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Abstract: Hypertension may originate in early life. Reactive oxygen species (ROS) generated due to
the exposure of adverse in utero conditions causes developmental programming of hypertension.
These excessive ROS can be antagonized by molecules which are antioxidants. Prenatal use of natural
antioxidants may reverse programming processes and prevent hypertension of developmental origin.
In the current review, firstly we document data on the impact of oxidative stress in hypertension
of developmental origin. This will be followed by effective natural antioxidants uses starting
before birth to prevent hypertension of developmental origin in animal models. It will also discuss
evidence for the common mechanisms underlying developmental hypertension and beneficial effects
of natural antioxidant interventions used as reprogramming strategies. A better understanding of
the reprogramming effects of natural antioxidants and their interactions with common mechanisms
underlying developmental hypertension is essential. Therefore, pregnant mothers and their children
can benefit from natural antioxidant supplementation during pregnancy in order to reduce their risk
for hypertension later in life.

Keywords: antioxidant; arginine; developmental origins of health and disease (DOHaD); hypertension;
melatonin; N-acetylcysteine; nitric oxide; oxidative stress; reactive oxygen species; resveratrol

1. Introduction

One in three adults across the globe have high blood pressure (BP), known as hypertension [1].
Despite recent advances in the treatment of hypertension, raised BP remains one of the leading
causes of morbidity worldwide [2]. Growing evidence indicates that the origins of hypertension
can begin in early life [3–5]. This theory, now called “developmental origins of health and disease
(DOHaD)”, is based on observing the developing fetus, if in utero exposed to an adverse environment,
increases risk for developing adult diseases later in life [6]. In order to reduce the global burden of
hypertension, we need to ascertain the mechanisms underlying the early origins of hypertension and
provide strategies for early detection and intervention.

The imbalance between reactive oxygen species (ROS) production and antioxidants defense
system causes oxidative stress and plays a pathophysiological role in fetal programming [7].
Cumulative evidence has shown that oxidative stress, experienced early in life, increases a later
risk of hypertension [8–10]. Conversely, the use of antioxidant supplements during the period of
developmental plasticity [10–12] may be beneficial in reversing the programming processes to prevent
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adult diseases, also known as reprogramming [4,13]. Therefore, this review aims to address the main
scientific findings on the interplay among oxidative stress, natural antioxidants, and developmental
programming in hypertension.

Particular interest in this review is that we highlighted the use of natural antioxidants as
reprogramming strategies, in order to prevent developmental hypertension via reversing programming
processes. The PubMed/MEDLINE database was used to identify related peer-reviewed journal articles
published in English. Additional studies were selected based on references from eligible articles. We used
different combinations of keywords as follows: “antioxidants”, “hypertension”, “blood pressure”,
“developmental programming”, “DOHaD”, “free radicals”, “offspring”, “melatonin”, “mother”,
“nitric oxide”, “oxidative stress”, “pregnancy”, “progeny”, “reprogramming”, “reactive oxygen
species”, “reactive nitrogen species”, “resveratrol”, and “vitamin”. The last search was conducted on
15 September 2020.

2. Oxidative Stress and Developmental Programming of Hypertension

2.1. Oxidative Stress in Pregnancy

Fetal oxygen requirements vary throughout pregnancy [7]. During the first trimester, fetal oxygen
levels are low. Low physiological oxygen tension is required for early differentiation and organogenesis.
The increased oxygen levels that occur as a result of the establishment of the fetal–placental circulation
allows rapid gain of fetal weight during the second and third trimesters [14]. Many maternal conditions
cause increased oxidative stress, such as diabetes, obesity, preeclampsia, and smoking [7,8]. Accordingly,
ROS plays dual behavior in pregnancy, as produced at high level negatively affects fetal development
while moderate amount is essential to allow for the normal embryonic and fetal growth [7].

The formation of superoxide anion (O2
−) leads to a cascade of other ROS, like hydrogen peroxide

(H2O2) and hydroxyl anion (OH−). Several enzymes such as nicotinamide adenine dinucleotide
phosphate (NADPH) oxidases, xanthine oxidase, cyclo-oxygenases, and lipoxygenases can produce
superoxide radical [15]. Superoxide radical can also be generated by uncoupled nitric oxide synthases
(NOS) in certain conditions, like inhibition by asymmetric dimethylarginine (ADMA) [16]. Generally,
NOS produces nitric oxide (NO), a free radical, as well as a vasodilator. The NO has dual role in
pregnancy which depends on its concentration. High levels of NO can interact with superoxide to
form peroxynitrite (ONOO−), a most injurious reactive nitrogen species (RNS) with pronounced
deleterious effects. Conversely, maintained physiological level of NO is required during healthy
normal pregnancy [17]. The excessive ROS can be neutralized by enhancing defense antioxidant
system, including superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione
reductase (GR) [18]. In compromised pregnancy, oxidative damage occurs because of the failure of
defensive antioxidant mechanisms to respond to the excessive ROS, leading to DNA damage, lipid
peroxidation, protein modification, and mitochondrial dysfunction [18]. These processes are involved
in the pathogenesis of developmental programming of hypertension. The main pathways producing
ROS/RNS and key defensive antioxidant enzymatic systems are illustrated in Figure 1.
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Figure 1. Schematic representation of the pathways producing reactive oxygen species (ROS)/reactive 
nitrogen species (RNS) and key defensive antioxidant enzymatic systems. Several enzymes produce 
superoxide radical (O2−), such as NADPH oxidase, xanthine oxidase, cyclo-oxygenase, lipoxygenase, 
and uncoupled nitric oxide synthase (NOS). NOS catalyzes L-arginine (L-Arg) to produce nitric oxide 
(NO) and L-citrulline (L-Cit). While being inhibited by asymmetric dimethylarginine (ADMA), 
uncoupled NOS generates superoxide instead of NO. High level of NO can interact with superoxide 
to form peroxynitrite (ONOO−). Red dashed arrow lines indicate O2−, hydrogen peroxide (H2O2), 
hydroxyl anion (OH−), and peroxynitrite (ONOO−) are key elements of ROS/RNS. Conversely, 
excessive ROS/RNS can be counterbalanced by various antioxidant enzymes, such as superoxide 
dismutase (SOD), catalase, glutathione peroxidase (GPx), and glutathione reductase (GR). GPx 
converts reduced glutathione (GSH) into oxidized glutathione (GSSG). The generated GSSG is 
reduced to GSH with consumption of NADPH by GR. 

