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ABSTRACT

Background: Stroke is caused by disruption of blood supply and results in permanent 
disabilities as well as death. Chlorogenic acid is a phenolic compound found in various fruits 
and coffee and exerts antioxidant, anti-inflammatory, and anti-apoptotic effects.
Objectives: The purpose of this study was to investigate whether chlorogenic acid regulates the 
PI3K-Akt-Bad signaling pathway in middle cerebral artery occlusion (MCAO)-induced damage.
Methods: Chlorogenic acid (30 mg/kg) or vehicle was administered peritoneally to adult 
male rats 2 h after MCAO surgery, and animals were sacrificed 24 h after MCAO surgery. 
Neurobehavioral tests were performed, and brain tissues were isolated. The cerebral cortex 
was collected for Western blot and immunoprecipitation analyses.
Results: MCAO damage caused severe neurobehavioral disorders and chlorogenic acid 
improved the neurological disorders. Chlorogenic acid alleviated the MCAO-induced 
histopathological changes and decreased the number of terminal deoxynucleotidyl 
transferase dUTP nick end labeling-positive cells. Furthermore, MCAO-induced damage 
reduced the expression of phospho-PDK1, phospho-Akt, and phospho-Bad, which was 
alleviated with administration of chlorogenic acid. The interaction between phospho-Bad 
and 14-3-3 levels was reduced in MCAO animals, which was attenuated by chlorogenic 
acid treatment. In addition, chlorogenic acid alleviated the increase of cytochrome c and 
caspase-3 expression caused by MCAO damage.
Conclusions: The results of the present study showed that chlorogenic acid activates 
phospho-Akt and phospho-Bad and promotes the interaction between phospho-Bad and 14-
3-3 during MCAO damage. In conclusion, chlorogenic acid exerts neuroprotective effects by 
activating the Akt-Bad signaling pathway and maintaining the interaction between phospho-
Bad and 14-3-3 in ischemic stroke model.
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INTRODUCTION

Stroke is a serious neurological disorder and the second leading cause of death [1]. The 
two main categories of stroke are ischemic and hemorrhagic. Ischemic stroke is caused 
by a blockage of blood supply, and hemorrhagic stroke is due to a vascular rupture [2]. A 
stroke blocks glucose and oxygen supply to the nerve cells, leading to cell death. Ischemic 
stroke generates reactive oxygen species and causes neuronal damage and apoptosis [3]. 
Cerebral ischemia prevents the survival signaling pathway and activates the apoptotic 
signaling pathway, resulting in neuronal cell death [4,5]. Phosphatidylinositol 3 kinase 
(PI3K) plays a key role in various cellular processes, including metabolism, inflammation, 
and cell survival [6]. PI3K is responsible for the initiation of a signaling cascade by activating 
3-phosphoinositide-dependent kinase 1 (PDK1) and continuously phosphorylating Akt in 
the activation loop [7]. Akt is a key mediator of signal transduction pathways that regulate 
cell proliferation and survival. Akt phosphorylates pro-apoptotic proteins, including Bad, 
glycogen synthase kinase 3β, and forkhead transcription factor, and prevents apoptotic 
functions of these proteins [8]. Thus, Akt activation suppresses the activity of caspases and 
protects cells from apoptosis [9]. Bad is a representative pro-apoptotic protein of the Bcl-2 
family and promotes cell death by heterodimerization with Bcl-2 or Bcl-xL [10]. However, the 
phosphorylated form of Bad (phospho-Bad) has lower capability to interact with Bcl-xL and 
binds to 14-3-3 proteins [11]. The binding of phospho-Bad and 14-3-3 proteins suppresses cell 
death by preventing interactions with Bad/Bcl-2 or Bad/Bcl-xL. However, dephosphorylated 
Bad binds to Bcl-2 or Bcl-xL and continuously releases cytochrome c from mitochondria into 
the cytosol and initiates the caspase cascade, resulting in apoptosis [12,13].

