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Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease
whose pathogenesis can be conceptualized by a model based on a central role
for immune complexes (ICs) between antinuclear antibodies and nucleic acids.
According to this model, ICs can promote pathogenesis by two main
mechanisms: deposition in the tissue to incite local inflammation and interaction
with cells of the innate immune system to stimulate the production of cytokines,
most prominently type 1 interferon. The latter stimulation results from the
uptake of DNA and RNA in the form of ICs into cells and subsequent signaling
by internal nucleic acid sensors for DNA and RNA. These sensors are likely
important for the response to intracellular infection, although they may also be
triggered during cell stress or injury by DNA or RNA aberrantly present in the
cytoplasm. For IC formation, a source of extracellular DNA and RNA is
essential. The current model of SLE posits that cell death is the origin of the
nucleic acids in the ICs and that impairment of clearance mechanisms
increases the amount of nuclear material in the extracellular space. This model
of SLE is important since it points to new approaches to therapy; agents
targeting interferon or the interferon receptor are examples of therapeutic
approaches derived from this model. Future studies will explore novel
biomarkers to monitor the operation of these mechanisms and to elucidate
other steps in pathogenesis that can be targeted for therapy.
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Introduction
Systemic lupus erythematosus (SLE) is a prototypic systemic 
autoimmune disease that primarily affects young women and 
causes highly variable clinical and serological manifestations1,2. 
Clinically, SLE is marked by inflammation and damage of mul-
tiple organ systems, including the joints, skin, kidney, nervous 
system, and blood. Immunologically, SLE is associated with the 
production of autoantibodies to a wide variety of macromole-
cules, especially those in the cell nucleus (antinuclear antibodies, 
or ANAs). The widespread autoreactivity in SLE has suggested 
a role of more generalized or global immune disturbances in 
pathogenesis. Indeed, studies on immune cell function and phe-
notype have identified a multitude of B- and T-cell disturbances 
that could promote autoreactivity3.

An important clinical condition because of its major impact 
on young women, SLE has been widely studied as a model for 
immune regulation since its pathogenesis involves the most critical 
steps for immune tolerance. In tolerance, the recognition of self-
antigens is prevented by a host of mechanisms operating in 
both B and T cells. In SLE, tolerance is breached and autoanti-
body expression occurs, driving inflammatory manifestations. The 
study of SLE pathogenesis is also important since effective treat-
ment is limited at present and the development of new agents 
for SLE can provide a setting to gain fundamental new insights 
into immunosuppression relevant not only for SLE but also for 
other autoimmune diseases. This review will consider a cur-
rent model for mechanisms underlying the pathogenesis of SLE 
and the implications for the development of new biomarkers and 
treatment.

Model for systemic lupus erythematosus 
pathogenesis
SLE can affect many organ systems; individual patients, however, 
generally show more limited patterns of involvement. Indeed, 
SLE can vary from a relatively mild condition of skin and joints 
to a fulminant condition leading to rapidly progressive glomeru-
lonephritis. Although the basis of this heterogeneity is unknown, 
certain features suggest the operation of some common mecha-
nisms that encompass various patient subsets. Thus, patients 
with SLE almost always produce characteristic ANAs, and ANA 
expression is a criterion for disease classification4,5. In addi-
tion, genome-wide association studies have identified polymor-
phisms highly associated with SLE. In this construct, a variety 
of different genes, including some related to ancestry, may pre-
dispose patients to autoimmunity, and the array of genes in 
association with environmental exposures confer heterogeneity6.

In recent years, studies of patients with SLE and mouse models 
of lupus have produced a coherent, even compelling, model of 
disease to guide investigation and provide a framework for new 
therapy. This model is based on the proposition that, in SLE, aber-
rant responses to nucleic acids disrupt immune regulation and, 
in a genetically susceptible individual, drive ANA production. 
These ANAs in turn can form immune complexes (ICs) with 
nucleic acids that have entered the circulation as a consequence 
of cell death. Disease manifestations result from downstream 
actions of these ICs which have two distinct roles in disease. 

The first role is the deposition in the kidney to induce nephritis, 
an important determinant of morbidity and mortality. The sec-
ond (and perhaps unexpected) role derives from the immuno-
logical actions of nucleic acids that become manifest when in the 
form of ICs7–10. Figure 1 illustrates this model.