2.2. Developmental Programming of Hypertension 

Important support for the developmental programming of hypertension came from human and 
experimental studies. Several risks associated with high BP of offspring have been identified in 
mother-child cohorts, including maternal undernutrition [19], maternal obesity [20], short term 
breastfeeding [21], maternal smoking [22], gestational hypertension [23], low vitamin D consumption 
[24], and excessive postnatal weight gain [25]. A meta-analysis of 1342 preterm or very low birth 
weight (VLBW) and 1738 full term individuals reported that those born preterm or VLBW have 
modestly higher BP later in life [26]. 

Although, human observational studies cannot establish direct cause-and-effect relationships 
between adverse maternal environmental factors and offspring hypertension, where emerging 
evidence from animal studies have confirmed the types of prenatal insults that drive disease 
programming and identify potential mechanisms. As previously reviewed by us and others [5,27–
29], maternal malnutrition, maternal illness like diabetes, perinatal hypoxia, environmental 
chemicals, toxins, and the use of medication in pregnancy have all been reported to affect 
developmental programming and increase the risk for developing hypertension in adulthood. 

Current evidence suggests that there may be common mechanisms underlying hypertension of 
developmental origin. Animal models have provided significant insight into the molecular 
mechanisms, such as oxidative stress, dysregulation of the renin-angiotensin system (RAS), impaired 
nutrient-sensing signals, NO deficiency, and gut microbiota dysbiosis [5,27–29]. Among them, 
oxidative stress plays a crucial role and is closely linked to other important mechanisms involved in 
programmed hypertension (Figure 2). 

Figure 1. Schematic representation of the pathways producing reactive oxygen species (ROS)/reactive
nitrogen species (RNS) and key defensive antioxidant enzymatic systems. Several enzymes produce
superoxide radical (O2

−), such as NADPH oxidase, xanthine oxidase, cyclo-oxygenase, lipoxygenase,
and uncoupled nitric oxide synthase (NOS). NOS catalyzes L-arginine (L-Arg) to produce nitric
oxide (NO) and L-citrulline (L-Cit). While being inhibited by asymmetric dimethylarginine (ADMA),
uncoupled NOS generates superoxide instead of NO. High level of NO can interact with superoxide
to form peroxynitrite (ONOO−). Red dashed arrow lines indicate O2

−, hydrogen peroxide (H2O2),
hydroxyl anion (OH−), and peroxynitrite (ONOO−) are key elements of ROS/RNS. Conversely, excessive
ROS/RNS can be counterbalanced by various antioxidant enzymes, such as superoxide dismutase
(SOD), catalase, glutathione peroxidase (GPx), and glutathione reductase (GR). GPx converts reduced
glutathione (GSH) into oxidized glutathione (GSSG). The generated GSSG is reduced to GSH with
consumption of NADPH by GR.

2.2. Developmental Programming of Hypertension

Important support for the developmental programming of hypertension came from human
and experimental studies. Several risks associated with high BP of offspring have been
identified in mother-child cohorts, including maternal undernutrition [19], maternal obesity [20],
short term breastfeeding [21], maternal smoking [22], gestational hypertension [23], low vitamin D
consumption [24], and excessive postnatal weight gain [25]. A meta-analysis of 1342 preterm or very
low birth weight (VLBW) and 1738 full term individuals reported that those born preterm or VLBW
have modestly higher BP later in life [26].

Although, human observational studies cannot establish direct cause-and-effect relationships
between adverse maternal environmental factors and offspring hypertension, where emerging evidence
from animal studies have confirmed the types of prenatal insults that drive disease programming
and identify potential mechanisms. As previously reviewed by us and others [5,27–29], maternal
malnutrition, maternal illness like diabetes, perinatal hypoxia, environmental chemicals, toxins, and the
use of medication in pregnancy have all been reported to affect developmental programming and
increase the risk for developing hypertension in adulthood.

Current evidence suggests that there may be common mechanisms underlying hypertension of
developmental origin. Animal models have provided significant insight into the molecular mechanisms,
such as oxidative stress, dysregulation of the renin-angiotensin system (RAS), impaired nutrient-sensing
signals, NO deficiency, and gut microbiota dysbiosis [5,27–29]. Among them, oxidative stress plays a
crucial role and is closely linked to other important mechanisms involved in programmed hypertension
(Figure 2).
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Figure 2. Schematic illustration of the impact of oxidative stress and natural antioxidants on 
hypertension of developmental origin. Red arrow indicates early-life insults in pregnancy causes 
increased reactive oxygen species (ROS)/reactive nitrogen species (RNS) and fetal programming, 
consequently resulting in hypertension in adult offspring. Oxidative stress acts as a central hub 
through which mechanisms contributing to programming hypertension are interconnected. These 
mechanisms include dysregulated the renin-angiotensin system (RAS), nitric oxide (NO) deficiency, 
gut microbiota dysbiosis, and impaired nutrient-sensing signals. Conversely, natural antioxidants can 
serve as reprogramming strategies to reverse the programmed processes and prevent the 
developmental programming of hypertension, which is indicated by green T-bar lines. 