Chlorogenic acid is a phenolic compound found in various foods such as coffee, cocoa, and 
citrus fruits [14]. Chlorogenic acid exerts anti-oxidative and anti-inflammatory effects and 
protects brain tissues from ischemic damage by controlling inflammatory and nerve growth 
factors [15,16]. We recently reported the antioxidant, anti-inflammatory, and neuroprotective 
effects of chlorogenic acid on focal cerebral ischemia [17,18]. Furthermore, chlorogenic acid 
exerts cytoprotective effects against oxidative stress through the PI3K/Akt pathway [19]. The 
results of the above-mentioned studies provide sufficient evidence regarding the numerous 
effects of chlorogenic acid. However, the exact neuroprotective mechanism of chlorogenic acid 
is not fully known. Whether chlorogenic acid regulates the interaction between phospho-Bad 
and 14-3-3 proteins has not been reported to date. It was hypothesized here that chlorogenic 
acid exerts neuroprotective effects by regulating the phosphorylation of Akt and Bad and the 
interaction between phospho-Bad and 14-3-3 proteins. Thus, the changes of phospho-Akt and 
phospho-Bad expression and of phospho-Bad and 14-3-3 protein binding were investigated in 
an animal model of focal cerebral ischemia treated with chlorogenic acid.

MATERIALS AND METHODS

Experimental animals and drug treatment
Male Sprague Dawley rats (200–230 g, n = 60) were purchased from Samtako Co. (Animal 
Breeding Centre, Osan, Korea). All experimental procedures were carried out according to 
the guideline of the Institutional Animal Care and Use Committee of Gyeongsang National 
University (GNU-220222-R0021). Rats were maintained under a controlled environment 
(25ºC, 12 h light/12 h dark cycle) and were provided free access to feed and water. Animals 
were randomly divided into four groups: vehicle + sham, chlorogenic acid + sham, vehicle + 
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middle cerebral artery occlusion (MCAO), and chlorogenic acid + MCAO group. Chlorogenic 
acid (Sigma-Aldrich, USA) was dissolved in phosphate buffer saline (PBS) and was 
intraperitoneally injected 2 h after the MCAO surgery [16,20]. PBS was used as solvent agent 
and vehicle-treated animals were injected with PBS without chlorogenic acid. Fifteen rats 
per group were used for the following experiments: histopathological studies (n = 5 for each 
group), Western blot (n = 5 for each group), and immunoprecipitation analysis (n = 5 for each 
group). Neurobehavioral tests were performed in all animals (n = 60).

MCAO
Animals were anesthetized with 50 mg of Zoletil (Virbac, France) before MCAO surgery. 
They were placed on a heating pad to prevent hypothermia during the surgical procedure. 
We performed MCAO surgery as previously described mannuals [21]. Animals were kept in 
a supine position and a midline incision was given to the neck. The right common carotid 
artery (CCA) was exposed by separation from the adjacent muscles, tissues, and nerves. 
The right external carotid artery (ECA) and the right internal carotid artery (ICA) were 
continuously exposed and the right CCA was temporarily ligated with microvascular clamp. 
The proximal end of the right ECA was ligated and cut. A 4/0 nylon suture with rounded tip 
by heating was carefully inserted into the right ECA and moved forward to the right ICA. It 
was inserted until resistance was felt to block the origin of the middle cerebral artery. The 
length of the inserted nylon suture is almost 22–24 mm. The inserted nylon and the ECA were 
ligated with black silk to fix the nylon suture. The skin of neck was sutured with black silk. 
Animals were kept on heating pads until they were fully conscious and transferred to animal 
cage. They were performed neurological behavioral tests 24 h after MCAO and euthanized by 
cervical dislocation immediately after neurological behavioral tests. The whole brains were 
carefully isolated from skull and fixed for morphological study. The cerebral cortex tissues 
were separated from the whole brain and collected further experiments.

