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Purpose: Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease presenting as multiple phenotypes, such as 
declining lung function, emphysema, or persistent airflow limitation caused by several risk factors, including cigarette smoking and air 
pollution. The inherent complexity of COPD phenotypes propounds difficulties for accurate diagnosis and prognosis. Although 
metabolomic profiles on COPD have been reported, the role of metabolism in COPD-related phenotypes is yet to be determined. In 
this study, we investigated the association between plasma sphingolipids and amino acids, and between COPD and COPD-related 
phenotypes in a Korean cohort.
Patients and Methods: Blood samples were collected from 120 patients with COPD and 80 control participants who underwent 
spirometry and quantitative computed tomography. The plasma metabolic profiling was carried out using LC-MS/MS analysis.
Results: Among the evaluated plasma sphingolipids, an increase in the metabolism of two specific sphingomyelins, SM (d18:1/24:0) and 
SM (d18:1/24:1) were significantly associated with COPD. There was no significant correlation between any of the SMs and the 
emphysema index, FVC and FEV1 in the COPD cohort. Meanwhile, Cer (d18:1/18:0) and Cer (d18:1/24:1) were significantly associated 
with reduced FEV1. Furthermore, the levels of several amino acids were altered in the COPD group compared to that in the non-COPD 
group; glutamate and alpha AAA were substantial associated with emphysema in COPD. Kynurenine was the only amino acid significantly 
associated with reduced FEV1 in COPD. In contrast, there was no correlation between FVC and the elevated metabolites.
Conclusion: Our results provide dysregulated plasma metabolites impacting COPD phenotypes, although more studies are needed to 
explore the underlying mechanism related to COPD pathogenesis.
Keywords: targeted sphingolipids, amino acids, sub-phenotypes, lung function

Introduction
Chronic obstructive pulmonary disease (COPD) is a heterogeneous disease with multiple pathological features, such as 
inflammation, emphysema, chronic bronchitis, and altered lung function.1,2 The underlying mechanisms are complex, 
and there are currently no effective biomarkers of COPD progression, severity, and mortality. A better understanding of 
the pathogenesis of each COPD-related phenotype will enable improved diagnosis and treatment.

Metabolomics is an emerging science that involves analyzing endogenous low-molecular-weight metabolites (≤1500 
Da) in a biological specimen. The metabolome interacts with and reflects the activity of the genome, epigenome, and 
proteome, but is also influenced by factors such as diet, lifestyle, and medications. Providing a snapshot of gene function, 
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enzyme activity, and physiological changes, metabolomics may help inform the heterogeneity of COPD-related pheno-
types. While metabolomics analysis of biofluids (serum, plasma, or urine) and spirometry testing of pulmonary function 
can discriminate between healthy controls and patients with COPD, the associations with clinical COPD-related 
phenotypes have not yet been fully characterized.

Several metabolomics studies have demonstrated metabolic dysregulation in COPD.3,4 A common observation in 
patients with COPD is the dysregulation of sphingolipid metabolism. A growing body of evidence indicates that 
sphingolipids play a key role in the pathogenesis of several lung diseases, such as asthma, acute lung injury, emphysema, 
COPD, and cystic fibrosis.5–8 Ceramides are generated through hydrolysis by sphingomyelinases and produce sphingo-
myelins through sphingomyelin synthase.9 Dysregulation of ceramide and sphingomyelin metabolites is strongly 
associated with COPD.10 Bowler et al reported that levels of some specific sphingomyelins, such as SM (d18:1/16:0), 
were inversely associated with emphysema severity, in contrast to other sphingomyelins, such as SM (d18:1/18:0).10 Low 
baseline plasma sphingomyelin levels have been associated with worse COPD, while high levels have been linked with 
the rapid progression of emphysema.11,12 Similarly, levels of specific ceramides were inversely correlated with emphy-
sema severity, especially Cer (d18:1/16:0).10

Furthermore, amino acids, which are the building blocks of proteins, play a vital role in the intermediary metabolism. 
Active metabolism of amino acids occurs during exercise, with altered levels of several amino acids reported in skeletal 
muscle and plasma. However, evidence supports dysregulated amino acid metabolism in patients with COPD even at 
rest,13,14 suggesting that an abnormal amino acid profile may be a significant risk factor for COPD.