2.3. The Impact of Oxidative Stress in Hypertension of Developmental Origin 

Several lines of evidence support the role of oxidative stress in the developmental programming 
of hypertension. First, cumulative evidence indicates that hypertension, programmed by various 
early-life insults, are associated with oxidative stress, as reviewed elsewhere [5,10]. These adverse 
perinatal environmental conditions include maternal caloric restriction [30], maternal diabetes [31], 
maternal nicotine exposure [32], ethanol consumption [33], preeclampsia [34], high-fat diet [35], high-
fructose consumption [36], high-salt diet [37], methyl-donor diet [38], iron deficient diet [39], zinc 
deficient diet [40], magnesium deficient diet [41], prenatal glucocorticoid exposure [42], prenatal 
hypoxia [43], and exposure to environmental chemicals [44,45]. Second, there are reports that ADMA 
levels, a NOS inhibitor and ROS inducer, are associated with the elevation of BP in various 
developmental animal models [30,31,34]. Conversely, early interventions lowering ADMA levels and 
restoring NO-ROS balance can protect adult offspring against hypertension [10]. Another line of 
evidence comes from studies of antioxidant system and oxidative stress damage markers. Our 
previous study reported that adult offspring born to dams that have received low protein diet 
developed hypertension, which was associated with decreased antioxidant glutathione level and 
increased 8-isoprostaglandin F2α level (a biomarker of lipid peroxidation) [46]. Maternal high-fat diet 
caused raised BP in adult offspring related to increased malondialdehyde levels together with 
decreased antioxidant enzyme activities of SOD, GPx, and catalase [47]. Additionally, increased 
oxidative DNA damage marker 8-hydroxydeoxyguanosine (8-OHdG) expression has been reported 
in several models of programmed hypertension [35,38,48]. Together these observations indicate that 
oxidative stress is an important pathogenetic link for hypertension of developmental origin. 

Figure 2. Schematic illustration of the impact of oxidative stress and natural antioxidants on
hypertension of developmental origin. Red arrow indicates early-life insults in pregnancy causes
increased reactive oxygen species (ROS)/reactive nitrogen species (RNS) and fetal programming,
consequently resulting in hypertension in adult offspring. Oxidative stress acts as a central hub through
which mechanisms contributing to programming hypertension are interconnected. These mechanisms
include dysregulated the renin-angiotensin system (RAS), nitric oxide (NO) deficiency, gut microbiota
dysbiosis, and impaired nutrient-sensing signals. Conversely, natural antioxidants can serve as
reprogramming strategies to reverse the programmed processes and prevent the developmental
programming of hypertension, which is indicated by green T-bar lines.

2.3. The Impact of Oxidative Stress in Hypertension of Developmental Origin

Several lines of evidence support the role of oxidative stress in the developmental programming of
hypertension. First, cumulative evidence indicates that hypertension, programmed by various early-life
insults, are associated with oxidative stress, as reviewed elsewhere [5,10]. These adverse perinatal
environmental conditions include maternal caloric restriction [30], maternal diabetes [31], maternal
nicotine exposure [32], ethanol consumption [33], preeclampsia [34], high-fat diet [35], high-fructose
consumption [36], high-salt diet [37], methyl-donor diet [38], iron deficient diet [39], zinc deficient
diet [40], magnesium deficient diet [41], prenatal glucocorticoid exposure [42], prenatal hypoxia [43],
and exposure to environmental chemicals [44,45]. Second, there are reports that ADMA levels, a
NOS inhibitor and ROS inducer, are associated with the elevation of BP in various developmental
animal models [30,31,34]. Conversely, early interventions lowering ADMA levels and restoring
NO-ROS balance can protect adult offspring against hypertension [10]. Another line of evidence
comes from studies of antioxidant system and oxidative stress damage markers. Our previous study
reported that adult offspring born to dams that have received low protein diet developed hypertension,
which was associated with decreased antioxidant glutathione level and increased 8-isoprostaglandin
F2α level (a biomarker of lipid peroxidation) [46]. Maternal high-fat diet caused raised BP in adult
offspring related to increased malondialdehyde levels together with decreased antioxidant enzyme
activities of SOD, GPx, and catalase [47]. Additionally, increased oxidative DNA damage marker
8-hydroxydeoxyguanosine (8-OHdG) expression has been reported in several models of programmed
hypertension [35,38,48]. Together these observations indicate that oxidative stress is an important
pathogenetic link for hypertension of developmental origin.
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3. Natural Antioxidants

3.1. Natural Antioxidants and Hypertension

Antioxidants can be categorized as enzymatic antioxidants and nonenzymatic antioxidants.
The human body protects itself from the harmful effects of ROS by using enzymatic antioxidants to
modulate the free radical reactions. There are two non-enzymatic antioxidants, the natural antioxidants
and the synthetic antioxidants [49]. Given that the scope of this article is limited to the natural
antioxidants, we will not discuss the synthetic antioxidants.

Natural antioxidants are mainly coming from plants, such as vegetables, fruits, nuts, and seeds.
Antioxidants obtained from vegetables and fruits are mainly phenolic compounds, and the most
important are the polyphenols, vitamins, minerals, and flavonoids [50]. Therefore, dietary sources are
very important since they can be easily used for dietary interventions.