Neurological deficit scoring test
A neurological deficit scoring test was carried out for the evaluation of neurological behavior 
deficits 24 h after MCAO surgery. It was based on a five-point scale system [22]. It was 
given to animals according to their neurological responses: normal posture and no sign of 
neurological abnormality (no neurological deficit, 0), lack of the ability to completely extend 
the contralateral forelimb (mild neurological deficit, 1), circling to the contralateral side 
(moderate neurological deficit, 2), inability to walk and falling to the contralateral side with 
signs of seizures and sensitivity to stimulus (severe neurological deficit, 3), and no movement 
or no sign of consciousness (very severe neurological deficit, 4).

Corner test
The corner test was performed for the examination of sensory-motor asymmetry [23]. Two 
whiteboards (30 × 20 × 1 cm3) were kept perpendicular at a 30º angle to each other. Small spaces 
in between the boards were kept for animals to move forward to the corner. Animals were kept 
at the wide side of the whiteboards and allowed to move freely toward the corner. When the 
animals reach the corner, their vibrissae was touched to the side of the boards and animals 
turned to the right or left side. The number of left and right turns for each animal was recorded 
and the test was repeated ten times. Animals were trained for seven days before MCAO surgery 
and animals with the same rate of right and left turns were selected for this study.
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Adhesive-removal test
Adhesive-removal test was performed using red adhesive dots with approximately 12 mm in 
diameter for the evaluation of somatosensory sensation [24]. Animals were removed from 
their cages and kept on a table. They were carefully catched from the neck and red dots were 
attached to both the forelimbs. They were kept back in their cage and time for the removal of 
these dots from both the forelimbs was recorded with a stopwatch. The same procedure was 
repeated five times for each animal. Animals were trained for three days before performing 
the MCAO surgery and were selected that successfully removed the dots within 10 sec.

Grip strength test
The grip strength test was performed for the evaluation of strength in the left and right 
forelimbs using a grip strength meter (Jeung Do Bio & Plant Co., Ltd., Korea) [25]. The grip 
strength meter was set to zero and the right or left forelimb was placed on the metal mesh of 
the gripper. When the animals grabbed the metal mesh with their right or left paw, we pulled 
them back from their tails to evaluate maximum force from each forelimb. The test was 
repeated five times for the left and right paw of each animal.

Hematoxylin and eosin staining
Whole brains were carefully removed from the skull and immediately fixed in a 4% 
paraformaldehyde solution. They were sliced with a brain matrix (Ted Pella, USA) and 
washed with tap water for overnight. Tissue slices were dehydrated with graded ethyl alcohol 
series (70% to 100%) and cleaned in xylene. They were kept in the vacuum chamber of the 
paraffin embedding center (Leica, Germany) for 1 h and embedded. Paraffin blocks were 
cut into 4 μm thick sections using a rotary microtome (Leica). Paraffin ribbons were placed 
on glass slides and dried on slide warmer (Thermo Fischer Scientific, USA). Section were 
deparaffinized with xylene, rehydrated in graded ethyl alcohol series (100% to 70%), and kept 
in tap water. Sections were stained with Harris’ hematoxylin solution (Sigma-Aldrich) for 10 
min and washed with running tap water for 10 min. They were dipped in a 1% hydrochloric 
acid solution with 70% ethyl alcohol for differentiation and washed with tap water. They 
were neutralized by dipping in a 1% ammonia solution and washed with tap water. They 
were stained with eosin Y solution (Sigma-Aldrich) for 1 min, dehydrated with graded ethyl 
alcohol series (70% to 100%), and cleaned with xylene. The permount mounting medium 
(Thermo Fischer Scientific) was dropped and the tissues were covered with cover glass. 
The sections were observed and photographed using an Olympus microscope (Olympus, 
Japan). The images of the right cerebral cortex were presented in the results. Five regions of 
the cerebral cortex were selected and damaged cells were counted in each region. Cells with 
shrunken dendrite, vacuoles formation, nucleus condensation were consider as damaged 
cells. Damaged cells were expressed as a percentage of the number of the damaged cells to 
the number of total cells.

