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ABSTRACT
Background: Novel research surrounding anterior
cruciate ligament (ACL) injury is necessary because
ACL injury rates have remained unchanged for several
decades. An area of ACL risk mitigation which has not
been well researched relates to vertical stiffness. The
relationship between increased vertical stiffness and
increased ground reaction force suggests that vertical
stiffness may be related to ACL injury risk. However,
given that increased dynamic knee joint stability has
been shown to be associated with vertical stiffness, it
is possible that modification of vertical stiffness could
help to protect against injury. We aimed to determine
whether vertical stiffness is related to measures known
to load, or which represent loading of, the ACL.
Methods: This was a cross-sectional observational
study of 11 professional Australian rugby players. Knee
kinematics and ACL elongation were measured from a
4-dimensional model of a hopping task which
simulated the change of direction manoeuvre typically
observed when non-contact ACL injury occurs. The
model was generated from a CT scan of the
participant’s knee registered frame by frame to
fluoroscopy images of the hopping task. Vertical
stiffness was calculated from force plate data.
Results: There was no association found between
vertical stiffness and anterior tibial translation (ATT) or
ACL elongation (r=−0.05; p=0.89, and r=−0.07;
p=0.83, respectively). ATT was related to ACL
elongation (r=0.93; p=0.0001).
Conclusions: Vertical stiffness was not associated
with ACL loading in this cohort of elite rugby players
but a novel method for measuring ACL elongation in
vivo was found to have good construct validity.

INTRODUCTION
Anterior cruciate ligament (ACL) injury is a
severe and common injury to the knee. In the
USA, ∼80 000 ACL injuries are reported per
annum, which equates to 28 injuries per
100 000 people.1 In Europe, the incidence of
non-contact ACL injuries has been reported
to be between 34 and 80 injuries per 100 000
people.2 In addition, research from US colle-
giate sports and European professional

football suggests that incidence of ACL injury
has remained relatively unchanged over the
past 30–40 years3 4 in spite of considerable
research being undertaken in the area.4

These statistics are troubling given injury to
the ACL leads to impairment of physical func-
tion acutely,3 and many people who sustain
an ACL injury develop osteoarthritis in the
knee later in life5–10 and other comorbid-
ities11 12 making it a chronic issue also.
Unchanged ACL injury rates demand

novel prevention strategies that concentrate
on dynamic knee joint stability.4 A mechan-
ism of ACL injury risk mitigation which has
not been well studied is vertical stiffness.
‘Stiffness’ is a mechanical variable derived
from Hooke’s law in physics which can be
applied to human movement. Hooke’s law
states that the force required to deform an
object is related to a proportionality constant

What are the new findings?

▪ Anterior tibial translation and anterior cruciate
ligament elongation are strongly related.

▪ Vertical stiffness was not related to anterior tibial
translation and anterior cruciate ligament elong-
ation in muscular male elite rugby players.

▪ That vertical stiffness was not related to anterior
tibial translation or anterior cruciate ligament
elongation might be because vertical stiffness is
associated with increased dynamic knee joint
stability.

How might it impact on clinical practice in
the near future?

▪ Vertical stiffness may be trained without fear of
increased anterior cruciate ligament injury risk.

▪ Anterior cruciate ligament elongation may be
modelled from anterior tibial translation using
the equation y=0.64x+0.24; where y=anterior
cruciate ligament elongation and x=anterior tibial
translation.
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(spring) and the distance that object is deformed.13 14

The ‘spring’ in this case reflects the viscoelastic proper-
ties of the various body tissues and the degree of stiff-
ness is the result of the coordination and interaction of
these tissues including tendons, ligaments, muscles, car-
tilage and bone, and their ability to resist change once
force is applied.15–17 More specifically, vertical stiffness is
a measure of whole body stiffness and is defined as the
quotient of maximum ground reaction force and centre
of mass displacement.16 18 Therefore, vertical stiffness is
subject to the coordination and interaction of tendon,
ligament, muscle, cartilage and bone, and the inter-
action and coordination of dynamic joint stability/stiff-
ness at the spine, hip, knee and ankle joints16 19–25