Randomized clinical trials employing nonpharmacological dietary interventions emphasizing
dietary antioxidant nutrients have shown notable BP-lowering results in hypertensive and normotensive
subjects [51–53]. The dietary components in these studies are high in compounds known as natural
antioxidants. As reviewed elsewhere [54], these commonly used antioxidants include Vitamins A,
C and E, L-arginine, flavonoids, coenzyme Q10, β-carotene, and α-lipoic acid. However, so far specific
natural antioxidants are not yet recommended for antihypertensive therapy due to lack of target
specificity, lack of understanding of action mechanisms, and potential interindividual variability in
therapeutic efficacy [54]. Additionally, melatonin [55], resveratrol [56], and N-acetylcysteine [57] all
have shown antihypertensive effects through antioxidant mechanisms counterbalancing excessive
ROS. Some of the natural antioxidants that have been isolated from various natural sources are shown
in the Table 1.

Table 1. Different sources of natural antioxidants.

Antioxidants Natural Sources References

Vitamin A Meat, fish, fruits, and vegetables [58]

Vitamin C Most fruits and some vegetables, particularly citrus fruits, and tomatoes [59,60]

Vitamin E Vegetables oils, nuts, broccoli, and fish [60,61]

L-arginine Meat, dairy products, eggs, nuts, and seeds [62]

Flavonoids Potatoes, tomatoes, lettuce, onions, wheat, dark chocolate, concord grapes,
and black tea [60,61]

α-lipoic acid Yeast, organ meats, spinach, broccoli, and potatoes [63]

β-carotene Kale, red paprika, spinach, parsley, tomatoes, and carrots [64]

Coenzyme Q10 Wheat bran, fish, and organ meats [60,64]

Melatonin Eggs, meat, fish, milk, nuts, seeds, cereals, peppers, tomatoes, and mushrooms [65]

Resveratrol Grapes, peanuts, cocoa, soy, and berries [66]

N-acetylcysteine Chicken, turkey, garlic, yogurt, and eggs [67]

3.2. Natural Antioxidants as Reprogramming Interventions

Despite dietary and nutritional supplements during pregnancy and lactation have been
recommended for improving maternal and newborn health and survival [68,69]. Little is known on
whether supplementing with specific natural antioxidants, starting before birth, can be beneficial
on hypertension programmed by adverse maternal conditions in humans. Here, we summarize
the knowledge available today regarding natural antioxidants used as reprogramming strategies
for developmental hypertension in various animal models [30,31,38,44,70–98], all of which are listed
in Table 2. We restricted this review to natural antioxidants applied only during pregnancy and/or
lactation which are critical periods for reprogramming strategies to prevent the development of
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hypertension. So far, many natural antioxidants have shown benefits on prevention of developmental
hypertension, such as amino acids, vitamins and minerals, melatonin, resveratrol, and N-acetylcysteine.
In this review, rats are the commonly used small animal models. Rats develop rapidly during infancy
and reach sexual maturity at approximately 5–6 weeks of age. In adulthood, one human year almost
equals two rat weeks [99]. Accordingly, Table 2 lists the outcomes determined in rats ranging from 4 to
50 weeks of rat age, which allows calculations to extract data for the specific age group that can be
translated to humans. However, very limited information is available regarding large animals to study
the role of natural antioxidants on hypertension of developmental origin.
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Table 2. Animal models dealing with natural antioxidants for hypertension reprogramming.

Natural Antioxidants Animal Models Intervention Period Species/
Gender

Age at BP
Determination (week) Beneficial Effects Ref.

Amino acids

3% L-glycine in chow Maternal low protein diet Pregnancy and lactation Wistar/M 4 Prevented
hypertension [70]

0.25% L-citrulline in drinking water Maternal STZ-induced diabetes Pregnancy and lactation SD/M 12 Prevented
hypertension [31]

0.25% L-citrulline in drinking water Maternal L-NAME
exposure Pregnancy and lactation SD/M 12 Prevented

hypertension [71]

0.25% L-citrulline in drinking water Prenatal dexamethasone
exposure Pregnancy and lactation SD/M 12 Prevented

hypertension [72]

0.25% L-citrulline in drinking water Genetic hypertension 2 weeks before until 6
weeks after birth SHR/M & F 50 Prevented

hypertension [73]

3% L-taurine in drinking
water

Maternal highsugar
diet Pregnancy and lactation SD/F 8 Prevented

hypertension [74]

3% L-taurine in drinking
water Maternal STZ-induced diabetes Pregnancy and lactation Wistar/M & F 16 Prevented

hypertension [75]

L-tryptophan 200 mg/kg BW/day via
oral gavage

Maternal adenosine-induced
CKD Pregnancy SD/M 12 Prevented

hypertension [76]

BCAA-supplemented diets Maternal caloric
Restriction Pregnancy SD/M 16 Prevented

hypertension [77]

Amino acids plus vitamins

L-arginine, L-taurine, Vitamins C and E Genetic hypertension 2 weeks before until 8
weeks after birth SHR/M& F 9 Prevented

hypertension [78]

L-arginine, L-taurine, Vitamins C and E Genetic hypertension 2 weeks before until 4
weeks after birth FHH/M & F 36 Prevented

hypertension [79]

L-arginine, L-taurine, Vitamins C and E Genetic hypertension 2 weeks before until 8
weeks after birth SHR/M & F 50 Prevented

hypertension [80]



Antioxidants 2020, 9, 1034 8 of 22

Table 2. Cont.

Natural Antioxidants Animal Models Intervention Period Species/
Gender

Age at BP
Determination (week) Beneficial Effects Ref.