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay
We performed TUNEL assay to detect apoptotic cell death and TUNEL assay was performed 
with an ApopTag Peroxidase In Situ Apoptosis Detection Kit (Merck, USA) according to the 
manufacturer’s manual. Paraffin sections were deparaffinized with xylene and rehydrated 
with graded ethyl alcohol series (100% to 70%). Sections were incubated with proteinase 
K (20 µg/mL) for 1 min and washed three times with PBS for 5 min. They were dipped in 
methanol of 3% hydrogen peroxide for 5 min at room temperature, washed three times with 
PBS for 5 min, and incubated with equilibration buffer for 1 h at 4°C. They were reacted 
with working strength terminal deoxynucleotidyl transferase (TdT) enzyme in a humidified 
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chamber for 90 min at 37°C and applied with stop/wash buffer for 10 min to terminate TdT 
enzyme reaction. They were washed twice with PBS for 5 min and incubated with anti-
digoxigenin conjugate in a humidified chamber for 1 h at room temperature. Sections were 
washed with PBS for three times for 5 min, stained with 3,3'-diaminobenzidine (Sigma-
Aldrich), and washed three times with PBS for 5 min. They were counterstained with 
hematoxylin solution, washed with tap water, dehydrated in graded ethyl alcohol series 
(70% to 100%), and cleaned with xylene. They were coverslipped with permount mounting 
medium (Thermo Fisher Scientific, USA) and observed under an Olympus microscope 
(Olympus). Cells stained with dark brown were considered TUNEL-positive cells. We 
randomly selected five regions of the cerebral cortex and TUNEL-positive cells were counted 
in each region. Apoptotic index was expressed as a percentage of the number of the TUNEL-
positive cells to the number of total cells.

Western blot analysis
Right cerebral cortex tissues were homogenized in lysis buffer (1% Triton X-100, 1 mM 
ethylenediaminetetraacetic acid in 1 × PBS [pH 7.4]) containing 200 μM phenylmethylsulfonyl 
fluoride. Homogenized samples were sonicated for 3 min and centrifuged at 15,000 g for 
20 min. The supernatants were collected and the pellets were discarded. Bicinchoninic acid 
protein assay kit (Pierce, USA) was used to determine the concentration of proteins. Protein 
assay was performed according to the manufacturer’s instructions. Total proteins of 30 μg 
were kept in ice and loaded into 10% sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) 
gels for electrophoresis. Samples were electrophorized until the dye went down to the 
bottom of the gels using mini trans-blot cell electrophoresis (Bio-Rad Laboratories, USA). 
The gels were removed from glass plate and proteins were transferred into polyvinylidene 
difluoride (PVDF) membranes in transfer tank for Western blot (Bio-Rad Laboratories). 
PVDF membranes were reacted with a 5% skim milk solution in tris-buffered saline solution 
with 0.1% Tween 20 (TBST) for 1 h at room temperature to block non-specific bindings 
and washed three times with TBST for 10 min. They were incubated overnight at 4°C with 
following primary antibodies: anti-PDK1, anti-phospho-PDK1, anti-Akt, anti-phospho-Akt, 
anti-Bad, anti-phospho-Bad, anti-cytochrome c, anti-caspase-3, and anti-β-actin (diluted 
1:1,000, Cell Signaling Technology, USA, Santa Cruz Biotechnology, USA). Membranes 
were washed three times with TBST for 10 min and incubated with horseradish peroxidase-
conjugated anti-mouse IgG or anti-rabbit IgG (diluted 1:5,000, Cell Signaling Technology) 
for 2 h at room temperature. They were washed three times with TBST for 10 min and reacted 
with chemiluminescence detection reagents (GE Healthcare, UK) for 1 min. Membranes were 
exposed on X-ray film (Fuji Film, Japan) for 1 min, developed in developer solution (Poohung 
Photo Chemical, Korea), washed with tap water, and fixed in fixation solution (Poohung 
Photo Chemical). The detected protein bands were scanned and band intensities were 
calculated with Image J (Media Cybernetics, USA). The relative integrated density of proteins 
was expressed as a ratio of the density of proteins to that of β-actin.

