecting neuronal
excitation through intracellular or extracellular pathways. The

intracellular pathway regulates the excitability of neurons mainly
by regulating the opening of ATP-sensitive potassium (KATP)
channels. A KATP channel opens when ATP levels are decreased,
potassium ion outflows, and the cell membrane becomes
hyperpolarized, leading to neuronal excitation decrease (90).
Studies have shown that epilepsy treatment by modulating
metabolism mainly acted through this intracellular ATP/KATP

signaling pathway (13, 91). Regarding the extracellular pathway,
ATP derived exogenously or from glia is a widely distributed
cell-to-cell signaling molecule in the brain. It is the endogenous
ligand of purine receptors (P2Xs, P2Ys). The P2XRs receptors
may mediate chronic neuromodulation of the entire nervous
system by acting on glia, especially on astrocytes (92). Thus, the
scope of its impact is larger, and its specific role is unclear. While
the role of ATP in activating P2Ys receptors is clear, extracellular
ATP could activate the intermediate neurons mediated by P2Y1
receptors in the hippocampus (76). Therefore, extracellular ATP
acts as an inhibitor in the hippocampal neuronal network (75).
Theoretically speaking, activation of interneurons contributes
to inhibition of the excitability of the neural network and,
thus, reduces seizures, but the anti-epileptic effect of targeting
purine receptors is uncertain. Simultaneously, extracellular ATP
is unstable and easy to be decomposed to adenosine (93). In terms
of extracellular pathways, ATPergic signaling is complex and its
role in epilepsy remains unclear.

CONTROL OF EPILEPSY BY REGULATING
METABOLIC PATHWAYS

Epilepsy treatment by inhibiting metabolism may originate from
the antiepileptic effect of the ketogenic diet, which mimics a
state of starvation or calorie restriction and regulates neuronal
excitation via energy metabolismmodulation (94, 95). Therefore,
avenues of treating epilepsy by targeting metabolism are opened.

Inhibiting Glycolysis to Reduce Seizures
In section Glycolysis Is Essential for Brain/Neuronal Function,
we discussed the importance of glycolysis in maintaining
neuronal function. Glycolysis may preferentially increase when
the brain is in a certain pathological state, such as seizures.
Inhibition of glycolysis reduces abnormal neuronal activity.
2-Deoxy-d-glucose (2-DG), a typical glycolysis inhibitor that
can significantly reduce glucose uptake and glycolysis (96),
has exhibited antiepileptic effects in several animal models
(11, 91). The mechanisms of glycolysis inhibitor 2-DG in
reducing epileptic seizures vary. First, 2-DG could activate
the KATP channel (91), an inward rectifier potassium channel,
which is sensitive to and regulated by intracellular ATP
concentration. High and lowATP concentration in the cytoplasm
inhibits and opens KATP channels, respectively, resulting in
hyperpolarization of the neuronal cell membrane by potassium
ion outflow and decreasing neuronal excitation. Thus, it
plays a role in inhibiting epilepsy (91, 97). Second, in a
rat kindling model of temporal lobe epilepsy, 2-DG reduced
seizure progression by reducing the expression of brain-
derived neurotrophic factor (BDNF) and its receptor, TrkB;
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FIGURE 2 | Lactate affects neuronal excitation as a signal molecule in the brain. Lactate (LAC) affects neuronal excitation as a signal molecule in the brain. (A)

Exogenous lactate was excitatory to locus coeruleus (LC) neurons via an unknown receptor-mediated pathway (80). (B) Lactate over physiological levels acted as an

inhibitor for cortical neurons a GPR81-mediated pathway (81–83). (C) Exogenous lactate (over physiological levels) induced an outward current mediated by G

protein–gated inwardly rectifying potassium (GIRK) through activating GPR81, resulting in hyperpolarization and epileptiform firing decrease in the subicular neurons

