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ABSTRACT Increasing popularity of high-throughput phenotyping technologies, such as image-based
phenotyping, offer novel ways for quantifying plant growth and morphology. These new methods can be
more or less accurate and precise than traditional, manual measurements. Many large-scale phenotyping
efforts are conducted to enable genome-wide association studies (GWAS), but it is unclear exactly how
alternative methods of phenotyping will affect GWAS results. In this study we simulate phenotypes that
are controlled by the same set of causal loci but have differing heritability, similar to two different
measurements of the same morphological character. We then perform GWAS with the simulated traits and
create receiver operating characteristic (ROC) curves from the results. The areas under the ROC curves
(AUCs) provide a metric that allows direct comparisons of GWAS results from different simulated traits. We
use this framework to evaluate the effects of heritability and the number of causative loci on the AUCs of
simulated traits; we also test the differences between AUCs of traits with differing heritability. We find that
both increasing the number of causative loci and decreasing the heritability reduce a trait’s AUC. We also
find that when two traits are controlled by a greater number of causative loci, they are more likely to have
significantly different AUCs as the difference between their heritabilities increases. When simulation results
are applied to measures of tassel morphology, we find no significant difference between AUCs from GWAS
using manual and image-based measurements of typical maize tassel characters. This finding indicates that
both measurement methods have similar ability to identify genetic associations. These results provide a
framework for deciding between competing phenotyping strategies when the ultimate goal is to generate
and use phenotype-genotype associations from GWAS.

KEYWORDS

AUC
GWAS
heritability
ROC

As image-based methods for quantifying plant phenotypes grow in
popularity, they present the ability to measure phenotypes that pre-
viously could not be easily quantified as well as an alternative way to

measure phenotypes that previously had to bemanually quantified. The
types of novel phenotypes enabled by image analysis include fractal
dimension (Gage et al. 2017), principal component analysis of plant
organ biomass (Miller et al. 2016) or shape (Chitwood et al. 2014), and
topological methods for quantifying branching patterns (Li et al. 2017).
Image-based phenotyping enables increases in resolution, such as in
Miller et al. (2016) scanning maize ears on a flatbed scanner at 1,200
dots per inch; it enables advances in accuracy, such as quantifying
disease resistance (Bock et al. 2010); and it enables scalability and
throughput, by building multiple imaging devices (Durham Brooks
et al. 2010) or using a mobile imaging device (Men et al. 2012).
However, image-based phenotype measurements are not always as
accurate as high quality manually measured phenotypes, though the
decrease in accuracy may be paired with an increase in throughput or
decrease in cost if high quality manual phenotypes are time consuming
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or expensive to measure. Though it is not strictly an image-based
method of phenotyping, one example of the tradeoff of accuracy for
efficiency is the use of near infrared reflectance spectroscopy (NIRS),
which has been used for decades as a way to predict chemical compo-
sition of silage feedstock without costly, expensive, and sometimes
hazardous wet lab assays (Park et al. 1998).

Potential tradeoffs between measurement accuracy and throughput
need to be carefully considered by scientists preparing for large-scale
experiments. In the fields of plant breeding and plant genetics, genetic
mapping experiments are one example of the type of study where such
considerations are crucial. Genome-wide association studies (GWAS)
involve measuring a phenotype, usually in a replicated population of
hundreds to thousands of genetically distinct individuals, then scanning
for statistical associations between individuals’ phenotype and their
genotype at numerous genetic loci. In such studies, the accuracy and
precision with which a phenotype is measured will have a direct impact
on the ability to detect genetic associations by GWAS.

At its core, GWAS involves testing for a difference in phenotype
between individuals with different genotypes at a particular single
nucleotide polymorphism (SNP). This process is repeated separately
for hundreds of thousands of SNPs across the genome. Ideally, SNPs
within or near genes that have some effect on the phenotype of interest
will result in strong statistical associations. As such, the precision
and accuracy of phenotypic measurements influence the ability to
detect statistical differences between groups of individuals with differ-
ent alleles. The heritability of a phenotype, defined as the ratio of
genotypic variance to phenotypic variance, is a useful way to quantify
the proportion of phenotypic variability that is attributable to genetic
differences between individuals. All other components held equal,
heritability will increase as precision of phenotypic measurement in-
creases, due to decreasing apparent phenotypic variability from mea-
surement error. Two methods of measuring the same ‘true’ phenotype
with differing precision will have different heritability, and thus differ-
ent power to detect SNPs that are statistically associated with the ‘true’
phenotype of interest. For the remainder of this study we will refer to
the ‘true’ phenotype of an individual as its character, and will refer to
different measurements of a character as traits.