(figure 1).
Vertical stiffness has been well researched in the area of

sports performance because it has been linked to super-
ior athletic ability,26–30 and because research has shown
stiffness to be easily enhanced. Training programmes
which focus on knowledge of performance, movement
across uneven or unstable surfaces, strength training
and/or plyometrics have all been shown to be effective at
increasing stiffness.13 26 31–35 However, the study of verti-
cal stiffness in the context of sudden or traumatic muscu-
loskeletal injury is relatively novel. Nevertheless, it has
been postulated that vertical stiffness is a risk factor for
common sporting injuries due to increased vertical
ground reaction force.13 36 37 Some research has argued
a relationship between lower limb or vertical stiffness and
bony injuries such as stress fracture.38 However, stress frac-
ture is an overuse injury which can be prevented by
effective load monitoring.39 Thus, stiffness may not be as
problematic for overuse injuries, rather accelerated or
exponential increases in training load and not adhering
to progressive overload training principles might be.
Vertical stiffness has also been implicated as a risk factor
for hamstring strains in two separate research papers,40 41

but work by our research group which addressed notable
flaws in those studies showed increased stiffness is unlikely
a risk factor for muscle strain injury.42 To the authors’
knowledge, no evidence exists to suggest increased verti-
cal stiffness is a risk factor for non-contact connective
tissue injury such as ACL strains.
Given that vertical stiffness is partly regulated by joint

stiffness, or dynamic joint stability, modifying vertical

stiffness may assist in preventing ACL injury particularly
non-contact ACL injury. This concept is supported by
other work previously undertaken by our research group
which showed that greater vertical stiffness is related to
increased hamstring and quadriceps preactivation and
co-activation,15 and that increased co-activation of the
hamstrings and quadriceps reduces ACL elongation and
anterior tibial translation (ATT).43 Therefore, when ver-
tical stiffness is high knee joint stiffness/dynamic knee
joint stability must also be high.16 25

It is possible that vertical stiffness as a risk factor for
ACL injury has not yet been investigated because meas-
uring ACL stress in vivo has been very difficult and is
either invasive or derived from indirect or inaccurate
measures. In fact it is only that recent advances in image
registration technology, whereby CT images are
registered with fluoroscopy (video X-ray) to allow
four-dimensional (4D) motion analysis of bone that
non-invasive measures become more accurate. This tech-
nology, developed by our group, provides the opportun-
ity for measuring kinematics with previously
unachievable precision and, for the first time, enables in
vivo measurement of ATT.44–46 Excessive ATT has been
implicated in serious knee injuries such as ACL injury.4

Furthermore, by using a biomechanical model with the
image registration technology to locate the ACL attach-
ments, measurement of the distance between those
attachments can provide some insight into change in
ACL length, or ACL elongation. This is important
because the ACL will fail when elongation, or conse-
quent strain, is too great.43 47

The aim of this study was to determine if vertical stiff-
ness during a multidirectional hopping task was related
to measures which represent loading of the ACL, specif-
ically ACL elongation and ATT. ACL elongation and
ATT were measured in vivo using image registration
technology with known high precision.45 46 A secondary
aim was to evaluate the relationship between ACL elong-
ation and ATT.

MATERIALS AND METHODS
Experimental approach
This was a cross-sectional observational study of profes-
sional male rugby union players. Ethical approval was

Figure 1 Stiffness (k) is equal to force (x) divided by change in length (Δm). Vertical stiffness (kvert) is a measure of system/

whole body stiffness and is equal to maximum vertical ground reaction force (Fmax) divided by change in whole body centre of

mass (ΔCOM). Vertical stiffness therefore is regulated by the function and interaction/coordination of individual anatomical

structures and stiffness at joints.

2 Serpell BG, et al. BMJ Open Sport Exerc Med 2016;2:e000150. doi:10.1136/bmjsem-2016-000150

Open Access



given by the University Human Research Ethics
Committee. Written informed consent was obtained
from all participants prior to their involvement.