Several studies have investigated the associations between clinical features of COPD and targeted metabolism in 
various populations.15–18 However, studies examining associations between sphingolipid metabolite dysregulation, 
impaired amino acid profiles, and COPD in Asian populations are relatively scarce. Therefore, the aim of the present 
study was to utilize a targeted, quantitative mass spectrometry-based approach for determining plasma levels of 
sphingolipids and amino acid metabolites associated with poor clinical outcomes, including rate of lung function decline 
and increased emphysema index determined using chest CT scan, in a cohort of Korean patients with COPD.

Materials and Methods
Study Design and Population
Participants were divided into COPD (n=120) and non-COPD (n=80) groups according to the standards of the Global 
Initiative for Chronic Obstructive Lung Disease, which defines COPD as a ratio of post-bronchodilator forced expiratory 
volume to forced vital capacity (FEV1/FVC) of < 0.70. Two hundred participants (132 men and 68 women), aged 50–89 
years, were enrolled in the Chronic Obstructive Pulmonary Disease in Dusty Areas (CODA) study,19,20 which was 
designed to observe clinical outcomes of Koreans with COPD near cement plants in the following regions: Gangneung 
(GN), Danyang (DY), Donghae (DH), Samcheok (SC), Yeongwol (YW), and Jecheon (JC). Data and biological speci-
mens collected during baseline examinations of the CODA study between 2012 and 2016 were used in this study. 
Participants with known or suspected cancer or recent (within 3 months) hospitalization were excluded from the study; 
however, patients with comorbid conditions such as atherosclerosis or other lung diseases were included.

A medical interview was conducted as part of the baseline examination and participants completed a survey 
questionnaire. The questionnaire included demographic factors, medical and smoking history, lifestyle factors, current 
medications, exacerbation history, and respiratory symptoms during the past year. A physical examination, blood/urine 
sampling, spirometry, and computed tomography (CT) scan were performed for all participants. All participants in this 
study provided written informed consent. This study was approved by the Kangwon National University Hospital IRB 
(KNUH 2020–06-007) and all study protocols were conducted according to the Institutional Review Board of Kangwon 
National University Hospital.

Measurements
Spirometry was performed using standardized equipment according to the recommendations of the American Thoracic 
Society and European Respiratory Society guidelines.21 Spirometry was performed before and 15 min after inhalation of 
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two puffs of salbutamol to assess the bronchodilator response. The protocols of data collection in the CODA cohort were 
previously described in detail. The spirometry results were expressed as percentages of predicted values based on the 
Korean population.22

Volumetric CT scan measurements were obtained using a 16-multidetector CT scanner (Somatom Sensation 16; 
Siemens Medical Systems, Bonn, Germany), based on the protocol used in the Korean Obstructive Lung Disease 
(KOLD) study.23 The emphysema index, defined as the percentage of low attenuation area in the lung (≤ 950 
Hounsfield units, %LAA-950HU), and airway wall thickness, defined as the percentage of mean wall area measured 
in two segmental bronchi, were derived using in-house software from the KOLD study.

Targeted Metabolomics
Plasma samples (100 μL) were mixed with 300 μL chloroform/methanol (1/2, v/v) and an internal standard solution. The 
internal standard contained 10 μM13 C5-glutamine, 0.4 μM serotonine-d4, 0.6 μM dopamine-d4, 2 nM tryptophan-d5, 6 
nM serine-d3, 50 nM lysine-d8, and 50 nM Cer (d18:1/17:0), and was normalized for the LC-MS/MS method. Liquid- 
liquid extraction was performed by incubating the mixture for 15 min at 4 °C, followed by centrifugation at 14,000 rpm 
for 15 min. The lipid phase was collected for sphingolipid measurement and dried under vacuum. The aqueous phase was 
used for chemical derivatization of amino acids using phenyl isothiocyanate. The derivatized amino acids were further 
extracted with 5 mM ammonium acetate in methanol and dried under vacuum. The dried matter was reconstituted with 
either methanol or H2O/acetonitrile (50/50, v/v) prior to LC-MS/MS analysis.