(84). (D) Lactate could regulate acid-sensing ion channel−1a (ASIC1a) by decreasing pH to Stimulate inhibitory neuronal excitation (85). AC, adenylate cyclase; PKA,

protein kinase A; cAMP, cyclic adenosine monophosphate.

this reduced expression is mediated by the decreasing of
transcription factor NRSF caused by 2-DG administration (11).
Previous studies have shown that conditional TrkB knockout
(98) or BDNF signaling pathway reduction through transgenic
technology (99) could reduce seizures in kindled animal models.
These mechanisms can recur neuronal circuits that promote
hyperexcitability (100), thus reducing the BDNF pathway, may

have antiepileptic effects. In addition, 2-DG promotes the
production of nicotinamide adenine dinucleotide phosphate
(NADPH) by enhancing pentose phosphate pathway (PPP)
metabolism in cells. The higher concentration of NADPH will
potentiate the biosynthesis of neurosteroids via enhancing the
activity of 5α-reductase (5α-R), a crucial enzyme catalyzing
the steroid precursors into neurosteroids (101), resulting
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FIGURE 3 | Antiepileptic mechanism of glycolysis inhibitor 2-deoxyglucose. As a classical glycolysis inhibitor, 2-deoxyglucose (2-DG) would inhibit the energetics of

glucose and decrease the ATP. Glycolysis reduction will enhance the pentose phosphate pathway (PPP) metabolism and resulting in GABAergic strength (91). On the

other hand, 2-DG reduces epilepsy progression by NRSF–dependent metabolic regulation of BDNF and TrkB (11). Glc, glucose; G-6-P, glucose-6-phosphate;

2-DG-6-P, 2-deoxyglucose-6-phosphate; NRSF, neural restrictive silencing factor; BDNF, brain-derived neurotrophic factor; TrkB, tyrosine kinase receptor B; 5α-R,

5α-reductase.

in potentiating the GABAergic tonic inhibition (91, 101)
(Figure 3).

The antiepileptic effect of 2-DG by inhibiting glycolysis has
also been confirmed by other studies. The Bcl-2-associated
death promoter (BAD) is a member of the BCL-2 family
with dual functions in proapoptosis and glucose metabolism.
Gene knockout or alteration of BAD will impair glucose
metabolism in brain cells and activate the ATP-sensitive
KATP channels on the neuronal membrane, leading to an
induced resistance to seizures (12, 102). A high dose of
Fructose-1,6-Bisphosphate (F1, 6BP) was also demonstrated to

suppress seizures in animals [(103–106)]. F1, 6BP becomes
an inhibitor of PFK1, a rate-limiting enzyme in glycolysis.
Therefore, excessive exogenous F1,6BP may play an inhibitory
role in neurons (103). In conclusion, glycolysis inhibition,
such as by 2-DG, is a promising treatment for epilepsy [(107,
108)].

Targeting Lactate Dehydrogenase to Treat
Epilepsy
Lactate dehydrogenase (LDH), one of the most abundant
proteins in the cell cytoplasm, is a type of enzyme widely

Frontiers in Neurology | www.frontiersin.org 8 December 2020 | Volume 11 | Article 592514

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Fei et al. Metabolic Control of Epilepsy

existing in tissues. LDH is known as a biomarker of disease
and tissue damage (109, 110). Increased LDH activity was
found in some epileptic kindling models (111). It catalyzes the
mutual conversion between lactate and pyruvate. Pyruvate is
the final product of aerobic glycolysis and generates ATP in
the mitochondria. Presently, lactate is no longer regarded as
metabolic waste, as it fuels various tissues even under fully
aerobic conditions (26, 27). Lactate in the brain acts as an energy
substrate through the ANLS (discussed in section Metabolic
Features in the Brain). Glucose derived from glycogenolysis or
peripheral circulation is metabolized by glycolysis to produce
pyruvate or lactate. Pyruvate, which is the end product of
glycolysis, can be utilized by the mitochondria of astrocytes to
generate ATP. Conversely, it can be transformed into lactate
by LDH. Then, the lactate produced in astrocytes is shuttled
from astrocytes to the adjacent neurons by monocarboxylic
acid transporters (MCTs). After shuttling into the neurons,
lactate is again converted to pyruvate by LDH, and pyruvate
could be used by the mitochondria to feed the tricarboxylic
acid cycle. ATP is produced through oxidative phosphorylation
within the mitochondrial respiratory chain (MRC), and then
released into the cytoplasm (45). LDH plays a crucial role in
this pathway, and its inhibition will interfere with the ANLS
to decrease ATP production in neurons. A high concentration
of ATP in the cytoplasm inhibits KATP channels, while KATP

