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A B S T R A C T   

Kaposi’s sarcoma (KS) is the second most common tumor in human immunodeficiency virus (HIV) infected patients worldwide. While many miRNAs 
have been confirmed to be involved in KS biological processes, no relevant studies have combined miRNA and mRNA expression profiles using KS 
patient tissue biopsies. In this study, we performed transcriptome sequencing on tumor and normal tissues from four KS patients and identified 
differentially expressed mRNA and miRNA, further performed target gene prediction and enrichment analysis. 19,551 target-mRNAs were identified 
by predicting 106 miRNAs, with 553 overlapping with 571 significantly differentially expressed mRNAs. Enrichment analysis showed significant 
involvement of the Ubiquitin-mediated proteolysis pathway. Additionally, the miRNA-mRNA interaction network was established, and the topo
logical score of Cytohubba’s algorithm was calculated for comparison with three other datasets. The Mutual Clustering Coefficient (MCC) scoring 
ranking placed ZBTB34, NFIB, and RORA as the top three mRNAs, while hsa-miR-16-5p, hsa-miR-27a-3p, hsa-miR-340-5p, hsa-miR-182-5p, and 
hsa-miR-186-5p ranked as the top five miRNAs. Hsa-miR-101-3p is the only miRNA that appears both in the top 10 MCC scores and at the 
intersection of the other two datasets. Finally, qRT-PCR was used to validate the findings at the cellular level. In summary, the miRNA analysis 
results indicated that hsa-miR-101-3p could be used as a potential diagnostic or therapeutic marker in future studies. Moreover, the mRNA analysis 
results suggested that the histone binding pathways involved in mRNAs and ubiquitin-related biological processes were closely associated with KS 
and could serve as promising biomarkers for the diagnosis and treatment of this disease.   

1. Introduction 

Kaposi’s sarcoma (KS) is a malignancy originating from the endothelial lining of blood or lymphatic vessels, which leads to the 
formation of tumors or lesions, predominantly on the skin. These lesions may also impact the gastrointestinal tract, respiratory system, 
and oral cavity. The disease typically presents as red, purple, brown, or black spots on the skin. Classic KS predominantly affects elderly 
men of Mediterranean, Jewish, or Italian descent. However, KS is also common among HIV-positive individuals and is endemic in sub- 
Saharan Africa, where it affects both HIV-negative individuals and children. In these regions, KS can be a significant health concern; for 
instance, it was reported as the leading cause of cancer-related deaths in men in Mozambique and Uganda in 2020 [1]. First described 
by Moritz Kaposi in 1872 [2], the understanding of KS has continually evolved, revealing diverse epidemiological patterns and clinical 
manifestations. 

MicroRNAs (miRNA) are short (~22 nucleotides), non-coding RNAs that regulate gene expression in all metazoan eukaryotes [3]. 
miRNAs are transcribed by RNA polymerase II to generate stem-loop hairpin structures, which are processed by Drosha and DGCR8 to 
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produce precursor miRNAs. These precursor miRNAs are then further cleaved by Dicer and TRBP, leaving a 22-nt RNA duplex. One 
strand of the duplex is preferentially incorporated into RISC, which binds to complementary sequences in the 3′ untranslated region (3’ 
UTR) of target mRNAs, leading to translational inhibition or degradation [4]. Although each miRNA typically only modestly alters 
gene expression, individual miRNAs can have a broad impact by targeting hundreds of genes. Over 60 % of mammalian mRNAs contain 
conserved regions that serve as targets for miRNAs. In addition to the canonical pathway, non-canonical pathways for generating 
miRNAs also exist [5]. 

Accumulating evidence suggests that aberrant expression patterns of miRNAs are presented in many human malignancies, 
including KS. Highly expressed miRNAs may act as oncogenes by suppressing tumor suppressor genes, while miRNAs expressed at low 
levels may function as tumor suppressors by negatively regulating oncogenes [6]. Recent studies have described miRNA signatures in 
KS, with several miRNAs found to be downregulated or upregulated [7,8] as a mediator in the virus-host interaction network of KS [9]. 
These miRNAs have the potential to serve as biomarkers for KS diagnosis, prognosis prediction, and as targets for treatment. 