Vitamins

Vitamin C, E, folic acid and selenium Maternal caloric
Restriction Pregnancy Wistar/

M & F 16 Prevented
hypertension [81]

Vitamin C 350 mg/kg/day i.p. daily Prenatal LPS
Exposure Gestational day 8 to 14 SD/M 12 Prevented

hypertension [82]

5 mg/kg folate in chow
Maternal

low protein
diet

Pregnancy Wistar/M 15 Prevented
hypertension [83]

α-tocopherol 350 mg/kg/day via gavage Prenatal LPS
Exposure Gestational day 13 to 20 Wistar/M 28 Prevented

hypertension [84]

Melatonin

0.01% melatonin in drinking water Maternal caloric restriction Pregnancy and lactation SD/M 12 Prevented
hypertension [30]

0.01% melatonin in drinking water Maternal methyl-donor diet Pregnancy and lactation SD/M 12 Attenuated
hypertension [38]

0.01% melatonin in drinking water Maternal constant light exposure Pregnancy and lactation SD/M 12 Prevented
hypertension [85]

0.01% melatonin in drinking water Maternal L-NAME exposure Pregnancy and lactation SD/M 12 Prevented
hypertension [86]

0.01% melatonin in drinking water Maternal high-fructose diet Pregnancy and lactation SD/M 12 Prevented
hypertension [87]

0.01% melatonin in drinking water Maternal high-fructose diet plus
post-weaning high-salt diet Pregnancy and lactation SD/M 12 Attenuated

hypertension [88]

0.01% melatonin in drinking water Prenatal dexamethasone
exposure Pregnancy and lactation SD/M 16 Prevented

hypertension [89]

0.01% melatonin in drinking water
Prenatal dexamethasone

exposure plus post-weaning
high-fat diet

Pregnancy and lactation SD/M 16 Prevented
hypertension [90]

Melatonin 10 mg/kg BW/day in
drinking water Genetic hypertension model Pregnancy SHR/M 16 Prevented

hypertension [91]
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Table 2. Cont.

Natural Antioxidants Animal Models Intervention Period Species/
Gender

Age at BP
Determination (week) Beneficial Effects Ref.

Resveratrol

50 mg/L resveratrol in drinking water Maternal plus post-weaning
high-fructose diet Pregnancy and lactation SD rat/M 12 Prevented

hypertension [92]

50 mg/L resveratrol in drinking water Maternal bisphenol A exposure
and high-fat diet Pregnancy and lactation SD rat/M 16 Prevented

hypertension [44]

0.05% resveratrol in drinking water Maternal TCDD and
dexamethasone exposures Pregnancy and lactation SD rat/M 16 Prevented

hypertension [45]

50 mg/L resveratrol in drinking water Maternal L-NAME plus
postnatal high-fat diet Pregnancy and lactation SD rat/M 16 Attenuated

hypertension [93]

4 g/kg diet resveratrol Genetic hypertension model Pregnancy and lactation SHR/M & F 20 Prevented
hypertension [94]

N-acetylcysteine (NAC)

1% NAC in drinking water Suramin-induced
preeclampsia Pregnancy and lactation SD/M 12 Prevented

hypertension [34]

1% NAC in drinking water Maternal L-NAME
exposure Pregnancy and lactation SD/M 12 Prevented

hypertension [84]

1% NAC in drinking water

Prenatal
dexamethasone
and postnatal
high-fat diet

Pregnancy and lactation SD/M 12 Prevented
hypertension [95]

1% NAC in drinking water Genetic hypertension model Pregnancy and lactation SHR/M 12 Prevented
hypertension [96]

NAC 500 mg/kg/day in drinking water
Maternal
nicotine
exposure

Gestational day 4 to
postnatal day 10 SD/M 32 Prevented

hypertension [32]

Others

Conjugated linoleic acid Maternal high-fat diet Pregnancy and lactation SD/M 18 Attenuated
hypertension [97]

Fish oil Maternal low protein diet Pregnancy and 10 days
after birth Wistar/M &F 25 Prevented

hypertension [98]

Studies tabulated according to types of natural antioxidant, animal models and age at measure. STZ = streptozotocin. L-NAME = NG-nitro-L-arginine-methyl ester. CKD = chronic kidney
disease. BCAA = branched-chain amino acid. LPS = lipopolysaccharide. TCDD = 2,3,7,8-tetrachlorodibenzo-p-dioxin. SD = Sprague-Dawley rat. SHR = spontaneously hypertensive rat.
FHH = Fawn hooded hypertensive rat. M = male. F = female.



Antioxidants 2020, 9, 1034 10 of 22

3.3. Amino Acids

Several amino acids have antioxidant properties [100]. Some of them have been reported to
regulate BP [101]. L-glycine supplementation during pregnancy and lactation was shown to protect
against maternal low-protein intake-induced programmed hypertension in offspring [70], which agrees
well with a previous study demonstrating that glycine administration produced depressor responses
on BP [100].

A decreased NO bioavailability is one of the pathogenetic mechanisms underlying hypertension
of developmental origin [102]. Both L-arginine (the substrate for NO synthase) and L-citrulline,
a precursor of L-arginine, can be supplemented to increase NO production [103]. As shown in Table 2,
perinatal L-citrulline supplementation had a beneficial effect on offspring BP in a variety of animal
models, including maternal streptozotocin (STZ)-induced diabetes [31], Maternal NG-nitro–L-arginine
methyl ester (L-NAME) exposure [71], and prenatal dexamethasone exposure [72]. In spontaneously
hypertensive rats (SHR), perinatal supplementation with L-citrulline can prevent the transition
from prehypertension to hypertension via restoration of NO bioavailability [73]. However, whether
L-arginine supplementation in pregnancy alone is associated with these beneficial effects has not
been clarified.