Role of antinuclear antibodies
In determining the immunological consequences of ICs contain-
ing nucleic acids, ANA specificity is key. In SLE, ANAs target 
highly conserved nuclear molecules that are present in all cells. 
These antibodies can be conveniently divided into families on the 
basis of the nucleic acid content5,11,12. The first family is directed 
to components of the nucleosome and prominently includes 
anti-DNA. These antibodies bind to both single-stranded and 
double-stranded DNA and react to determinants present on the 
phosphodiester backbone13,14. In contrast, antibodies to RNA- 
binding proteins (RBPs) target complexes of RNA and proteins. 
These complexes are denoted as Sm, RNP, Ro, and La; in all 
cases, the antibodies bind to the protein and not the RNA5,12. 

Figure 1. The role of DNA and anti-DNA in the pathogenesis of 
systemic lupus erythematosus. The figure provides a schema for 
the pathogenesis of systemic lupus erythematosus. In this model, 
as cells die by apoptosis, the nucleus collapses and fragments, 
and the cell body shrinks, producing apoptotic bodies as well as 
microparticles (filled circles) which contain DNA. In addition, the cell 
releases DNA in a free form; in the free form, DNA may be associated 
with histones to form the nucleosome. DNA in microparticles as 
well as free DNA can bind to anti-DNA antibodies to form immune 
complexes. These immune complexes then can deposit in the kidney 
to induce nephritis or can stimulate cytokine production following 
uptake by plasmacytoid dendritic cells. Thus, DNA can start on the 
inside of one cell, translocate to the outside in the blood, and then go 
back into the inside of another cell. A similar mechanism pertains to 
anti-RNA-binding protein (anti-RBP) antibodies, although, for these 
specificities, antibodies bind to the protein rather than the RNA.
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Despite differences in the structure of their antigens and pattern 
of expression, anti-DNA and anti-Sm are both serological criteria 
for SLE.

The screening for ANAs has long been a central element in 
patient evaluation, although the role of specific ANAs in dis-
ease pathogenesis has until now been less certain. Anti-DNA has 
been the exception since, in SLE, there is clear evidence that ICs 
composed of anti-DNA antibodies deposit in the kidney; fur-
thermore, in many patients, levels of anti-DNA rise and fall with 
disease activity, especially nephritis activity. In this situation, 
depression in complement levels can occur concordantly, point-
ing to the presence of ICs. Unlike those of anti-DNA, levels of 
anti-RBPs are frequently static during the course of disease, 
showing little change with disease activity. As such, it has been 
difficult to relate anti-RBPs to either disease activity or particular 
clinical manifestations5,15.

Recent studies, however, have provided a new picture of the 
role of ANAs and revealed a mechanism by which ICs with 
either anti-DNA or anti-RBPs can induce inflammation. This 
mechanism involves the stimulation of cells of the innate immune 
system, especially plasmacytoid dendritic cells, to produce 
type 1 interferon and other pro-inflammatory mediators. Type 1 
interferons are an ensemble of cytokines that are pleiotropic in 
action and can promote many of the clinical and immunological 
features of SLE. With current technology, the presence of type 
1 interferon is usually assessed by the analysis of the pattern 
of gene expression in peripheral blood cells rather than the immu-
nochemical assay of interferon itself16–18. An “interferon signature” 
occurs prominently in many patients with SLE and has spurred 
the development of therapies that target either members of the 
interferon family or the interferon receptor19–22. In this regard, 
levels of interferon may relate to polymorphisms in genes encod-
ing signaling proteins involved in transcriptional control of 
interferon as well as a complex interplay between the nature of 
the ICs and regulations of interferon expression23–25.

Nucleic acid sensors
The reason that ICs with DNA and RNA can drive cytokine 
production relates to the intrinsic immunological properties of 
nucleic acids. Indeed, DNA and RNA both have potent immu-
nostimulatory activity; depending on the source, DNA and RNA 
can serve as PAMPs (pathogen-associated molecular patterns) 
or DAMPs (damage- or death-associated molecular patterns) 
to activate innate immunity via internal nucleic acid sensors. 
These sensors include Toll-like receptor (TLR) 3, 7/8, and 9 as 
well as non-TLR sensors26. Non-TLRs include the nucleotide- 
binding and oligomerization domain (NOD) receptors (or NLRs) 
and the retinoic acid–inducible gene 1 (RIG-1)-like recep-
tors (RLRs). Importantly, these sensors reside on the inside of 
cells in contrast to other sensors or pattern recognition receptors 
(PRRs) which are present on the outer cell membrane (for 
example, TLR 4 for lipopolysaccharide, or LPS).