Immunofluorescence staining
Paraffin sections were deparaffinized with xylene and rehydrated in graded ethyl alcohol series 
(100% to 70%). Sections were washed three times with PBS for 10 min and reacted with 1% 
normal goat serum for 1 h at room temperature for blocking of non-specific antibody bindings. 
They were washed three times with PBS for 10 min and incubated with anti-phospho-Akt or 
anti-phospho-Bad (diluted 1:100, Santa Cruz Biotechnology) overnight at 4ºC. They were 
washed three times with PBS and incubated with fluorescein isothiocyanate-conjugated 
secondary antibody (diluted 1:100, Santa Cruz Biotechnology) for 90 min at room temperature. 
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Sections were washed three times with PBS for 10 min, reacted with 4′,6-diamidino-2-
phenylindole (DAPI, Sigma-Aldrich) for 10 min, and cover slipped with fluorescent mounting 
medium (Agilent Technologies, USA). Stained tissues were observed under a confocal 
microscope (FV-1000, Olympus) and images were taken from the cortical region. Relative 
integrated densities were analyzed with Image J (Media Cybernetics) and expressed as a ratio of 
the integrated density of each animal to that of a vehicle + sham animals.

Immunoprecipitation assay
We performed an immunoprecipitation assay to assess the level of interaction between 
phospho-Bad and 14-3-3 proteins. Proteins were extracted from the cerebral cortex in 
the same method that were performed in Western blot analysis. Total protein (200 μg) 
were reacted with protein A/G agarose beads (Santa Cruz Biotechnology) for blockage of 
nonspecific binding of other proteins. The mixture was centrifuged at 5,000 g for 1 min 
and the supernatant was removed. The rest were mixed with anti-14-3-3 antibody and the 
mixture was incubated for overnight at 4°C on a rocker (FINEPCR CR100, Korea). Protein 
A/G agarose beads were added in mixture and reacted for 2 h at 4°C. The mixture was 
washed with radioimmunoprecipitation assay buffer (Sigma-Aldrich) containing PMSF and 
centrifuged at 10,000 g for 1 min. The supernatant was discarded and sample buffer was 
added to the rest. Samples were heated at 100°C for 5 min and centrifuged at 10,000 g for 
10 min. The supernatant was collected and loaded into a 10% SDS-PAGE gel. They were 
electrophoresed until the blue dye went down to the bottom of the gel and transferred to 
PVDF membrane. Membrane was incubated with 5% skim milk solution for 1 h at room 
temperature and incubated with anti-phospho-Bad antibody (1:1,000, diluted with TBST, Cell 
Signaling Technology) overnight at 4°C. They were washed three times with TBST for 10 min 
and reacted with secondary antibody (1:5,000, diluted with TBST, Cell Signaling Technology) 
for 2 h at room temperature. They were washed three times with TBST for 10 min and 
reacted with chemiluminescence detection reagents (GE Healthcare). They were exposed 
on X-ray film (Fuji Film) for 1 min, developed in developer (Poohung Photo Chemical), and 
continuously fixed in fixer (Poohung Photo Chemical). The detected protein bands were 
scanned and band intensities were calculated with Image J (Media Cybernetics).

Statistical analysis
All data is represented as mean ± standard error of means. Two-way analysis of variance 
followed by post hoc Scheffe’s test was used to analyze the differences among groups. The p < 
0.05 was considered to be statistically significant.