channels open when intracellular ATP concentration decreases,
resulting in hyperpolarization of neuronal-cell membrane by
potassium ion outflow and decreasing neuronal excitation. Thus,
LDH inhibits neuronal discharges and plays a role in inhibiting
epilepsy (97) (Figure 4). Inhibition of LDH by oxamate had
been demonstrated in mice. Another study found that stiripentol
was also an LDH inhibitor, and LDH inhibition may be one of
its important antiepileptic mechanisms (13). Interestingly, the
mTOR pathway, i.e., an important signaling pathway involved
in epilepsy, was also inhibited by LDH inhibitor oxamate (112,
113). In addition, activation of the mTOR pathway increased
the expression of LDH (114, 115). Furthermore, the rapamycin,
an classical mTOR inhibitor, could decrease the activity and
expression of LDH, resulting in reduced lactate concentration
(116, 117). Drugs targeting mTOR, such as rapamycin, can
inhibit epileptic seizures in type II focal cortical dysplasia
(FCD II) (118). Therefore, LDH may be a promising potential
target for the treatment of epilepsy, and these discoveries have
contributed to broaden our understanding of epilepsy and to
develop new therapies.

Dietary Therapy in Epilepsy
The history of dietary therapy for epilepsy is quite long. The
ketogenic diet is a high-fat and low-carbohydrate diet structure
and is considered the oldest dietary therapy initially used
to treat epilepsy (119). Its effectiveness in the treatment of
epilepsy, especially for some types of intractable epilepsy in
children has been demonstrated (120); compared to children
randomized to usual care, children randomized to KDs were
three times more likely to attain seizure freedom and nearly
six times more likely to attain a 50% or greater reduction in
seizure frequency (121). Subsequently, various dietary options

for epilepsy were developed, including the medium-chain
triglyceride ketogenic diet (MCT-KD), modified Atkin’s diet
(MAD), and low glycemic index treatment. These modified
ketogenic diets have an efficacy close to that of the classical
ketogenic diet (122). In addition, diet therapy was also evaluated
for adjuvant treatment of obesity, type 2 diabetes, and some
cancers (123–125). Moreover, diet therapy was attempted in
a wide variety of neurological diseases, including Alzheimer’s
disease, multiple sclerosis, Parkinson’s disease, and brain tumors
(126), showing that it is widely potential. However, the most
widely used and effective field of ketogenic diet is in the treatment
of epilepsy.

As the name implies, ketogenic diet can produce ketone
bodies in vivo: acetoacetic acid, beta-hydroxybutyric acid, and
acetone. Studies have also shown that ketone bodies may directly
exert pharmacological effects (127). The ketone body acetoacetate
inhibited the transport of glutamate into synaptic vesicles by
vesicular glutamate transporter 2, thus decreasing glutamate
release into the synaptic cleft (128). Glutamate is a major
excitatory amino acid in the brain; its signaling is inhibited
by ketone bodies potentially reducing neuronal excitation and
epilepsy. Conversely, ketone bodies can reduce the expression
of adenosine kinase and enhance adenosine A1 receptors (A1R)
and mediate the signaling pathway activated by adenosine
(129), A1R activation showed anticonvulsant effects in mice and
rats (130). Other studies have reported that the antiepileptic
effect of the KD was due to metabolic changes caused by
the conversion of energy substrates. When converting from a
normal diet to a ketogenic diet, blood glucose levels decreased
and ketone body concentrations significantly increased (131).
At this time, the main energy substrates of the brain were
converted from blood glucose to ketone bodies. The ATP
production of neurons was derived from glycolysis decreases,
which may lead to KATP channel activation, neuronal cell-
membrane hyperpolarization, and excitability decrease (132)
(Figure 5). Even in the presence of sufficient glucose, ketone
bodies could inhibit neuronal firing through opening the KATP