Additionally, L-taurine has been used alone or combined with other antioxidants to prevent
hypertension programmed by a variety of early-life insults [74,75,78–80]. L-taurine is a common
sulfur-containing amino acid [104]. Several beneficial effects of L-taurine on hypertension have been
reported, including regulation of NO and hydrogen sulfide (H2S), regulation of the renin–angiotensin
system (RAS), and reduction of oxidative stress [105,106]. Perinatal L-taurine use showed protection in
hypertension programmed by maternal high-sugar consumption or maternal STZ-induced diabetes [74,75].
A combination of L-taurine, L-arginine, and Vitamins C and E therapy in the perinatal period caused
a reduction of BP in SHRs and in Fawn hooded hypertensive rats (FHH), two genetic models of
hypertension [78–80]. Furthermore, other amino acids, like L-tryptophan [76] and branched-chain
amino acids (BCAAs) [77], have been used as reprogramming interventions, by which hypertension
could be prevented in adult offspring. Despite amino acids with antioxidant properties have been
increasingly investigated for their reprogramming benefits on hypertension of developmental origin,
there is still an unmet need in better understanding the accurate dietary recommendations for these
amino acids for pregnant women in normal and compromised pregnancy.

3.4. Vitamins

Vitamin C, E, folic acid and selenium, which showed a beneficial effect on BP in established
hypertension [107], were also considered as potential protective compounds against hypertension of
developmental origin. Vitamins C and E are the most frequently used antioxidant vitamins. Vitamin C
is a six-carbon lactone with the ability of ROS quenching. Vitamin E (α-Tocopherol) is a fat-soluble
carotenoid that inhibits NADPH oxidase, lipoxygenase, and cyclooxygenase [108]. Gestational use
of Vitamin C or E alone protected the elevation of BP in adult male offspring exposed to prenatal
lipopolysaccharide (LPS) [82,84]. Also, the combined supplementation of vitamins C, E, folic acid,
and selenium can prevent hypertension programmed by maternal caloric restriction [81]. Moreover,
maternal supplementation with folic acid can prevent offspring against hypertension in a maternal low
protein diet model [83].

However, The Cochrane Collaboration compiled 56 clinical trials that included almost a quarter
million participants to conclude thatβ-carotene, vitamin E, and high doses of vitamin A seem to increase
mortality [109]. Although excessive dietary vitamin A intake has been associated with birth defects
in humans [110], whether excessive vitamin supplementation affects hypertension reprogramming
remains largely unknown.
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3.5. Melatonin

Melatonin, an endogenous indoleamine derived from tryptophan, has pleiotropic biofunctions,
such as antioxidant, anti-inflammation, regulation of circadian rhythm, epigenetic regulation, and
fetal development [111–115]. As reviewed elsewhere [12], melatonin has emerged as a common
reprogramming strategy to prevent many adult diseases in different models of developmental
programming. Several mechanisms, including reduction of oxidative stress, restoration of NO,
epigenetic regulation, and rebalancing the RAS have been associated with the reprogramming effects
of melatonin [12].

As an antioxidant, not only melatonin but also its metabolites have abilities to scavenge ROS
and RNS [115]. Table 2 shows perinatal melatonin therapy prevents hypertension programmed by
diverse early-life insults, such as maternal caloric restriction [30], maternal methyl-donor diet [38],
maternal constant light exposure [85], maternal L-NAME exposure [86], high-fructose diet [87],
high-fructose diet plus post-weaning high-salt diet [88], prenatal dexamethasone exposure [89],
and prenatal dexamethasone exposure plus post-weaning high-fat diet [90]. Additionally, maternal
melatonin therapy can prevent the transition from prehypertension to hypertension in SHRs [91].
The protective effects of maternal melatonin therapy against hypertension are associated with increased
NO bioavailability [30,38,87,88], reduced ADMA levels [30,88], decreased 8-OHdG expression [38],
and decreased 8-isoprostane level [86]. Together, these findings emphasize that melatonin works as an
antioxidant in different ways to benefit hypertension reprogramming.

So far, serious adverse events are scarce in humans receiving melatonin treatment ranged from
0.3 mg to 1600 mg daily [112,116,117]. Although, melatonin has a generally favorable safety profile,
no clinical trials of melatonin in pregnant women have been identified to assess its use and safety.
A previous study demonstrated that pregnant sheep received a high dose of melatonin and its levels
were raised up to 200 times normal values, leading to no adverse effect on fetal health [118]. It is
noteworthy that maternal melatonin treatment can cause long-term transcriptomic changes and
regulate numerous biological pathways [113]. Whether these programmed processes and pathways
might be interconnected with its antioxidant mechanism to prevent programmed hypertension remains
to be elucidated.

3.6. Resveratrol

Polyphenols include anthocyanins, flavonoids, and stilbenes [50]. Resveratrol is a natural
polyphenol from the stilbene family that occurs as a phytoalexin [119]. Resveratrol constitutes
functional foods with many health benefits [120]. Resveratrol exerts pleiotropic functions including
anti-inflammatory and antioxidant properties, improvement of endothelial function, anti-atherosclerotic
and anti-obesogenic effect, anticarcinogenic activity, and restoring bioavailable NO production [121].
The antioxidant effects of resveratrol include ROS/RNA scavenging ability, enhancement of various
antioxidant defensive enzymes, induction of glutathione level, increases of NO bioavailability,
and activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) [122,123].

Currently, many human studies have reported that resveratrol is a well-tolerated and safe
supplement [121,122,124]. However, others have shown toxic effects of resveratrol in vitro and
in vivo [125]. Resveratrol appears to have a hormetic effect where resveratrol like an antioxidant at
low doses are associated with beneficial effects, while a pro-oxidant at high doses usually have a toxic
effect [126]. However, limited data are available regarding the effects of resveratrol supplementation
during pregnancy on offspring’s health [123].