As shown in in vivo and in vitro systems, internal nucleic acid 
sensors play a key role in host defense against intracellular infec-
tion by viruses and bacteria. Furthermore, internal sensors can 

mediate the response to events such as oxidative stress. In these 
situations, nucleic acids translocate from their usual location or 
compartment and gain access to internal sensors to activate 
inflammation. Among organelles, mitochondria represent an abun-
dant source of DNA that can access internal sensors. Compared 
with nuclear DNA, mitochondrial DNA is more potent immuno-
logically because of its base sequences and content of oxidized 
bases. Perhaps reflecting the origin of mitochondria as symbi-
otic bacteria, mitochondrial DNA resembles bacterial DNA in 
its content of CpG motifs (cytosine guanosine dinucleotides) 
which confer PAMP activity on foreign DNA27,28. Table 1 lists 
determinants of the immune properties of DNA.

While RNA is present abundantly in the cytoplasm of cells, 
stimulation of RNA sensors occurs with particular forms of these 
molecules or the interaction of sensors with RNA in particular 
locations29. Thus, stimulation of the RIG-1 sensor occurs with 
RNA from certain viruses that display characteristic struc-
tural features at the 5′ end of the RNA molecule. For the MDA5 
sensor, stimulation may depend on the length and structure of the 
RNA molecule, including long stretches with base pairs30. For 
TLRs recognizing RNA, the interaction occurs in an endosomal 
compartment, although transport systems can allow movement 
of RNA from the endosomal compartment to the cytoplasm for 
interaction with RLRs31. Another source of stimulatory RNA is 
mitochondrial RNA that has entered the cytoplasm because of 
a deficiency of enzymes involved in degradation32.

Among internal sensing systems, the cyclic GMP-AMP 
synthase–stimulator of interferon genes (cGAS-STING) pathway 
can mediate the response to cytosolic DNA and has attracted inter-
est as a target of therapy in diseases such as cancer and autoim-
munity33,34. In this response, the protein cGAS binds to DNA to 
catalyze the reaction of GTP and ATP to form cyclic GMP-AMP 
(cGAMP). cGAMP in turn binds to STING that leads to the 
phosphorylation of IRF3, which induces the transcription of 
pro-inflammatory genes. Although this pathway may be impor-
tant in host defense to DNA viruses, it can be activated during 
cellular stress when DNA from the nucleus or mitochondria 
translocates to the cytoplasm. Agents targeting the cGAS- 
STING system are in development as novel therapies for SLE35.

Along with systems that sense cytoplasmic nucleic acids are 
systems that degrade DNA and RNA that have gained access to 

Table 1. Determinants of immune properties of DNA.

Sequence 

Size 

Backbone structure 

Oxidation state 

Source (that is, nucleus versus mitochondria) 

Protein binding 

Presence in an immune complex 

Intracellular location
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the cytoplasm. These putatively protective systems include nucle-
ases such as TREX, which is a 3′ exonuclease that can degrade 
double-stranded DNA. In humans, mutations in TREX are asso-
ciated with Aicardi–Goutières syndrome (AGS); AGS has 
some features of SLE as well as prominent production of type 
1 interferon, especially in the central nervous system36,37. Mice 
lacking TREX also develop features of SLE, including myocar-
ditis, suggesting that an increase in intracellular DNA can drive 
disease by triggering internal DNA sensors. This possibility is 
supported by observations that mice with a double knockout of 
TREX and cGAS are protected from autoantibody production 
as well as tissue inflammation38,39.

Mutations in internal nucleic acid sensors and nucleases are 
rare causes of SLE in humans, although these conditions sug-
gest a mechanism by which nucleic acids can drive autoreactivity 
via the internal receptors. In this schema, ANAs are critical 
effectors since they can form ICs that transport DNA and RNA 
into cells of the innate immune system. Once inside the cell, 
nucleic acids can interact with sensing systems to stimulate 
interferon and other cytokines40–43. Since there are sensors for 
DNA and RNA, ICs from both anti-DNA and anti-RBP anti-
bodies can activate this pathway, accounting for the associa-
tion of these ANAs with the interferon signature. Importantly, 
the interferon signature does not vary much with disease activ-
ity, suggesting that anti-RBP antibodies may be prominent play-
ers in this response because of their high titers and chronic 
expression4,15,44–46.