Amino acids and sphingolipids were analyzed using a 1290 Infinity UHPLC system (Agilent Technologies, Palo Alto, 
CA, USA) with a Qtrap 5500 LC-MS/MS system (AB Sciex, Framingham, MA, USA). The injection volume was 3 μL 
and samples were ionized using a turbo ion spray interface. For amino acids analysis, a reverse-phase column (Zorbax 
Eclipse XDB-C18100 ×2 mm; Agilent Technologies) was used with mobile phases A and B consisting of 0.2% formic 
acid in H2O and acetonitrile, respectively. The flow rate was 500 μL/min and the column temperature was 50 °C. The 
separation gradient was as follows: 0% B for 0.5 min, 0 to 95% B for 5 min, 95% B for 1 min, 95 to 0% B for 0.5 min, 
and 0% B for 2.5 min. For sphingolipids, a reverse-phase column (Pursuit 5 C18, 150×2.1 mm; Agilent Technologies) 
was used with mobile phases A (5 mM ammonium formate/MeOH/tetrahydrofuran [500/200/300, v/v/v]) and B (5 mM 
ammonium formate/MeOH/tetrahydrofuran [100/200/700, v/v/v]). The LC flow rate was 200 µL/min and the column 
temperature was 35 °C. The separation gradient was as follows: 50% B for 5 min, 50 to 70% B for 3 min, 70% B for 7 
min, 70 to 90% B for 7 min, 90% B for 3 min, 90 to 50% B for 0.1 min, and 50% B for 4.9 min. Multiple reaction 
monitoring was performed in positive ion mode, and the extracted ion chromatogram corresponding to the specific 
transition for each analyte was used for quantification. Data analysis was performed using Analyst 1.5.1 software.

Statistical Analysis
Comparison of baseline characteristics between COPD and non-COPD groups was performed using Student’s t-test and 
chi-square test. Categorical variables were described as N (%). Continuous variables were reported as the mean ± 
standard deviation (SD). Since sphingolipid metabolism and amino acid profiles were not normally distributed, they were 
analyzed by log-transformation. A linear regression model was used to determine the effects of COPD, emphysema, lung 
function (FEV1, FVC), sphingolipid metabolism and amino acid profiles, adjusting for age, sex, smoking status, pack 
years, GOLD grade, Charlson Comorbidity Index (CCI), and drug history. All analyses were performed using SAS 
version 9.4 (SAS Institute, Inc. Cary, NC, USA), and statistical significance was set at P < 0.05.

Results
Korean COPD Cohort Demographics and Clinical Characteristics
The baseline clinical characteristics of the study participants (n=200) are summarized in Table 1. Participants were 
recruited from rural regions of South Korea near cement plants, with 80 (40%) and 120 (60%) participants in the non- 
COPD and COPD groups, respectively. The average age of the participants was 72.14 ± 6.66 years (non-COPD group = 
70.71 ± 7.41 years, COPD group = 73.09 ± 5.96 years). Overall, 66% of the participants were male and 34% were 
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Table 1 Demographics Data for Participants Included in the Current Study

All (n=200) Non-COPD (n=80) COPD (n=120) *p-value

*Mean ± SD or N (%)

Age, mean (SD) 72.14±6.66 70.71±7.41 73.09±5.96 0.0176
50–59 11(5.5) 7(8.8) 4(3.3)

60–69 45(22.5) 26(32.5) 19(15.8)

70–79 127(63.5) 40(50.0) 87(72.5)

80–89 17(8.5) 7(8.8) 10(8.3)

Gender 0.4360

Male 132(66.0) 48(60.0) 84(70.0)

Female 68(34.0) 32(40.0) 36(30.0)

Smoking 0.0471
Current 57(28.5) 17(21.3) 40(33.3)

Former 63(31.5) 23(28.7) 40(33.3)

Never 80(40.0) 40(50.0) 40(33.3)

Pack-years 19.06±22.94 16.03±21.50 21.11±23.74 0.1283

BMI 23.22±3.01 24.02±3.05 22.69±2.86 0.0020
Region 0.4050

GN 15(7.5) 7(8.8) 8(6.7)

DY 19(9.5) 10(12.5) 9(7.5)

DH 5(2.5) 2(2.5) 3(2.5)

SC 33(16.5) 8(10.0) 25(20.8)