Table 2 indicates reprogramming effects of maternal resveratrol therapy on offspring’s hypertension
in rats ranging from 12 to 20 weeks of age [44,45,82–84]. However, its long-term effect on offspring
outcome remains largely unknown. In a maternal combined bisphenol A exposure and high-fat diet
model, the protective effects of maternal resveratrol treatment against offspring hypertension are
associated with increased NO bioavailability and decreased renal 8-OHdG expression [38]. Similarly,
perinatal resveratrol use can restore the balance between ROS and NO to protect against hypertension
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in adult offspring born to dams exposed to combined TCDD and dexamethasone administration [45],
high-fructose diet [92], and L-NAME plus postnatal high-fat diet [93]. Additionally, the high BP in
adult SHRs can also be prevented by resveratrol supplementation in pregnancy and lactation [94].

3.7. N-Acetylcysteine

N-acetylcysteine (NAC), a plant antioxidant naturally found in onion, is a precursor to
glutathione [127]. NAC is also a stable L-cysteine analogue and can be a precursor for H2S synthesis.
H2S is a gaseous signaling molecule with antihypertensive properties [128]. Accordingly, NAC has
been reported to prevent hypertension in human trials and experimental studies [129,130]. As shown
in Table 2, the beneficial effects of maternal NAC therapy on hypertension reprogramming have been
reported in a variety of animal models, including maternal nicotine exposure [32], suramin-induced
pre-eclampsia [34], L-NAME exposure [84], and prenatal dexamethasone and postnatal high-fat
diet [95]. In a prenatal dexamethasone and postnatal high-fat diet model, the beneficial effects of
NAC against offspring hypertension were linked to an increase in plasma glutathione level and
H2S-generating enzymes, and reduction of oxidative stress [95]. In another study, perinatal use of
NAC also protected offspring against hypertension programmed by maternal L-NAME exposure via
increases of H2S-generating enzymes and activity in offspring kidneys [84]. Moreover, maternal NAC
therapy prevented programmed hypertension in adult offspring born to suramin-treated females was
associated with increased glutathione levels, restoration of NO and H2S pathways [34].

3.8. Others

Conjugated linoleic acid (CLA), a functional lipid with hypotensive and antioxidant activity,
have attracted increasing interest recently for its health benefits [131]. One report demonstrated
that perinatal CLA supplementation attenuated hypertension programmed by maternal high-fat
consumption in adult male offspring [96]. Fish oil is a dietary source of omega-3 polyunsaturated fatty
acids, which act like an antioxidant with health benefits [132]. Although current evidence suggests that
mega-3 polyunsaturated fatty acid could prevent the rise in BP in hypertensive subjects [133], only one
study reported that maternal fish oil supplementation was capable of protecting adult offspring against
hypertension programmed by maternal low protein diet [97]. Regardless of BP-lowering effects of
supplementing natural antioxidants in lactation, such as melinjo (Gnetum gnemon) seed extract [134],
grape skin extract [47], and 15-deoxy-∆12,14 -prostaglandin J2 (15d-PGJ2) [48], have been reported,
all of them have not yet been examined in pregnancy.

It is noteworthy that keeping a physiological oxidative-antioxidative balance is advised to prevent
hypertension of developmental origin. Excess antioxidants may shift oxidative stress to an opposite
state of “antioxidant stress” [135]. Therefore, a critical balance of antioxidants intake needs to be
assessed for the clinical situation to avoid their adverse effects. The intake of natural antioxidant
supplements would only make sense in a case of deficits, trying to restore their levels, but not as a
usual intake [136].

4. Protective Role of Natural Antioxidants on Common Mechanisms Involved in
Programmed Hypertension

The primordial studies in animal models with controlled interventions provided important results
revealing potential protective mechanisms of natural antioxidants against developmental hypertension.
These beneficial mechanisms of natural antioxidants on programmed hypertension include restoration
of ADMA-NO pathway, rebalancing of the RAS, activation of nutrient-sensing signals, and reshaping
gut microbiota (Figure 2).

4.1. Restoration of ADMA-NO Pathway

ADMA-induced NO–ROS imbalance is involved in the development of hypertension,
while restoration of the ADMA-NO balance has been considered a potential reprogramming strategy
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for hypertension of developmental origin [101,137]. Due to multiple metabolic fates, L-arginine is not
considered as a good NO precursor [101]. Unlike L-arginine, L-citrulline can bypass hepatic metabolism
and it is not a substrate of arginase. As we mentioned earlier, maternal supplementing with L-citrulline
can protect adult offspring against the developmental programming of hypertension via restoration of
NO bioavailability in several animal models [31,71–73].

Additionally, several natural antioxidants have been reported to lower ADMA levels and
restore NO-ROS balance in human and experimental studies [101,137,138]. These antioxidants
include vitamin E, salvianolic acid A, melatonin, resveratrol, N-acetylcysteine, oxymatrine,
and epigallocatechin-3-gallate. However, only few ADMA-lowering antioxidants have been examined
for prevention of hypertension in the developmental programming models, like resveratrol [92,93],
melatonin [85–87], and NAC [34,84]. Similar to programming hypertension models, melatonin [139]
and NAC [140] have been revealed to prevent the development of hypertension in SHRs by decreasing
plasma ADMA levels. Currently, however, a specific ADMA-lowering antioxidant is not available in
clinical practice. A therapeutic approach to restore bioavailable NO production by lowering ADMA,
thereby preventing the development of hypertension still awaits further evaluation.