Although ANAs are an important sign of autoimmunity in lupus, 
their presence may not be sufficient to induce disease manifesta-
tions. Indeed, ANA expression can predate clinical disease mani-
festations by many years in a state called pre-autoimmunity47–49. 
Other elements must be present to convert the serological mani-
festations into clinical manifestations. Among these elements, 
self-antigen, present in quantities sufficient to allow IC forma-
tion, may be key. In this conceptualization, the development of 
disease is a two-step process. The first step is ANA production. 
This step may occur in genetically susceptible individuals who, 
following an infection, for example, produce a cross-reactive 
antibody that binds both a foreign and a self-antigen; genetically 
determined disturbances in B- and T-cell regulation may under-
lie a tendency to produce cross-reactive antibodies and breach 
tolerance.

Generation of extracellular nuclear antigens
While ANAs may be pathological (that is, aberrantly produced), 
alone these antibodies may not be pathogenic (that is, cause 
specific disease manifestations). In IC disease, pathogenicity is 
multifactorial and depends on the immunochemical properties 
of antibodies such as avidity and fine specificity as well as the 
availability of self-antigen. Although, by definition, self-antigen 
is always present in the organism, it may not be present in 
sufficient concentrations or locations to form ICs to induce 
nephritis or drive cytokine production. The most likely source of 
self-antigen for IC formation is cell death since every day a 
large number of cells die and can release their contents.

Since DNA and other endogenous molecules (DAMPs) arising 
during death are potentially immunostimulatory, dying cells and 
their “dangerous” contents must be removed in a safe or silent 
way. In addition to the role of phagocytosis, clearance depends 
on serum proteins such as complement, DNases, and RNases 
to manage the load of nucleic acids that could fill the blood50. 
Interestingly, deficiency of C1q, a complement component 
important for clearance, represents a single gene model for 
SLE, suggesting that increased levels of both intracellular and 
extracellular nucleic acids are pathogenic.

As now recognized, cells die by a variety of biochemically and 
morphologically defined forms of death which depend on the 
nature of the inducing stimulus and the cell type. Among these 
death forms, apoptosis occurs in both physiological and patho-
logical settings and involves the systematic disassembly of the 
cell mediated by enzymes known as caspases. During apoptosis, 
DNA along with other nuclear molecules is cleaved and rear-
ranged, possibly to reduce immune activity. Furthermore, as 
apoptosis proceeds, nuclear molecules can translocate to the cell 
membrane to enter blebs. Although the function of blebs is not 
well understood, the localization of nuclear antigens in these 
structures may alter their immunological properties. Given 
the frequency of cell death in the body, apoptosis is often 
considered the death form that creates extracellular DNA and 
RNA51,52.

Apoptosis is not the only death form that can release DNA, how-
ever, since necrosis, a form of accidental cell death, can also 
increase levels of extracellular DNA presumably because of 
cell lysis and destruction that characterize this process. In con-
trast to necrosis, necroptosis is a form of programmed cell death 
that can be induced by a variety of agents and involves the activ-
ity of enzymes known as the receptor-interacting protein kinases. 
Necroptosis can occur with the inhibition of caspases during 
stimulation by TLR agonists, suggesting complex regulatory inter-
actions that can lead to death or activation53. Importantly, cells 
undergoing necroptosis can release nuclear molecules and other 
cellular constituents with immune activity54,55.

A particularly novel death process that occurs primarily with 
neutrophils is termed NETosis56,57. NETosis can be induced by 
a variety of stimuli and is associated with the breakdown of the 
nuclear membrane, the mixing of DNA with the granule enzymes, 
and the extracellular release of a mesh-like structure known as a 
NET (neutrophil extracellular trap). A NET can entrap bacteria 
for killing by the protein components such as myeloperoxidase 
and histones; a NET can also contain mitochondrial DNA. In 
addition to having an anti-bacterial function, a NET can damage 
endothelium and serve as a source of DNA for IC formation58. 
Thus, an increase in the concentration of DNA in the blood 
can occur by a number of mechanisms that operate in SLE.