It is frustrating that after over 150 years of discovering KS, the development mechanism of KS remains unclear. In recent years, RNA 
sequencing and bioinformatics analysis have enabled us to study molecular mechanisms in a new way and identify tumor-related 
genes. Regarding the differential expression of miRNA-mRNA target genes, Viollet et al. used KSHV-infected SLK cells in cell cul
ture to reveal the interaction between miRNA and mRNA differential expression [10]. To date, there have been no relevant studies that 
have integrated miRNA and mRNA expression profiles using tissue biopsies from patients with Kaposi’s sarcoma (KS). In this study, we 
conducted sequencing of both miRNA and mRNA from tumor and normal tissues of KS patients. The combined RNA sequencing data 
from these KS patient tissue biopsies are available for download on GEO (Gene Expression Omnibus) and PubMed. We further 
investigated the functions and pathways involved in these miRNA-mRNA interactions through cellular experiments to validate our 
findings. Our findings provide theoretical support for further studies of miRNA-mRNA interactions and cellular experiments with 
KSHV. 

2. Material and methods 

2.1. Data source 

For sequencing analysis, we collected tumor and adjacent tissue samples from 4 patients with classic KS at Xinjiang Uyghur 
Autonomous Region Hospital, with confirmed pathological diagnoses between 2018 and 2021. All specimens were collected with 
informed consent from the study subjects or their families, numbered, and stored in liquid nitrogen after collection. 

We also retrieved transcriptome sequencing data related to KS from the GEO database (http://www.ncbi.nlm.nih.gov/geo), 
including sequencing of miRNA or mRNA from both tumor and normal tissue biopsy samples of KS patients. We identified two datasets 
that met our criteria, of which GSE16353 [11] and GSE55625 [12] included miRNA sequencing results. In addition, we also searched 
PubMed and found a study by Muwonge et al. that sequenced miRNAs in the serum of KS patients and analyzed differentially expressed 
genes [13], which we included in our analysis. 

2.2. Study procedure 

Sequencing samples were prepared using both miRNA and mRNA libraries, followed by deep sequencing and subsequent bio
informatic analysis to identify differentially expressed genes and associated pathways. Results were merged with GEO and PubMed 
datasets for RRA analysis. Differential expressions of predicted mRNA and miRNA target genes were compared. Enrichment analysis 
was performed on the intersection of mRNA targets, which was then used to construct a miRNA-mRNA interaction network. The flow 
diagram of this study is shown in Supplementary Fig. 1. 

2.3. Bioinformatic analysis 

We performed quality control on our raw data using FastQC and used Trimmomatic for the removal of low-quality bases and 
filtering of low-quality reads. Clean data was then aligned to the hg19 reference genome to determine gene expression levels. Dif
ferential gene analysis was performed using the limma package, and Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis were conducted to identify differentially expressed genes. The miRNAs detected 
were compared by aligning Clean Data to the human mature miRNA sequences in the miRBase22 database. The Multimir tool was used 
to search for differentially expressed miRNA target genes in 14 validated databases, including miRecords, miRTarBase, and TarBase 
[14]. The output files were visualized using the UCSC Genome Browser (http://www.genome.ucsc.edu), and statistical analyses, 
heatmaps, and scatter plots were performed using the R suite software (http://www.R-project.org), employing the ggplot2 package for 
creating these visualizations. 

2.4. Dataset preprocessing 

The downloaded GEO datasets include matrix files for differential gene analysis using Deseq2. Muwonge et al.’s study directly 
extracted the top 50 differentially expressed genes. In this study, we obtained sequencing results and integrated them with the GEO 
datasets using RobustRankAggreg (RRA) to compare the ranking of differentially expressed genes from different sources [15]. The 
threshold points for differentially expressed genes (DEGs) were adj.P.Val <0.05 and |log fold change (FC)| > 1. 
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2.5. Construction of a miRNA-mRNA interaction network 

Based on the analysis of differentially expressed miRNAs, differentially expressed mRNAs, and enriched pathways, a miRNA-mRNA 
regulatory network was visualized using Cytoscape [16]. Various topological algorithms (MCC, EPC) in cytohubba [17] were applied 
to calculate the scores of differentially expressed genes. 