YW 81(40.5) 34(42.5) 47(39.2)

JC 47(23.5) 19(23.8) 28(23.3)

Baseline examination, year 0.0307
2012 133(66.5) 53(66.3) 80(66.7)

2013 36(18.0) 11(13.7) 25(20.8)

2014 22(11.0) 8(10.0) 14(11.7)

2015 3(1.5) 3(3.8) 0(0.0)

2016 6(3.0) 5(6.2) 1(0.8)

Gold grade <0.0001
0 80(40.0) 80(100.0) 0(0.0)

1 52(26.0) 0(0.0) 52(43.3)

2 58(29.0) 0(0.0) 58(48.3)

3 or 4 10(5.0) 0(0.0) 10(8.4)

Drug History

ICS/LABA 12(6.0) 2(2.5) 10(8.3) 0.0888

Lung Function

FVC (L) 2.92±0.80 2.94±0.79 2.90±0.82 0.7726

FVC (%) 96.69±19.23 97.44±19.48 96.18±19.13 0.6526

FEV1 (L) 1.92±0.61 2.22±0.59 1.72±0.54 <0.0001
FEV1 (%) 87.19±23.04 100.21±21.85 78.50±19.57 <0.0001
FEV1/FVC 65.77±10.33 75.66±4.75 59.17±7.32 <0.0001

Emphysema index 6.13±6.68 3.22±3.73 7.86±7.42 <0.0001
Comorbidity

CCI 0.63±1.01 0.84±1.23 0.46±0.79 0.0047
Inflammatory

CRP 0.31±0.72 0.29±0.68 0.33±0.74 0.7739

IL-6 2.70±3.64 2.44±3.03 2.84±3.94 0.5025

IL-8 17.28±21.29 18.99±29.23 16.35±15.37 0.4337

Notes: *Data are presented as n or mean ± SD. P-values were determined using Student’s t-test or the chi-square test to 
compare categorical variables. The bold values denote statistical significance at the p < 0.05 level. 
Abbreviations: BMI, body mass index; Regions: GN, Gangneung; DY, Danyang; DH, Donghae; SC, Samcheok; YW, 
Yeongwol; JC, Jecheon; Drug History: ICS/LABA, inhaled corticosteroids/ long-acting beta agonists; Comorbidity: CCI, 
Charlson Comorbidity Index.
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female. Among them, 28.5% of participants were current smokers, 31.5% were former smokers, and 40% were 
nonsmokers. The COPD group had a significantly higher number of current and former smokers than the non-COPD 
group (p-value = 0.0471). The body mass index (BMI) was significantly lower in the COPD group than in the non-COPD 
group (p-value =0.002). Furthermore, GOLD severity was assigned as stage 1 in 52 (26.0%), stage 2 in 58 (29.0%), and 
stage 3 or 4 in 10 (5.0%) participants. The COPD group had a significantly decreased value of FEV1/FVC than that in the 
non-COPD group (p-value = 0.0001). The emphysema index was significantly higher in the COPD group than that in the 
non-COPD group (p-value =0.0001). In cases with comorbidity, CCI was estimated and it was statistically significant in 
COPD (p-value = 0.0047). Participants with a drug history of inhaled corticosteroids (ICS) and long-acting beta-agonists 
(LABA) were evaluated; it did not have a statistically significant (p-value = 0.0888) influence. In addition, the peripheral 
levels of C-reactive protein (CRP), interleukin (IL)-6, and IL-8 were altered in the COPD group compared to that in the 
non-COPD group; these are markers of systemic inflammation status and the differences were not significant.

Geometric Analysis of Specific Plasma Sphingolipid Classes and Amino Acid Profiles of 
COPD Patients
Sphingolipids are highly associated with COPD prevalence.24 Therefore, the associations between specific sphingolipid 
classes and COPD-related phenotypes were investigated. The list of sphingolipids included Cer (d18:0/14:0), Cer (d18:0/ 
16:0), Cer (d18:0/18:0), Cer (d18:0/18:1), Cer (d18:0/20:0), Cer (d18:0/24:0), Cer (d18:0/24:1), SM (d18:0/18:0), SM 
(d18:0/18:1), SM (d18:0/16:0), SM (d18:0/24:0), and SM (d18:0/24:1). Additionally, several reports have indicated that 
patients with COPD exhibit disturbed amino acid metabolism.3,25,26 Thus, the amino acid profiles of the COPD and non- 
COPD cohorts were compared. The results of the geometric analysis indicated that sphingolipids SM (d18:0/16:0), SM 
(d18:0/24:0), and SM (d18:0/24:1) were significantly associated with COPD (p-value: 0.0200, 0.0392, and 0.0027, 
respectively) (Table 2).