4.2. Rebalancing of the Renin-Angiotensin System

RAS is a coordinated hormonal cascade in the regulation of BP. The classical RAS comprises
the angiotensin converting enzyme (ACE)-Ang II-angiotensin type 1 receptor (AT1R) axis that
promotes the elevation of BP. Pharmacological therapies based on the blockade of classical RAS are
used extensively for the treatment of hypertension [141]. Emerging evidence supports the theory
that dysregulated RAS is a common mechanism underlying programmed hypertension [10,13,142].
Conversely, early blockade of the classical RAS can reprogram inappropriate activation of the RAS,
thereby prevention of developmental hypertension [143,144].

Several lines of evidence support that rebalancing the RAS by natural antioxidants has impact on
developmental hypertension. First, one report demonstrated that resveratrol therapy protected adult
offspring against hypertension programmed by maternal plus post-weaning high-fat diet. Its protective
effects were associated with increased plasma Ang (1–7) level and decreased plasma Ang II level [145].
Secondly, maternal L-NAME exposure-induced increases of renal renin and ACE expression was
prevented by maternal NAC therapy [84]. Thirdly, there are studies showing that the beneficial
effects of melatonin are related to increased ACE2 level. ACE2 belongs to the non-classical RAS
pathway, which appears to antagonize the effects of the classical RAS [141]. A previous study from
our laboratory examined the maternal caloric restriction-induced hypertension model and found
maternal melatonin therapy protected offspring against hypertension, which is related to increased
renal ACE2 expression [30]. Likewise, melatonin therapy was reported to prevent the development
of offspring’s hypertension was associated with increased ACE2 level in a maternal light exposure
model [85]. Last, adult male offspring exposed to prenatal dexamethasone exposure and postnatal
high-fat diet developed hypertension; this was associated with increased oxidative stress and activation
of the classical RAS [146]. However, Nrf2 activation therapy in pregnancy not only prevented the
rising BP but also reduced oxidative stress and downregulated the classical RAS concurrently [146].

4.3. Activation of Nutrient-Sensing Signals

Nutrient-sensing signaling pathways are commonly deregulated in fetal development
and programmed hypertension, as reviewed elsewhere [10]. Cyclic adenosine monophosphate
(AMP)-activated protein kinase (AMPK), silent information regulator T1 (SIRT1), peroxisome
proliferator-activated receptors (PPARs), and PPARγ coactivator-1α (PGC-1α), are well-known
nutrient-sensing signals [147].

Nutrient-sensing signals regulate PPARs and their target genes, consequently leading to
developmental hypertension [148]. There are several PPAR target genes, such as Sod2, Nos2, Nos3,
and Nrf2, involved in oxidative stress [149]. A variety of early-life insults can downregulate
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nutrient-sensing signals, to induce hypertension of developmental origin. These adverse in
utero environmental conditions include maternal methyl donor diet [38], maternal high-fructose
plus post-weaning high-salt diets [88], high-fructose diet [92], high-fat diet [150], and maternal
L-NAME exposure and post-weaning high-fat diet [93]. Conversely, interventions activating the
AMPK/SIRT1/PGC-1α pathway has shown beneficial on hypertension reprogramming [151]. Because
nutrient-sensing signals are interconnected with redox regulation, AMPK plays an important role
in regulating antioxidant defense during oxidative stress [151]. The reprogramming effects against
hypertension by gestational supplementation of natural antioxidants, such as melatonin [88] and
resveratrol [93] were related to upregulate several nutrient-sensing signals.

4.4. Reshaping Gut Microbiota

Gut microbiota regulates the cellular redox state within the host organism. In the gut,
microbes-mediated ROS production in low levels maintains gut homeostasis, whereas high levels of
ROS lead to oxidative stress damage [152]. On the other hand, gut microbe-mediated therapies have
been applied as a therapeutic approach for several oxidative stress-associated diseases [153].

Early-life gut microbiota dysbiosis adversely affects fetal programming and may have a long-range
negative influence on adult health outcomes [154]. The gut microbiota produces a variety of metabolites,
including antioxidant vitamins [155]. Gut microbiota dysbiosis has been linked to hypertension related
to several mechanisms, including alterations of microbial metabolites, activation of the RAS, inhibition
of NO, increased sympathetic activity, and mediation of the H2S signaling pathway [156].

Emerging evidence supports the notion that gut microbiota dysbiosis in early-life is correlated with
hypertension of developmental origin [76,86,96,150,157,158]. Dietary fiber intake for modulating the
microbiota has become one dietary strategy. Our recent reports showed that prebiotic inulin (i.e., a special
form of dietary fiber) supplementation during pregnancy and lactation can protect offspring against
hypertension programmed by maternal high-fructose or high-fat consumption [157,158]. Another study
from our laboratory examined the high-fat diet-induced hypertension model and found that modulation
of gut microbiota by resveratrol can protect adult offspring against programmed hypertension and
oxidative stress concurrently [44]. Although, recent studies have demonstrated that probiotics and
prebiotics have antioxidants property [152,153,159], their roles in oxidative stress-related hypertension
of developmental origin, especially their use in pregnancy, require further investigation.

Together, natural antioxidant interventions in pregnancy may reprogram common mechanisms to
prevent offspring against hypertension of developmental origin. However, these effects await further
efforts to bridge gaps between basic animal research and clinical translation.

5. Conclusions

This review recapitulates that the use of effective natural antioxidants starting before birth protects
adult offspring against hypertension in various animal models of developmental programming.
However, natural antioxidants can also be disadvantageous. Yet, at the same time, we are aware that
a long road still lies ahead in determining the right dose of natural antioxidant for the right person,
at the right time, for clinical applications. Further research will help to better delineate the mechanisms
underlying developmental hypertension by which these processes occur, and whether specific natural
antioxidant therapies are implemented in humans to obviate the global burden of hypertension.
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