2.6. Cell culture 

KSHV-infected cell lines (iSLK-219 and iSLK-BAC) and KSHV uninfected cell line (iSLK-Puro) were donated by Professor Ke Lan 
(Key Laboratory of Wuhan University) and cultured in DMEM high glucose medium (GIBCO, USA) containing 10 % fetal bovine serum, 
100 μg/mL G418, 4 μg/ml puromycin, and 100 μg/ml hygromycin (iSLK-Puro cells do not require hygromycin). KSHV positive B 
lymphoma cell lines (BC-3 and BCBL-1) and KSHV negative B lymphoma cell lines (BJAB), which were purchased from the American 
Type Culture Collection (ATCC), were cultured in RPMI1640 medium containing 10 % fetal bovine serum and 1 % antibiotics. All cells 
were cultured in an incubator containing 5 % CO2 at 37 ◦C. 

2.7. RNA extraction and qRT-PCR 

First, we extracted total RNA from cells using the Trizol method [18]; The RNA was then transcribed into cDNA using the Reverse 
Transcription Kit (RR047A, TaKaRa), and the cDNA was amplified using Universal Fluorescence Quantitative PCR Kit (BL697A, 
Biosharp). The qRT-PCR was performed under the following cycling parameters: 50 ◦C for 2 min, 95 ◦C for 10 min; 40 cycles at 95 ◦C 
for 15 s and 60 ◦C for 1 min; followed by melt-curve parameters: 95 ◦C for 15 s, 60 ◦C for 1 min, 95 ◦C for 15 s. The RNA transcript level 
was presented as relative quantification (RQ) using the comparative cycle threshold (ΔΔCT) method. The relative expression was 
calculated based on the 2− ΔΔCT value, and all experiments were measured in triplicate. The miRNA levels were normalized against 
U6 levels. The primer sequences are detailed in Supplementary Table 1. 

3. Ethics statement 

The study was approved by the Shihezi University (IIT-2017-004-01). Written informed consents were obtained from all study 
participants and the study did not interfere with the routine clinical care of the participants. 

Fig. 1. The volcano plot for differential analysis of miRNA and mRNA. The limma package was applied to the sequencing results for differential 
analysis, and the volcano plot was drawn with a threshold of |logFC| > 1, p < 0.05. Fig. 1A shows the differential analysis results for mRNA, with red 
indicating upregulated expression, blue indicating downregulated expression, and gray indicating no significant difference. 162 mRNAs were 
significantly upregulated, including SP3, STX7, NT5C2, EPB41L5, and NEAT1, which showed higher logFC values, suggesting more substantial 
upregulation. Among the 409 significantly downregulated mRNAs, SLC35B1, WDR7, HOMER1, NHSL2, and ZNF736 showed more significant 
downregulation. Fig. 1B shows the differential analysis results for miRNAs, with 39 miRNAs significantly upregulated and 67 miRNAs significantly 
downregulated. 
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4. Results 

4.1. Differential analysis and enrichment analysis results 

We compared the expression levels of miRNAs and mRNAs in KS tumor tissue and normal tissue. We found that in tumor tissue, 571 
mRNAs and 106 miRNAs were significantly differentially expressed, with 162 upregulated and 409 downregulated mRNAs (Fig. 1A), 
39 upregulated and 67 downregulated miRNAs (Fig. 1B). Notably, we observed more downregulated genes compared to upregulated 
ones. 

Enrichment analysis showed that the GO analysis results were enriched in biological processes related to positive regulation of 
organelle organization, proteasome-mediated ubiquitin-dependent protein catabolic process, vacuolar membrane, lysosomal mem
brane, lytic vacuole membrane, and endoplasmic reticulum tubular network. The KEGG pathway analysis showed that the differen
tially expressed genes were enriched in pathways such as Ubiquitin mediated proteolysis, Protein processing in the endoplasmic 
reticulum, Circadian rhythm, mRNA surveillance pathway, and Autophagy – animal. Notably, both enrichment analysis results 
indicated that the differentially expressed genes were enriched in the Ubiquitin-mediated proteolysis pathway. This pathway ranked 
high, suggesting the importance of ubiquitin-mediated protein hydrolysis in the development of KS (Supplementary Table 2，Sup
plementary Table 3). 