Participants
Participants were conveniently sampled and 11 men
were subsequently recruited to this study aged 26.1
±4.7 years, height 180.5±11.3 cm and mass 85.4±16.5 kg
(mean±SD). Each participant was screened by the rugby
club’s doctor and physiotherapist and deemed to be free
of lower limb injury in the 24 months prior to data col-
lection, and all had ACL intact knees.

Procedures
CT data were collected from participants’ self-reported
dominant leg at 0.5 mm slice intervals on an Aquilion
16 (Toshiba, Tokyo, Japan) 150 mm above and below
the knee joint line prior to them performing a bare-foot
power-cut hop under fluoroscopy (Axiom Artis MP,
Siemens, Munich, Germany). The power-cut hop was a
single-leg exercise requiring a 45° jump in the ipsilateral
direction onto a designated point on a force platform
(Kistler Group, Winterthur, Switzerland), landing on the
ipsilateral leg and jumping off as quick as possible at an
angle of 90° to land on the same leg at a set distance of
1.0 m (figure 2). A power-cut hop was required as
opposed to a running change of direction manoeuvre
due to spatial constraints and because this change of dir-
ection task best replicated the change of direction man-
oeuvre typically observed when non-contact ACL injury
occurs.4 CT data were image registered to fluoroscopy
and knee joint kinematics and ACL elongation were sub-
sequently measured. Vertical stiffness was calculated

from force platform data for each hop and analysed with
the image registration output.

Kinematic analysis
In summary, a 4D model of the motion of femur and
tibia was constructed from CT and fluoroscopy data
from the power-cut hop test using a technique whereby
an algorithm which produces a digitally reconstructed
radiograph from CT data and filters it to construct an
edge-enhanced image is registered to edge-enhanced
fluoroscopy using gradient descent-based image registra-
tion. This method has been well described else-
where.45 46 Still image examples of image registered
output can be seen in figure 3.43 Knee joint kinematics
were subsequently measured in 6-degrees-of-freedom;
anterior–posterior movement (eg, flexion and ATT) was
measured on the x-axis, superior–inferior movement on
the y-axis (eg, compression/distraction) and medial–
lateral movement on the z-axis (eg, medial translation,
abduction). The long axis of the femur provided the ref-
erence for rotation coordinates for the tibia. The error
associated with this CT fluoroscopy image registration
technique is an SD of 0.38 mm for in-plane translations
and 0.42° for rotation.46

ACL attachments were mapped to the image-registered
output and were defined according to the method used
by Grood and Suntay;48 the proximal attachment at the
most superior point of the intercondylar notch of the
femur and the distal attachment was assumed the most
inferior point between tibial plateau spines. ACL length
was considered the distance between those points. Thus,
ACL elongation was the change in, or the difference
between minimum and maximum, ACL length.

Vertical stiffness measurement
Vertical stiffness was calculated according to the protocol
of Cavagna49 and was therefore considered to be the quo-
tient of maximum vertical ground reaction force and
whole body centre of mass displacement. The force plat-
form was interfaced with a personal computer and
Bioware software (Kistler Group, Winterthur, Switzerland)
was used to record vertical ground reaction force at
1000 Hz for each of the power-cut hops. A 10 Hz high-pass
dual-pass Butterworth filter was applied to the raw force
plate data. Data were exported from Bioware to purpose
built software (BioAlchemy, Adelaide, Australia) for the
calculation of vertical stiffness. To calculate the centre of
mass displacement the cumulative sum of the vertical
ground reaction force (N/s) was integrated, and then
point-by-point integration of the previously integrated
force was performed. Reliability of this method has been
reported elsewhere with typical error of measurement
(TEM) of 4.3%. TEM for contact time for the power-cut
hopping task was also reported as 1.7%.15

Statistical analysis
ATT, change in ACL length and vertical stiffness data are
presented as mean±SD. Prior to testing for correlations