Associations Between Specific Plasma Sphingolipid Classes and Amino Acids with 
COPD-Related Phenotypes
Relationships were investigated between specific sphingolipids and amino acids with COPD-related phenotypes, repre-
sented by different ranges of emphysema index, FEV1, and FVC values (Table 3). First, the plasma sphingolipids, Cer 
(d18:1/18:0) and Cer (d18:1/24:1) were significantly associated with reduced FEV1 (p-value: 0.0203 and 0.0366, 
respectively) however, no Cer was significantly associated with the emphysema index and FVC. Overall, no significant 

Table 2 Statistical Correlations Between Plasma Metabolites and COPD

Non-COPD (n=80) COPD (n=120) *p-value 
of t-test

Linear Regression

LSmean SD LSmean SD beta *p-value

Ceramides (nM)
C14 2.70 0.05 2.78 0.05 0.3411 0.084 0.3411

C16 5.61 0.04 5.61 0.03 0.8987 0.008 0.8987

C18 4.80 0.07 4.76 0.05 0.7525 0.033 0.7525
C18_1 3.03 0.06 3.00 0.05 0.7956 0.023 0.7956

C20 4.91 0.07 4.94 0.05 0.7681 0.028 0.7681

C24 7.92 0.06 7.96 0.05 0.6808 0.037 0.6808
C24_1 7.09 0.06 7.05 0.05 0.6547 0.040 0.6547

SM18_0 9.46 0.05 9.53 0.04 0.3057 0.076 0.3057

SM18_1 8.70 0.05 8.76 0.04 0.4468 0.054 0.4468
SM16_0 11.10 0.04 11.18 0.03 0.1743 0.079 0.1743

SM24_0 9.72 0.06 9.90 0.04 0.0357 0.177 0.0357
SM24_1 10.51 0.05 10.60 0.04 0.0265 0.086 0.0265

(Continued)
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Table 2 (Continued). 

Non-COPD (n=80) COPD (n=120) *p-value 
of t-test

Linear Regression

LSmean SD LSmean SD beta *p-value

Amino acids (μM)
Glycine 4.68 0.10 4.73 0.07 0.7166 −0.050 0.7166

Alanine 6.05 0.09 5.97 0.07 0.5640 −0.078 0.5640

Serine 4.12 0.09 4.12 0.07 0.9783 −0.003 0.9783
Proline 3.68 0.09 3.62 0.07 0.6830 −0.055 0.6830

Valine 7.43 0.06 7.29 0.04 0.0894 −0.139 0.0894

Threonine 4.32 0.09 4.26 0.07 0.6767 −0.055 0.6767
Taurine 2.99 0.10 3.01 0.07 0.8997 0.017 0.8997

t4_OH_Pro 1.27 0.14 1.00 0.10 0.1722 −0.268 0.1722

Leucine 6.26 0.06 6.12 0.05 0.1158 −0.146 0.1158
Isoleucine 5.27 0.07 5.09 0.05 0.0701 −0.172 0.0701

Asparagine 3.66 0.09 3.62 0.07 0.7211 −0.045 0.7211
Aspartate 2.74 0.11 2.77 0.08 0.8780 −0.023 0.8780

Glutamine 5.92 0.08 5.92 0.06 0.9854 0.002 0.9854

Glutamate 4.69 0.11 4.70 0.08 0.9693 0.006 0.9693
Methionine 7.11 0.13 6.87 0.10 0.2158 −0.238 0.2158

Histidine 2.72 0.09 2.85 0.07 0.2937 0.134 0.2937

Alpha_AAA 0.84 0.11 0.83 0.08 0.9415 0.012 0.9415
Phenylalanine 4.05 0.05 3.97 0.04 0.3114 −0.074 0.3114