4.2. mRNA-miRNA interaction network 

Using Multimir to search eight miRNA target gene databases and 106 significantly differentially expressed miRNAs, 19,551 target- 
mRNAs were identified. Comparison with 571 significantly differentially expressed mRNAs showed that 553 mRNAs were duplicated. 
The target genes of hsa-miR-16-5p, hsa-miR-27a-3p, and hsa-miR-340-5p had the largest intersection with the differentially expressed 

Fig. 2. The top 50 miRNA-mRNA networks with MCC scores. The miRNA-mRNA interaction network was constructed and scored based on the MCC 
score, and the darker the color, the higher the MCC score. Arrows indicate the targeted mRNA of miRNA. Only three mRNAs were identified among 
the top 50 miRNAs with high MCC scores, including ZBTB34, NFIB, and RORA. 
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mRNAs (Supplementary Table 4). A miRNA-mRNA interaction network was constructed, as shown in Supplementary Fig. 2, which 
contains 10 miRNAs, 50 predicted target genes and 310 interactions. These ten miRNAs potentially have a central role in the regulatory 
networks. 

We used cytohubba-MCC score to rank the miRNA-mRNA interaction network [19], which is a centrality measure used for 
identifying the most densely interconnected clusters or cliques within a network. The top 50 genes with high scores are shown in Fig. 2, 
with ZBTB34, NFIB, and RORA ranking in the top three in mRNA, and hsa-miR-16-5p, hsa-miR-27a-3p, hsa-miR-340-5p, hsa-
miR-182-5p, and hsa-miR-186-5p having MCC scores of over 200, consistent with the predicted target gene intersection results. 

Table 1 shows the top ten miRNAs ranked by MCC score. In addition, using the RRA method to rank differentially expressed genes 
for the collected datasets, a Venn diagram (Fig. 3A) indicates that there were no genes differentially expressed in all four datasets, and 
three miRNAs were differentially expressed in three datasets. RRA results are shown in Fig. 3B, with a screening threshold set at p <
0.05 and |logFC|>1. The results showed that hsa-miR-625, hsa-miR-654, and hsa-miR-636 were significantly upregulated in two 
datasets, while hsa-miR-101, hsa-miR-1181, hsa-miR-185, and hsa-miR-1249 were significantly downregulated in two datasets. Of 
note, hsa-miR-101 was also ranked in the top ten by MCC score, indicating significant differential expression in KS tumor tissue. 

Table 2 lists the top ten mRNAs ranked by MCC score. We selected the top 100 mRNAs ranked by MCC score (>18) for GO analysis, 
and the results are shown in Table 3. The analysis revealed significant enrichment in three pathways: endoplasmic reticulum tubular 
network, ATP-dependent chromatin remodeler activity, and histone binding. Compared with the enrichment analysis results of all 
genes, the differential genes were enriched in the endoplasmic reticulum tubular network pathway, indicating its essential role in the 
pathogenesis of KS. In addition, the differentially expressed genes TBL1XR1 and CBX5 in the histone binding pathway have high MCC 
scores in the interaction network, indicating that the histone binding pathway associated with TBL1XR1 and CBX5 could be key 
biomarkers for identifying KS. 

4.3. qRT-PCR validation 

Furthermore, we used qRT-PCR to verify validate whether these four miRNAs, including hsa-miR-101-3p (Fig. 4A), hsa-miR-186-5p 
(Fig. 4B), hsa-miR-27a-3p (Fig. 4C), and hsa-miR-27b-3p (Fig. 4D), were also significantly down-regulated at the cellular level. The 
results showed that the miRNAs expression in KSHV-infected cell lines iSLK-219 and iSLK-BAC and KSHV-positive B lymphoma cell 
lines BC-3 and BCBL-1 were significantly down-regulated compared with KSHV-uninfected cell lines iSLK-Puro and KSHV-negative B 
lymphoma cell line BJAB, which was consistent with the sequencing results. 

5. Discussion 

In the present study, we sequenced tumor and normal tissue samples from KS patients, analyzed mRNA and miRNA differential 
expression, and constructed an mRNA-miRNA interaction network. The results showed that the number of downregulated miRNAs was 
significantly higher than that of upregulated miRNAs (67 vs. 39), consistent with the conclusion of the three datasets included in this 
study [13,11,12]. Previous studies have shown that EBV-infected cells homologous to KSHV can activate miRNA expression sup
pressors, which is one of the reasons for downregulated miRNA expression [20]. Furthermore, KSHV encodes miRNAs to replace 
homologous miRNAs in infected cells, such as miR-K12-11 replacing hsa-miR-155, leading to downregulated miRNA expression [21]. 