Although DNA in the blood can exist in a free form (albeit 
attached to histones), it may also be present as a component of 
microparticles (MPs). MPs are extracellular vesicles that can be 
released from activated as well as dead and dying cells, possibly 
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representing blebs that have detached from cells undergoing 
apoptosis59. These subcellular structures are approximately 0.1 
to 1.0 microns in diameter and contain a range of membrane, 
cytoplasmic, and nuclear molecules, including DNA (Table 2). 
Importantly, the DNA in MPs can be bound by anti-DNA anti-
bodies either because it resides on the particle surface or 
because the particle is sufficiently porous to allow the entry of 
antibodies into its interior. As shown with murine monoclonal 
anti-nucleosomal antibodies, only some anti-DNA can bind 
particles, suggesting that the display of DNA epitopes may be 
selective60,61.

Studies using flow cytometry demonstrate that the blood of 
patients with SLE contains increased numbers of particles with 
bound IgG as well as complement. Furthermore, the levels of 
the IgG-positive particles may be related to levels of anti-DNA 
as well as disease activity62–66. There is also evidence that ICs 
containing particles can deposit in the renal glomerulus, as 
shown by histopathologic staining of kidney biopsies for the 
galectin-3-binding protein, a component of MPs67. Together, 
these findings point to MPs as an important source of DNA for 
IC formation. Although ICs have long been considered an essen-
tial element in disease pathogenesis, their physical identifica-
tion using conventional approaches appropriate for analyzing 
soluble complexes has, in fact, been difficult. The formation 
of ICs based on a particle structure would be fundamentally 
different from that of a complex with a soluble antigen and 
would require other analytic techniques for identification and 
quantification, including the use of plasma.

As discussed above, the amount of DNA in the blood depends 
on processes that increase its concentration (that is, cell death) 
and the processes that decrease its concentration (that is, 
nucleases). Although the enzyme DNase 1 can digest DNA, 
studies on a related DNase called DNase 1-like 3 (DNase 1L3) 
have provided a new perspective on the degradative process68,69. 
DNase 1L3 differs in its specificity for DNA from DNase 1. 
Whereas DNase 1 degrades free DNA, DNase 1L3 degrades 

DNA in the form of nucleosomes, likely an important form of 
extracellular DNA. Patients with mutations in DNase 1L3 present 
with a vasculitis-like condition, whereas mice with a knockout 
of the gene for DNase 1L3 develop a lupus-like illness with anti- 
DNA production and a dramatic increase in DNA associated 
with MPs70–74. These observations provide evidence for the rel-
evance of particles as a source of extracellular DNA for IC 
formation and suggest the use of MP-ICs as biomarkers.

Unanswered questions
This model for pathogenesis of SLE is very plausible and has 
considerable support from experimental data. Nevertheless, many 
aspects are unknown. Salient issues that can be the subject of 
future study concern the actual form of DNA (and other nuclear 
molecules) in the extracellular milieu, the specificity of ANAs 
that can form ICs, and the detailed mechanisms for the traffick-
ing of DNA and RNA molecules that are introduced into the 
inside of cells in the form of ICs. In terms of host defense, events 
on the inside of cells are becoming as important as events out-
side of cells. Understanding of events in SLE will therefore need 
fundamental investigation to elucidate the role of immune 
signaling by cytoplasmic nucleic acids in the context of infection.

Conclusions
Historically, SLE has been conceptualized as a disease of ICs 
composed of ANAs and their cognate nuclear antigens. Although 
this basic schema still pertains, recent studies have provided a 
new and unexpected picture of the basic triad of autoantigens, 
autoantibodies, and ICs by demonstrating that (1) nucleic acids 
are immunologically active, (2) nucleic acids can trigger recep-
tors that are part of an internal host defense system, and (3) ICs 
may involve large antigenic structures in which DNA and RNA 
are embedded in particles. Furthermore, recent studies have 
delineated systems that regulate the levels of both intra- and extra-
cellular nucleic acids and thereby their ability to drive inflam-
mation. In this model, DNA or RNA can leave one cell and, via 
ICs, enter another to trigger an internal receptor. Future stud-
ies will translate this basic information into the creation of new 
biomarkers and the development of new therapies that can target 
more specifically the pathways by which nucleic acids initiate 
and sustain autoreactivity.
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Table 2. Properties of microparticles.

Membrane-bound vesicles 

0.1 to 1.0 microns 

Ensemble of nuclear, cytoplasmic, and membrane molecules 

Source of extracellular nucleic acids 

Formation of immune complexes with antinuclear antibodies
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