Arginine 2.93 0.10 3.00 0.07 0.6114 0.072 0.6114

Ac_Orn −0.23 0.12 0.11 0.09 0.0552 0.338 0.0552
Citrulline 4.00 0.10 4.09 0.08 0.5656 0.085 0.5656

Tyrosine 3.35 0.09 3.33 0.06 0.8644 −0.021 0.8644

ADMA −1.70 0.09 −1.54 0.06 0.1981 0.160 0.1981
SDMA −1.33 0.10 −1.18 0.07 0.2771 0.149 0.2771

Tryptophan 4.54 0.06 4.48 0.04 0.4283 −0.069 0.4283

Kynurenine 1.01 0.08 1.05 0.06 0.7455 0.039 0.7455
Ornithine 5.39 0.07 5.17 0.05 0.0251 −0.229 0.0251

Met_SO 6.80 0.06 6.67 0.04 0.1056 −0.129 0.1056

Notes: *This p-value was used for the Student’s t-test and chi-square test for the analyses of the non-COPD and COPD groups followed by 
linear regression analysis, respectively. Here, bold values indicates a statistically significant correlation with a p-value less than 0.05. The data was 
adjusted for age, smoking, pack years, BMI, Gold grade, drug history, and CCI and then analyzed using log transformation.

Table 3 Statistical Correlations Between Plasma Metabolites and COPD Phenotypes, Represented by the 
Emphysema Index, FEV1, and FVC

Emphysema FEV1 FVC

Beta *p-value Beta *p-value Beta *p-value

Ceramides (nM)
C14 0.002 0.6198 0.010 0.8677 0.024 0.5297

C16 0.001 0.7500 −0.053 0.1914 −0.031 0.2367
C18 −0.002 0.7321 −0.109 0.0203 −0.064 0.1524

C18_1 −0.001 0.7956 −0.027 0.6452 −0.005 0.8955

C20 −0.003 0.5472 −0.082 0.1990 −0.047 0.2495
C24 −0.001 0.7397 −0.081 0.1718 −0.053 0.1582

C24_1 0.001 0.8425 −0.123 0.0366 −0.035 0.3635

SM18_0 −0.004 0.2664 −0.002 0.9702 −0.006 0.8432
SM18_1 −0.002 0.5824 −0.029 0.5328 −0.013 0.6654

(Continued)
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correlation was identified between any SM and the emphysema index, FVC and FEV1 in the COPD cohort. Next, 
associations were investigated between amino acid metabolism and COPD-related phenotypes, represented by different 
ranges of emphysema index, FEV1, and FVC values. Furthermore, glutamate and alpha AAA were significantly 
associated with emphysema in COPD (p-value: 0.0055 and 0.0451, respectively). Of all amino acids, only kynurenine 
was significantly associated with reduced FEV1 in COPD (p-value: 0.0437). On the other hand, none of the amino acids 
correlated with FVC.

Discussion
This study investigated dysregulation of targeted sphingolipid and amino acid metabolism in a Korean COPD cohort 
living near cement plants. Interestingly, specific ceramide and sphingomyelin metabolite dysregulation was observed, 
some of which was significantly associated with worse lung function in patients with COPD. Additionally, significantly 

Table 3 (Continued). 

Emphysema FEV1 FVC

Beta *p-value Beta *p-value Beta *p-value

SM16_0 0.002 0.5882 −0.0003 0.9947 −0.007 0.7756
SM24_0 0.003 0.4815 −0.018 0.7449 −0.009 0.8063

SM24_1 0.002 0.6800 0.018 0.7221 0.016 0.6246

Amino acids (μM)
Glycine −0.006 0.3301 0.030 0.7387 0.003 0.9533

Alanine −0.011 0.0844 0.012 0.8900 −0.040 0.4878

Serine −0.009 0.1411 0.006 0.9419 −0.026 0.6314
Proline −0.012 0.0575 0.001 0.9902 −0.049 0.3957

Valine −0.0003 0.9489 −0.020 0.7198 −0.032 0.3625

Threonine −0.0006 0.9213 −0.048 0.5849 −0.042 0.4572
Taurine −0.006 0.3361 −0.002 0.9784 −0.010 0.8626

t4_OH_Pro −0.007 0.4609 −0.197 0.1306 −0.096 0.2503
Leucine 0.0001 0.9894 0.027 0.6619 −0.036 0.3639