We searched for mRNA sequencing data of KS tissue biopsies in the GEO database and PubMed. To date, Lidenge et al. is the only 
study that has conducted mRNA sequencing on KS tissue biopsies, with the dataset available as GSE147704. This study aimed to 
compare the expression profiles between endemic and epidemic KS. We downloaded the matrix file of this study from GEO and 
performed differential gene analysis using Deseq2. Among the 571 differentially expressed genes, 42 genes overlapped with those in 
our study, with the main pathways including proteasome-mediated ubiquitin-dependent protein catabolic process and ubiquitin ligase 
complex. These findings suggest that ubiquitin-related biosynthetic pathways may serve as potential biomarkers, which is consistent 
with the previous study on multi-ubiquitination regulation of p53 by LANA2 in KSHV [22]. 

Our study indicated that hsa-miR-101-3p was significantly downregulated in both datasets. Previous studies have shown that hsa- 
miR-101-3p was involved in various cancer processes, including colorectal cancer [23], renal cell carcinoma [24], prostate cancer 
[25], and bladder cancer [26], making it a potential biomarker for the diagnosis and prognosis. However, there is currently no research 

Table 1 
Top 10 miRNA in network ranked by MCC.  

microRNA_id MCC score EPC score logFC P 

hsa-miR-16-5p 344 97.473 − 1.199 0.021 
hsa-miR-27a-3p 257 91.959 − 2.284 0.005 
hsa-miR-340-5p 246 92.840 − 1.773 0.039 
hsa-miR-182-5p 231 89.968 − 1.542 0.007 
hsa-miR-186-5p 205 89.175 − 2.463 0.009 
hsa-miR-30a-5p 200 88.524 − 1.338 0.007 
hsa-miR-146a-5p 190 77.965 − 1.310 0.003 
hsa-miR-27b-3p 189 85.064 − 1.769 0.012 
hsa-miR-101-3p 188 84.264 − 2.007 0.001 
hsa-let-7g-5p 180 81.253 − 1.243 0.011  
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linking miR-101 to KS. Based on existing research on miR-101, we speculate that the mechanism underlying its effect on KS devel
opment involves the downregulation of miR-101, which leads to an increase in the expression of PI3K and AKT genes, thereby pro
moting the activation of the PI3K/AKT pathway and inhibiting apoptosis [27]. In addition, the downregulation of miR-101 also 
promotes Wnt gene expression, activates the Wnt/beta-catenin pathway, and promotes cell proliferation and migration [28]. The 
significant downregulation of miR-101 observed in this study suggests that it could serve as a biomarker for the diagnosis and 
prognosis of KS. 

We demonstrated the biological functions of differentially expressed mRNAs through GO and KEGG analysis and reviewed relevant 
literature. In ubiquitin-related biological processes, extensive research has shown the involvement of E3 ubiquitin ligase MDM2 with 
KS [29]. Additionally, the Kaposin B protein interacts with ubiquitin ligase, suppressing cell apoptosis [30]. Notably, the Kaposin 
protein also modulates the PI3K/Akt pathway [31], partially validating the conclusion of miR-101. There are ongoing studies related 
to the biological process of histone binding. For instance, the K-bZIP protein can bind to histones and alter the spatial structure of 
chromatin [32]. Additionally, KSHV infection results in various histone acetylation changes [33], which can affect DNA methylation 

Fig. 3. Differential miRNA expression via RRA methods. Among the three datasets collected in this study (Studies 1–3) and our own sequencing 
results (Study 0). Fig. 3A shows the overlapping differential genes among the four datasets. Unfortunately, no miRNA was differentially expressed in 
all four datasets, but three miRNAs were significantly differentially expressed in three datasets. The RRA method was applied to calculate the 
differential expression of the four datasets, as shown in Fig. 3B. Red indicates upregulated miRNAs, green indicates downregulated miRNAs and 
blank values indicate no differential expression. Our results showed that hsa-miR-625, hsa-miR-654, and hsa-miR-636 were significantly upregu
lated in two or more datasets, while hsa-miR-101, hsa-miR-1181, hsa-miR-185, and hsa-miR-1249 were downregulated considerably in two or 
more datasets. 