channels (133).
Fats in the traditional ketogenic diet are mainly long-chain

triglycerides. To improve the traditional ketogenic diet, an
MCT KD derived from the traditional ketogenic diet was first
proposed in 1971 (134). The antiepileptic effect is similar to
that of the traditional ketogenic diet (135, 136). The novelty
is that the therapeutic effect of MCT KD may be due to the
decanoic acid produced by the decomposition of medium-
chain triglycerides rather than by ketone bodies. Decanoic acid
has a strong direct inhibitory effect on glutamate receptor α-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)
(137). The AMPA receptor is an excitatory ionotropic glutamate
receptor mediating the bulk of the generation of excitatory
post-synaptic potentials (EPSPs). EPSPs are responsible for
synchronous discharges in epileptic foci, and thus AMPA
receptors are critically important in the spread of epileptic
discharges across brain regions (138). A highly selective AMPA
receptor antagonist, perampanel (Pyramidopane, trade name
Fycompa), has been promoted in the United States and the
European Union as an antiepileptic drug (139). Decanoic acid
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FIGURE 4 | The astrocyte-neuron lactate shuttle and antiepileptic mechanism of LDH inhibition. According to the astrocyte-neuron lactate shuttle, lactate

dehydrogenase (LDH) plays a key role in the energy supply of neurons. Inhibition of LDH would lead to the decrease of ATP in neurons, thus activating KATP channels

on the neural membrane and potassium efflux, finally making the neural membrane hyperpolarization (13). Glc, glucose; Glut, glucose transporter; Pyr, pyruvate; Gly,

glycogen; Lac, lactate; TCA, tricarboxylic acid cycle; MCT, monocarboxylic acid transporter.

produced by MCT KD directly antagonizes AMPA receptors
and produces antiepileptic effects in animals, broadening our

understanding of the possible antiepileptic mechanism of the

ketogenic diet.
Diet therapy is an essential metabolic regulation for

patients with epilepsy (95). Although dietary therapy has not

fundamentally changed the status quo of epilepsy treatment, it
still provides an alternative and beneficial treatment option.More

importantly, it may provide inspiration for novel treatments
for epilepsy.

STATUS AND FUTURE OF ANTIEPILEPTIC
DRUGS

Drug therapy plays a dominant role in epilepsy treatment.
Surgical treatment can be used for epilepsy caused by definite
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FIGURE 5 | Ketone bodies activate KATP channels by inhibiting glycolysis. KET, ketone body; Pyr, pyruvate; Ace-CoA, acetyl coenzyme A.

etiology and lesions, and diet therapies are usually used for
children with intractable epilepsy. Some new therapies are
emerging, such as neuromodulation therapy (140). However,
the overall effect is not satisfactory; epilepsy cannot be
effectively controlled in approximately one-third of patients.
Although the new drugs are more advantageous in terms
of safety and side effects, this does not appear to improve
the seizure control rate (141). Antiepileptic drugs have been
developed to the third generation, and more than 20 types of
drugs have been used in the clinic. However, the targets or
mechanisms of existing drugs are mainly focused on inhibiting
excitatory NMDA receptors, voltage-dependent ion-channels, or
enhancing GABAergic activity (142) (Table 1). Levetiracetam
and brivaracetam bring us to a whole new antiepileptic target-
synaptic vesicle protein 2A (SV2A). They display a high and
selective affinity for SV2A in the brain and thus inhibit