Isoleucine −0.004 0.4310 −0.056 0.3779 −0.064 0.1142

Asparagine −0.009 0.1187 0.027 0.7499 −0.055 0.3062
Aspartate −0.014 0.1304 −0.007 0.9414 0.013 0.8458

Glutamine −0.006 0.3138 −0.027 0.7270 −0.049 0.3243

Glutamate −0.020 0.0055 −0.094 0.3596 −0.053 0.4176
Methionine −0.004 0.6853 0.007 0.9580 0.034 0.6779

Histidine −0.009 0.1345 0.086 0.3097 0.017 0.7524

Alpha_AAA −0.015 0.0451 −0.009 0.9287 −0.013 0.8516
Phenylalanine 0.005 0.1904 −0.050 0.3055 −0.024 0.4429

Arginine −0.014 0.1398 0.095 0.3111 −0.001 0.9803

Ac_Orn −0.003 0.7510 −0.047 0.6910 0.003 0.7163
Citrulline −0.008 0.2555 −0.013 0.8925 −0.027 0.6699

Tyrosine −0.008 0.1666 0.015 0.8542 −0.042 0.4336

ADMA −0.007 0.2140 −0.088 0.2870 −0.072 0.1774
SDMA −0.005 0.4598 −0.072 0.4255 −0.080 0.1677

Tryptophan −0.002 0.5637 0.029 0.6168 0.013 0.7170

Kynurenine 0.001 0.8120 −0.036 0.0213 −0.035 0.4899
Ornithine −0.003 0.5142 −0.001 0.9835 −0.003 0.9485

Met_SO 0.004 0.2383 −0.038 0.4802 −0.021 0.5487

Notes: *This p-value was used for the Student’s t-test and chi-square test for the analyses of the metabolites and COPD phenotypes followed 
by linear regression analysis, respectively. Here, bold values indicate a statistically significant correlation with a p-value less than 0.05. The data 
was adjusted for age, smoking, pack years, BMI, Gold grade, drug history, and CCI and then analyzed using log transformation.
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elevated levels of some amino acids were detected in patients with COPD. Thus, the results demonstrated a relationship 
between specific sphingolipid and amino acid metabolism patterns and COPD-related phenotypes in a Korean cohort.

Sphingolipids are important structural components of cellular membranes. They interact with several proteins to 
regulate a wide-range of cellular processes, including cell death, proliferation, differentiation, autophagy, and 
migration.27,28 Sphingolipids are found in all types of eukaryotic cells and are a unique category of lipids that contain 
a backbone of sphingoid bases. Based on the O-linked R group, sphingolipids are sub-classified into sphingosines, 
sphingomyelins, ceramides, or glycosphingolipids.29 Chronic airway inflammation is a known key pathophysiology in 
COPD.30 In addition, sphingolipids have been recognized to be involved in the inflammatory process.9 In this study, most 
of the ceramides and sphingomyelins were increased in COPD patients, and some specific sphingomyelins were 
significantly associated with COPD, such as SM (d18:1/24:0), and SM (d18:1/24:1). Ceramides can also be metabolized 
to ceramide 1-phosphate and sphingosine 1-phosphate, and both were known as anti-inflammatory sphingolipids.9 

Although the levels of ceramide 1-phosphate and sphingosine 1-phosphate were not measured in this study, more 
increased expressions of sphingomyelins comparing to those of ceramides in COPD may indicate that ceramides are 
mainly metabolized to sphingomyelin, not to ceramide 1-phosphate and sphingosine 1-phosphate. Therefore, beyond the 
identification of the sphingolipid metabolome as a biomarker for worse prognosis for patients with COPD, this 
metabolomic analysis provides important preliminary data that can be used to study some of the mechanisms that 
participate in COPD pathogenesis. As the determinants of the variation between the individuals for most metabolites are 
unknown, the mechanisms underlying most of these associations remain unclear. Nevertheless, more studies are needed, 
including human and animal studies that examine the manipulation of diet, physical activity, and other lifestyle factors, to 
gain a full understanding of the normal inter-individual variation. A molecular understanding of the differences that affect 
the metabolome may lead to a better understanding of COPD.