Table 2 
Top 10 mRNA in network ranked by MCC.  

mRNA_id MCC score EPC score logFC P 

ZBTB34 37 52.345 − 3.338 0.040 
RORA 37 49.068 5.950 0.001 
NFIB 34 49.591 − 4.915 0.038 
MAT2A 33 48.680 4.033 0.036 
TBL1XR1 33 43.475 4.191 0.040 
CBX5 33 50.483 4.593 0.017 
HIPK2 33 52.678 4.056 0.047 
SAMD8 32 45.736 − 3.255 0.023 
SRSF1 32 43.872 − 4.246 0.026 
RC3H1 31 45.277 4.896 0.009  

Table 3 
GO enrich result TOP 3.  

Description P Gene_ID 

endoplasmic reticulum tubular network 1.12× 10− 5 ASPH/RAB10/ATL2/REEP3 
ATP-dependent chromatin remodeler activity 1.68× 10− 5 CHD1/CHD6/SMARCA5 
histone binding 1.74× 10− 5 TBL1XR1/CBX5/PHC3/RESF1/CHD1/CHD6/SMARCA5  
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levels. 
Various topological algorithms, including MCC, Degree, EPC, and BottleNeck, were used in cytohubba to calculate the scores of the 

differentially expressed genes. The experimental results showed that the MCC algorithm was stable [20]. In addition, the EPC scores 
are also given in Tables 1 and 2. 

In addition, we performed qRT-PCR to validate the conclusions of data analysis at the cellular level. We chose hsa-miR-101-3p, hsa- 
miR-186-5p, hsa-miR-27a-3p, and hsa-miR-27b-3p for verification because, among the top ten miRNAs with MCC scores, miRNAs such 
as hsa-miR-16-5p have already been extensively studied and are closely related to the occurrence of various cancers [34]. In contrast, 
the miRNAs verified in this qRT-PCR have been less studied. Hsa-miR-27a and hsa-miR-27b, both of which are less studied in 
cancer-associated molecular mechanisms, are often combined in systematic reviews, suggesting their potential as biomarkers or 
molecular targets for tumors [35,36]; hsa-miR-101-3p, which has been found to be significantly downregulated in multiple KS 
datasets; hsa-miR-186-5p has the highest fold change value among differentially expressed miRNAs and lacks mechanistic research on 
its association with KS, were chosen for experimental validation. Our experimental results partially confirmed the accuracy of the data 
analysis. 

As current research is mainly limited to cell experiments on KSHV infection. Therefore, our study significantly reveals potential 
molecular mechanisms and biomarkers for KS pathogenesis by sequencing KS patient tissues. However, our research has certain 
limitations. Firstly, we have not experimentally validated the accuracy and reliability of the target mRNA, which necessitates further 
experimental verification. Secondly, due to the lim14ited availability of KS patients, our study included only four participants, leading 

Fig. 4. Expression verification of related miRNAs via qRT-PCR. We performed qRT-PCR experiments to validate the results of data analysis by 
measuring the expression levels of four downregulated miRNAs, hsa-miR-27a-3p (Fig. 4A), hsa-miR-27b-3p (Fig. 4B), hsa-miR-101-3p (Fig. 4C), and 
hsa-miR-186-5p (Fig. 4D) in KSHV-positive and negative cell lines, iSLK-PURO and BJAB being KSHV-negative, and the other four cell lines being 
KSHV-positive. * denotes p < 0.05, ** denotes p < 0.01, and *** denotes p < 0.001. The results showed that compared to KSHV-positive cell lines, 
all four miRNAs were significantly downregulated in KSHV-negative cell lines, with statistical significance at the p-value level. 
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to substantial individual differences. Compared to Lidenge et al.’s study, which included 18 participants and screened out over 15,000 
differentially expressed genes, future studies should expand the sample size of KS patients to obtain a complete miRNA-mRNA 
interaction network for KS patients. 

In summary, by analyzing KS patient RNA-seq data, we identify the hub gene in the miRNA target gene network. Results of the 
analysis on miRNAs suggest that hsa-miR-101-3p can be used as a diagnostic and therapeutic marker in future studies. The results of 
mRNA analysis showed that the histone binding pathway involved in mRNAs such as TBL1XR1/CBX5 and ubiquitin-related biological 
processes were closely related to KS and could be used as biomarkers for the diagnostic and therapeutic procedures of KS. 
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