Figure 2 Power-cut hop test. For example, in the above

diagram it shows that for a right leg power-cut hop participants

would jump off their right leg from the 1.0 m mark on the right

of the diagram to land on the centre of the force plate on their

right leg, then jump off the force plate as quick as possible

before landing on their right leg past the 1.0 m mark on the

left of the diagram. The power-cut hop was performed under

fluoroscopy to enable construction of a 4D model of the

motion of the femur and tibia for knee joint kinematic analysis;

hence the centre of the force platform was located in the

C-arm of the image intensifier of a fluoroscopy machine. 4D,

four-dimensional.
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data for ATT, change in ACL length and vertical stiffness
were tested for normality with a Shapiro-Wilks test and a
Levene’s test for homogeneity of variance. Pearson’s cor-
relation coefficient was then used to test for the strength
of relationship between vertical stiffness and both ATT
and change in ACL length. Pearson’s correlation coeffi-
cient was also used to test the relationship between ATT
and change in ACL length. A scatterplot for change in
ACL length versus ATT was generated and a linear
regression analysis was performed to describe the rela-
tionship between ACL elongation and ATT. All statistical

analyses were performed using the Statistical Package for
Social Sciences (SPSS) software V.19 (IBM).

RESULTS
Vertical stiffness (kN/m) for the power-cut hopping task
was 68.31±39.47. Knee kinematics derived from the
model showed that ATT was 0.78±0.42 mm and the
change in ACL length was 0.84±0.61 mm.
Neither ATT nor ACL elongation appeared to be

related to vertical stiffness as demonstrated by a non-

Figure 3 Example of typical CT fluoroscopy image registered output for a step up with descriptions of how the knee joint motion

was measured. ACL length was measured as distance the ACL attachments moved relative to each other. ACL, anterior cruciate

ligament.
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significant and non-substantial inverse relationship
between vertical stiffness and ATT (r=−0.05; p=0.89),
and between vertical stiffness and change in ACL length
(r=−0.07; p=0.83; figure 4).
ATT and ACL elongation were strongly related as

demonstrated by a strong and significant relationship
between ATT and change in ACL length (r=0.93;
p=0.0001; figure 5). Furthermore, the linear regression
analysis revealed that the relationship between ACL
elongation and ATT is represented by the equation:

y¼ 0:64x þ 0:24

where y is the ACL elongation/change in ACL length,
and x is the ATT (figure 5) which explained 87% vari-
ation in the data.

DISCUSSION
The main finding of this study was that vertical stiffness
was not related to measures which represent ACL
loading; specifically ACL elongation and ATT.
Furthermore, the novel in vivo method used in this
study to measure ACL elongation was shown to have
good construct validity as evidenced by a strong relation-
ship between change in ACL length and ATT.
The aim of this study was to examine the theory that,

because increased vertical stiffness is related to increased
vertical ground reaction force, it is also related to ACL
loading.13 36 37 Participants were tested using a multidir-
ectional hopping task which simulated the change of
direction manoeuvre typically seen when non-contact
ACL injuries occur. Vertical stiffness was calculated from
force plate measurements and ATT and ACL elongation
were measured in vivo using a novel image registration
method which has been previously validated for meas-
urement of knee kinematics.45 46 48 49 No relationship
between vertical stiffness and ATT or ACL elongation
was observed. Therefore, our results do not support
others’ hypothesis that increased vertical stiffness may be
related to increased ACL injury risk because of increased
vertical ground reaction force. There are two possible
explanations for this result; first and most obviously, ver-
tical stiffness does not contribute to ACL injury risk.
Second, our methods were insufficient to detect an asso-
ciation which was actually present.
This study is novel from the perspective that it is the

first to measure ATT, ACL elongation and vertical stiff-
ness in vivo while executing a task which simulates the
change of direction manoeuvre observed when ACL
injury typically occurs. To the best of the knowledge of
the authors of the present study, a previous study which
has discussed a link between vertical stiffness and ACL
injury has only postulated this relationship theoretic-
ally.13 25 36 50 51 In a previous electromyography study,
we suggested that vertical stiffness on similar hopping

Figure 4 Relationships of vertical stiffness with anterior tibial translation and change in ACL length illustrating no relationship

existed. ACL, anterior cruciate ligament.