RESULTS

Neurological tests were performed to assess behavioral deficits and investigate the protective 
effect of chlorogenic acid on MCAO damage. MCAO animals showed severe neurological 
deficits such as paralysis, loss of balance, and seizures. However, chlorogenic acid treatment 
improved these deficits. The neurological deficit scores were 4.09 ± 0.46 and 2.01 ± 0.28 in 
vehicle + MCAO and chlorogenic acid + MCAO animals, respectively (Fig. 1A). Neurological 
deficits were not found in sham animals regardless of vehicle or chlorogenic acid treatment. 
The results of the corner test showed a significant increase in the number of right turns in 
MCAO animals treated with vehicle. However, chlorogenic acid treatment alleviated this 
increase. The numbers of right turns and left turns were the same in sham animals regardless of 
vehicle or chlorogenic acid treatment. The number of right turns was 9.16 ± 0.27 and 6.13 ± 0.17 
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in vehicle + MCAO and chlorogenic acid + MCAO animals, respectively (Fig. 1B). MCAO damage 
caused sensory motor impairment. The removal time of red adhesive dots was significantly 
increased in MCAO animals treated with vehicle; chlorogenic acid treatment alleviated these 
changes. The time required to remove the adhesive dots was 175.2 ± 8.5 sec and 80.2 ± 6.8 sec in 
the vehicle + MCAO and chlorogenic acid + MCAO animals, respectively (Fig. 1C). In addition, 
the grip strength test was performed. A decrease in grip strength of the contralateral forelimb 
was observed in animals with MCAO damage and was alleviated by chlorogenic acid. The 
grip strength in the left forelimb was 0.14 ± 0.02 and 0.39 ± 0.02 in the vehicle + MCAO and 
chlorogenic acid + MCAO animals, respectively (Fig. 1D). The grip strength of the forelimb was 
nearly identical in vehicle + sham and chlorogenic acid + sham animals.

In addition, severe structural and histopathological changes were observed in the right 
cerebral cortex of MCAO animals. Neuronal and cytoplasmic shrinkage, vacuole formation, 
and shrunken dendrites were observed in MCAO animals (Fig. 2A-D). However, chlorogenic 
acid treatment alleviated the histopathological changes. Sham animals had normal neuronal 
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structure with round nuclei and well-developed dendrites. The number of damaged cells 
was 84 ± 5.77 and 43 ± 5.77 in vehicle + MCAO and chlorogenic acid + MCAO animals, 
respectively (Fig. 2I). TUNEL histochemical staining was performed to detect apoptotic 
cells. An increase in the number of TUNEL-positive cells was observed in MCAO animals, 
and chlorogenic acid treatment attenuated the increase (Fig. 2E-H). The number of TUNEL-
positive cells was 94 ± 6.03 and 39 ± 5.98 in vehicle + MCAO and chlorogenic acid + MCAO 
animals, respectively (Fig. 2I).