Circulating amino acids are the main components involved in several physiological functions, such as gluconeogen-
esis, protein synthesis, cell signaling, and immunity.31 Growing evidence supports the view that an abnormal amino acid 
profile may be a significant risk factor for COPD.32,33 Previous studies have reported decreased serum concentrations of 
many amino acids in COPD patients compared to healthy individuals.13,15 Additionally, lower amino acid concentrations 
were associated with worse clinical outcomes in the active smoking group. Furthermore, some amino acid concentrations 
were inversely associated with exacerbation frequency in COPD patients.34 Under certain conditions, skeletal muscle is 
the major source of amino acids for other tissues. However, plasma free amino acid concentrations are balanced between 
exogenous uptake and metabolites produced during protein synthesis and breakdown.35 Several studies have suggested 
that amino acid profiles are disturbed in the plasma and skeletal muscle of patients with COPD.13,14,25,36

Glutamate and alpha AAA were significantly associated with emphysema in COPD. Glutamate and alpha-AAA 
concentrations are significantly altered in association with emphysema and COPD severity.15,37 According to Ubhi et al, 
in emphysematous patients of the ECLIPSE cohort, the levels of glutamine, serine, histidine, arginine, proline, 
asparagine, aspartic acid, glycine–proline, and lysine were increased, compared to that in the non-emphysematous 
patients.15 However, the concentration of aminoadipic acid decreased in patients with severe COPD (GOLD IV) and 
emphysema.15 Analysis of the serum from 30 COPD patients and 30 former and never-smokers identified 41 metabolites 
as markers of COPD, using PLS-DA.38 These included lower glutamate levels, and elevated arginine and phenylalanine 
levels.38 Furthermore, our study findings indicated that kynurenine was significantly associated with reduced FEV1 in 
COPD (Table 3). Our results coincide with a report showing elevated kynurenine levels in COPD patients with a decline 
in lung function.39 Importantly, whether kynurenine or other amino acids mechanistically contribute to lung function 
decline or to other COPD phenotypes remains unknown. Kynurenine, known to be associated with systemic inflamma-
tion, is accompanied with induced indoleamine 2,3-dioxygenase activity and tryptophan catabolism. In addition, the 
elevated levels of circulating kynurenine reported in non-COPD subjects might be associated with increased Kyn/Trp 
ratios, as observed in tuberculosis, pulmonary arterial hypertension, and lung cancer cases.40–42 Therefore, the ability of 
this marker to effectively discriminate COPD should be confirmed in additional studies that include other lung 
pathologies.

This study had several limitations that could influence the context of the results. Prolonged storage of samples in bio- 
banks can lead to artificial alterations in metabolite levels resulting in data bias in metabolomics experiments.43 However, 
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we used samples that satisfied the collection and storage criteria defined in the earlier metabolomics study.44 The amino 
acids and lipids in human plasma are rarely altered within the first seven years of storage.45 Second, although several 
metabolites were significantly associated with emphysema and lung function indicators in patients with COPD, the 
relatively small sample size limited the statistical power of the analysis and selection of statistical methods. Thus, 
causality needs to be confirmed with further studies. Third, although correlations between metabolite changes and lung 
function were adjusted for age, smoking status, and BMI, exogenous factors such as diet, alcohol, or medication may also 
lead to metabolic changes. Additional studies should assess the possible effects of these factors. Forth, the results of this 
study did not reveal the biological mechanisms underlying the detected metabolite changes or explore the power of 
dynamic metabolites to predict disease progression and survival, which are clinically significant. Nonetheless, the study 
identified metabolites associated with lung function that might influence the pathogenesis of COPD and provides 
a potential basis for drug development.

Conclusion
In conclusion, our study provides important information regarding associations between plasma sphingolipid and amino 
acid metabolism and lung function indicators of patients with COPD. The presence of COPD-specific metabolic changes 
supports the use of relevant metabolites as biomarkers in COPD. Future studies should investigate the potential 
relationship between these metabolites and COPD pathogenesis, thus laying the groundwork for application of molecular 
biomarkers for disease diagnosis, prediction of disease progression and severity, and selection of appropriate treatments.
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