Figure 5 The relationship between ACL elongation (change

in ACL length) and ATT. ACL elongation=(0.64×ATT)+0.24.

ACL, anterior cruciate ligament; ATT, anterior tibial translation.
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tasks was likely to be related to increased preactivation
of the hamstring and quadriceps muscles, particularly
when they are co-activated.15 Furthermore, in another
study by our group, and studies by others, have shown
that increased co-activation of the hamstring and quadri-
ceps muscles reduced ATT43 52 53 suggesting that
dynamic factors were responsible for increased dynamic
knee joint stability. Therefore, while increased vertical
ground reaction force might occur with increased verti-
cal stiffness, results from this study, and those of others,
suggest that the ACL may not be subject to additional
loading secondary to high levels of vertical stiffness
because of the primary role played by dynamic knee
joint stability. It should be acknowledged, however, that
under conditions where extreme anterior–posterior,
medial–lateral and/or rotational perturbations are
present the magnitude of the vertical ground reaction
force may not need to be as great for failure of the ACL
to occur. This reasoning is consistent with a previous
animal study which showed that ACL stretch and failure
was exacerbated by extreme perturbations.47

Another possible reason for not finding an association
between vertical stiffness and ACL elongation is that our
methodology was not sufficiently optimised. The ACL
attachment sites used to model ACL elongation was based
on those described by Grood and Suntay.48 According to
this method, the proximal ACL attachment is to the most
superior point of the intercondylar notch of the femur
and the distal attachment is to the most inferior point
between tibial plateau spines.48 However, recent anatomic
studies have shown that the proximal attachment is on the
medial wall of the lateral femoral condyle54 and the distal
attachment attaches slightly anteriorly to the peak of the
medial spine on the tibial plateau.55 These potential ana-
tomical discrepancies may have affected measurement
accuracy56 and led to our failure to find a relationship
between vertical stiffness and ACL elongation.
Nevertheless, in this study, ATTwas strongly related to ACL
elongation indicating good construct validity for this novel
method of measuring ACL length.
There were several limitations to this study. First, we

did not measure muscle activity concurrently. It would
be beneficial to establish further the relationship
between thigh muscle activation and any synergistic rela-
tionship that may exist between the different quadriceps
and hamstring muscles and how they affect ACL elong-
ation on a task similar to that used in the present study.
Combined with kinematic data, this may also enable
modelling of moments which may provide further
insight into the relative force production, and synergistic
force production, between muscles surrounding the
knee joint. However, with the image registration techno-
logy used in this, it is not possible to establish muscle
activity relative to ACL elongation. Muscle activity on this
task and similar other tasks has been established else-
where15 and this must be considered currently. Second,
although ATT and ACL elongation were strongly asso-
ciated they are different measures and therefore can

only be surrogates for each other. This is hardly surpris-
ing, given that ATT occurs in one plane whereas the
ACL length, although primarily modified by anteropos-
terior stress, is also influenced by mediolateral, rota-
tional and decompressive stresses. Therefore, the
relationship found in this study lends support to this
novel method of measuring ACL elongation.

CONCLUSION
This study aimed to determine whether increased vertical
stiffness is related to ACL loading. We used a novel in vivo
method to measure ACL elongation in elite rugby players
on a task which stressed the ACL similarly to that which
would be observed when ACL injury occurs. This novel
method was found to have good construct validity, and
our results showed that ACL elongation was not related to
vertical stiffness in this cohort of elite rugby players. This
study argued that while peak vertical ground reaction
force is likely to increase with increased vertical stiffness,
it is unlikely to overload the ACL because it is relatively
protected due to increased dynamic knee joint stability
which is related to increased vertical stiffness. It is pos-
sible that the direction of force is more problematic to
the ACL. Future studies should also aim to incorporate
electromyography and to test more challenging activities
where force direction is less predictable.
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