The expression of phospho-PDK1, phospho-Akt, and phospho-Bad in the cerebral cortex 
was analyzed. Western blot analysis showed that MCAO damage decreased phospho-PDK1, 
phospho-Akt, and phospho-Bad expression, and chlorogenic acid treatment prevented 
the decrease (Fig. 3A). Phospho-PDK1 level was 0.42 ± 0.03 and 1.06 ± 0.05 in vehicle + 
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MCAO animals and chlorogenic acid + MCAO animals, respectively (Fig. 3B). Phospho-
Akt level was 0.32 ± 0.04 in vehicle + MCAO animals and 0.80 ± 0.03 in chlorogenic acid + 
MCAO animals. Phospho-Bad level was 0.36 ± 0.05 and 0.90 ± 0.03 in vehicle + MCAO and 
chlorogenic acid + MCAO animals, respectively. The protein expression levels were nearly 
identical in sham animals regardless of vehicle or chlorogenic acid treatment. Furthermore, 
PDK1 and Akt expression was maintained at similar levels in vehicle + MCAO animals and 
chlorogenic acid + MCAO animals. The results of immunofluorescence staining confirmed 
the change of phospho-Akt and phospho-Bad levels in MCAO animals (Fig. 4). DAPI staining 
was performed to confirm the nucleus, and phospho-Akt and phospho-Bad were located 
in cytoplasm. These proteins were significantly decreased in the cerebral cortex of MCAO 
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animals with vehicle treatment, but these decreases were alleviated by chlorogenic acid 
treatment. The percentage of phospho-Akt-positive cells was 12.17 ± 2.25 and 36.00 ± 4.05 in 
vehicle + MCAO and chlorogenic acid + MCAO animals, respectively (Fig. 4B). The number of 
phospho-Bad-positive cells was 21.30 ± 3.55 and 59.24 ± 4.02 in vehicle + MCAO animals and 
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chlorogenic acid + MCAO animals, respectively (Fig. 4C). The number of positive cells was 
similar between vehicle + sham and chlorogenic acid + sham animals.

Immunoprecipitation analysis was performed to investigate changes in the interaction 
between phospho-Bad and 14-3-3 proteins in animals with MCAO damage. The interaction 
level decreased in MCAO animals treated with vehicle but chlorogenic acid treatment 
alleviated the reduced interaction (Fig. 5A). Phospho-Bad and 14-3-3 interaction level was 0.62 
± 0.04 and 1.08 ± 0.05 in vehicle + MCAO animals and chlorogenic acid + MCAO animals, 
respectively (Fig. 5B). Changes in cytochrome c expression were also observed in animals 
with MCAO damage. Cytochrome c expression was increased in MCAO animals treated 
with vehicle, and chlorogenic acid treatment alleviated this increase (Fig. 5C). Cytochrome 
c level was 0.91 ± 0.03 in vehicle + MCAO animals and 0.34 ± 0.01 in chlorogenic acid + 
MCAO animals (Fig. 5D). In addition, the expressions of caspase-3 and cleaved caspase-3 
were increased, and these increases were alleviated by chlorogenic acid treatment (Fig. 6A). 
Caspase-3 level was 1.32 ± 0.04 and 0.64 ± 0.04 in vehicle + MCAO animals and chlorogenic 
acid + MCAO animals, respectively (Fig. 6B). Cleaved caspase-3 level was 1.06 ± 0.03 in vehicle 
+ MCAO animals and 0.58 ± 0.05 in chlorogenic acid + MCAO animals (Fig. 6B). The ratio 
between cleaved caspase-3 and caspase-3 level was 0.96 ± 0.05 and 0.87 ± 0.07 in vehicle + 
MCAO animals and chlorogenic acid + MCAO animals, respectively (Fig. 6C). Significant 
difference was not observed between vehicle + sham and chlorogenic acid + sham animals.
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DISCUSSION

The neuroprotective effect of chlorogenic acid on cerebral ischemia was confirmed in the 
present study. Neurological behavior tests were performed to elucidate the neuroprotective 
function of chlorogenic acid. MCAO damage induced severe neurobehavioral disorders, 
and chlorogenic acid alleviated these disorders. Chlorogenic acid also prevented 
histopathological changes and attenuated the number of TUNEL-positive cells in MCAO 
animals. Chlorogenic acid was confirmed to attenuate the apoptosis process caused by 
MCAO damage. Activation of the Akt signaling pathway by chlorogenic acid in an animal 
model of cerebral ischemia was further investigated in the present study.