synaptic transmission, which may have antiepileptic effects (143,
144). However, the precise mechanism by which levetiracetam
and brivaracetam exert their antiepileptic activity is unknown.
Another marketed antiepileptic drug, stiripentol, which came on
the market in 2002, was considered a GABA potentiation and
sodium channel blocker (145). Targets for epilepsy treatment
appear to lack diversity and innovation. However, stiripentol
was proven to be a lactate dehydrogenase inhibitor in 2015. Its
antiepileptic effect might be partly due to its metabolic-related
enzyme inhibitory effect (13). This provided strong evidence
for epilepsy controlled by metabolic modulation. In addition, 2-
deoxyglucose, as a glycolysis inhibitor, has shown promising anti-
epileptic effects in many pre-clinical studies (146), highlighting
the prospect of controlling epileptic seizures by regulating
metabolism. Research on the treatment of epilepsy has been
confined to certain types of targets, such as ion channels and
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TABLE 1 | Mechanisms of commonly used antiepileptic drugs.

AEDs Main mechanisms of action

Carbamazepine, Oxcarbazepine,

Lamotrigine, Phenytoin, Zonisamide,

Rufinamide, Eslicarbazepine acetate

Sodium channel actions

Gabapentin, Pregabalin Calcium channel blocker

Ethosuximide T-type calcium channel blocker

Retigabine (ezogabine) Potassium channel activator

Phenobarbital, Primidone, Diazepam,

Clonazepam, Clobazam

GABA potentiation

Perampanel Glutamate (AMPA) receptor antagonist

Stiripentol GABA potentiation and Sodium channel

blocker

Levetiracetam, Brivaracetam SV2A modulation

Valproate, Felbamate, Topiramate Multiple: GABA potentiation

Glutamate receptor (NMDA)inhibition

Sodium channel and Calcium

channel blockade

Mechanism was reviewed in (142) except for brivaracetam (143).

excitatory or inhibitory receptors of certain neuronal membranes
for a long time. Epilepsy therapy calls for new targets, and
metabolic pathway-related targets deserve more attention.

CONCLUSION

Metabolism is the basis of brain function. For a long time,
epilepsy has been regarded as a disease characterized by
overexcitation of neural networks. The high metabolism of
neurons provides energy for the hyperexcitation of neural
networks. Neuroimaging and neurobiochemical findings
have also confirmed that epileptic foci have high metabolic
characteristics, and some metabolic disorders will lead to
epileptic seizures. These fully illustrate the close relationship
between epilepsy and metabolism. Epilepsy has even been
defined as a metabolic disease. Recognizing that the ketogenic
diet, an ancient dietary therapy for epilepsy, may be essentially
a metabolic regulation method, suggesting that epilepsy may be
controlled by targeted metabolism pathways. Drugs that reduce

metabolisms, such as 2-deoxyglucose and stiripentol, have
antiepileptic effects, showing the prospects of metabolic control
of epilepsy. Therefore, the relationship between metabolism
and epilepsy may be bi-directional. Hypometabolism could
initiate convulsions or epilepsy, such as hypoglycemia, GLUT1
deficiency, and mitochondrial dysfunction. Supplementing
neuronal energy is an effective treatment in such conditions.
However, there is a relatively high metabolic and energy-
consuming state in the epileptic seizure period caused by various
primary pathological changes; thus, reducing the metabolic
level during epileptic seizures is helpful for epilepsy control.
Epilepsy therapy calls for more effective new targets, and the
metabolic pathway may be a promising alternative. Epilepsy
control by metabolism regulation may provide the means to
explore new targets of epilepsy treatment. Thus, the treatment
of epilepsy by metabolic modulation is a rising panacea for
epilepsy. In the future, we need to further elucidate the metabolic
processes taking place in the highly complex brain as well as
metabolic changes under pathological conditions in order to
locate key targets.
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