PI3K plays an important role in cell survival and activates PDK1 [6,7]. The activated PDK1 
consecutively activates Akt, which regulates cell proliferation and survival and prevents 
neuronal cell death. We previously reported that the PI3K/Akt signaling pathway contributes 
to the neuroprotective effects of various neuroprotective agents in cerebral ischemia [26-
28]. Activation of the Akt pathway is an important neuroprotective mechanism in cerebral 
ischemia. Chlorogenic acid activates the PI3/Akt survival pathway in hydrogen peroxide-
induced oxidative stress [19]. Chlorogenic acid represents anti-inflammatory and anti-
apoptotic effects against transient cerebral ischemia [29]. Furthermore, chlorogenic acid 
binds to Akt and regulates downstream proteins including GSK-3β and FOXO1, and protect 
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glucose metabolism [30]. In the present study, cerebral ischemia significantly reduced 
phospho-PDK1 expression and continuously reduced phospho-Akt and phospho-Bad 
expression. These decreases were mitigated by chlorogenic acid treatment. However, total 
protein levels did not significantly change in animals with MCAO damage. The results 
indicate the phosphorylation of these proteins is important for activation of the Akt signaling 
pathway and of a neuroprotective mechanism during cerebral ischemia. Chlorogenic acid 
regulates the phosphorylation of these proteins in cerebral ischemia. In addition, the 
attenuation of decreased phospho-Akt and phospho-Bad levels induced by chlorogenic 
acid was confirmed using immunofluorescence staining. The number of positive cells was 
decreased in animals with MCAO damage, and chlorogenic acid prevented the decrease. 
Activation of phospho-Akt and phospho-Bad is important for cell survival. The results 
of the present study demonstrate that chlorogenic acid activates the PI3K/Akt signaling 
pathway and contributes to a neuroprotective mechanism in cerebral ischemia. Bad is a pro-
apoptotic protein and a representative downstream target of Akt. Growth or survival factors 
phosphorylate Bad and attenuate the pro-apoptotic function of Bad. Thus, the attenuation of 
reduced phospho-Akt and phospho-Bad levels induced by chlorogenic acid in animals with 
MCAO damage shows the neuroprotective mechanism of chlorogenic acid to be associated 
with the Akt and Bad signaling pathway.

The phosphorylation of Bad dissociates Bad from the Bcl-xL and Bad complex. The phospho-
Bad binds to 14-3-3 proteins and attenuates the pro-apoptotic function of Bad [12]. 14-3-3 
interacts with pro-apoptotic proteins such as Bax and Bad [31]. The binding of phospho-
Bad and 14-3-3 continuously inhibits cytochrome c release from mitochondria into the 
cytoplasm, preventing the apoptotic cascade [32]. Thus, the interaction between phospho-
Bad and 14-3-3 proteins is important for cell survival and prevents cell death [33]. Results of 
immunoprecipitation showed a decrease in the interaction between phospho-Bad and 14-3-3 
proteins in cerebral ischemia. Chlorogenic acid alleviated the decrease of phospho-Bad and 
14-3-3 binding. The results showed that chlorogenic acid regulates binding of phospho-Bad 
and 14-3-3 proteins in animals with MCAO damage. Maintenance of phospho-Bad and 14-3-3 
binding is important for preventing the apoptotic function of Bad and attenuating cell death 
[32]. However, information regarding the change in phospho-Bad and 14-3-3 binding in the 
presence of chlorogenic acid during cerebral ischemia is limited. Chlorogenic acid was shown 
to modulate phospho-Bad and 14-3-3 binding in an animal model of stroke. In addition, 
chlorogenic acid alleviated MCAO damage-induced increase in cytochrome c and caspase-3. 
These findings demonstrated the anti-apoptotic effect of chlorogenic acid on cerebral ischemia.

In the present study, chlorogenic acid activated the Akt survival pathway and promoted the 
interaction between phospho-Bad and 14-3-3 proteins, indicating anti-apoptotic properties. 
These findings suggest that chlorogenic acid exerts a neuroprotective effect in cerebral ischemia 
by activating the Akt-Bad signal pathway and maintaining phospho-Bad and 14-3-3 binding.
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