In addition to heritability, another parameter that affects power in
GWAS is the number of loci that control a character. For two characters
measured with the same heritability, one controlled by fewer loci will
have on average a larger proportion of variance explained by each locus.
Power todetect an association at a particular locus is positively related to
the proportion of phenotypic variance explained by that locus (Visscher
2008). Thus, phenotype-genotype associations for characters controlled
by a large number of small-effect loci tend to bemore difficult to detect.

Increased throughput of image-based phenotyping methods can
make it possible to collect measurements of more traits on more
individuals than by manual measurement, which makes image-based
phenotyping an attractive way to generate phenotypic data for GWAS.
We can consider the manual measurement and the image-based mea-
surement of an individual character to be two traits with differing
heritability but the same exact set of causative loci. As in the NIRS
example above, researchersmay sometimes prefer a less precisemethod
formeasuring a character because it is cheaper, faster, or otherwisemore
desirable. It is unclear just how much loss in precision (decrease in
heritability) can occur before GWAS results begin to suffer. Part of the
answer to this question lies in the goals and risk tolerance of the
researcher: if the goal of the experiment requires identification of
few, strong signals then perhaps lower power to detect associations will
still be tolerable; if instead the goal is to identify many small-effect loci,
then even small reductions in heritability could negatively impact the

outcome of the study. In this experiment, we use simulations to in-
vestigate the relationship between trait heritability and the ability to
detect genetic regions associated with a character. We use receiver
operating characteristic (ROC) curves to characterize detection of
causative loci. Previous studies have used ROC curves or similar visual
aids to evaluate the efficacyof differentGWASmethods (e.g.,Wang et al.
2014; Liu et al. 2016). In this study, however, we use ROC curves to
evaluate GWAS results for simulated traits, and test for differences
between those ROC curves using the area under the curve (AUC).
Using AUC to distill GWAS results to a single statistic enables direct
comparison of GWAS results from traits with differing simulation
parameters. We utilize a method that leverages generalized U-statistic
theory for testing the null hypothesis that the AUCs of two correlated
ROC curves, representing two distinct measurements of the same char-
acter, are the same. This test statistic is used to construct an empirical
null distribution from traits simulated with the same parameters, and
the distribution is used to predict whether real traits measured manu-
ally and by image analysis, which are expected to have different heri-
tabilities, have significantly different AUCs. These results provide a
foundational framework for evaluating how differences in heritability
between two measures of a character can impact the efficacy of GWAS
for identifying loci associated with the character of interest.

MATERIALS AND METHODS

Plant populations: phenotyping and genotyping
TheWisconsinDiversity panel (WiDiv-942) is a set of 942 inbredmaize
lines that reachgrainphysiologicalmaturity in theupperMidwest region
of theUnitedStates (M.Mazaheri,M.Heckwolf, B.Vaillancourt, J.Gage,
B.Burdo, S.Heckwolf,K.Barry,A.Lipzen,C.BastosRiviero,T.Kono,H.
Kaeppler, E. Spalding, C.Hirsch,C.R. Buell,N. de Leon, andS.Kaeppler,
unpublished data), and represents an expanded version of the 503 line
diversity panel described by Hirsch and colleagues (Hirsch et al. 2014).
Phenotypicmeasurements of tasselmorphology in theWiDiv-942were
performed using both manual and image-based measurements. Man-
ual and image-based measurements are described in detail in (Gage
et al. 2018). Briefly, manual measurements included tassel length (TL),
the distance (cm) from the lowest tassel branch to the tip of the tassel
spike; spike length (SL), the distance (cm) from the uppermost tassel
branch to the tip of the tassel spike; branch number (BN), the total
number of primary tassel branches; and tassel weight (TW), the weight
(g) of the dried tassel biomass above and including the lowest branch.
Image-based measurements were made using the output of the tassel
phenotyping software TIPS (Gage et al. 2017). The data output by TIPS
are image-based measurements of tassel morphology and were used as
explanatory variables in a partial least squares regression model that
performs image-based predictions of TL, SL, BN, and TW (referred to
as TLp, SLp, BNp, and TWp, respectively) (Gage et al. 2018). The
WiDiv-942was grown using a replicated complete block design in three
different environments: the University of Wisconsin Arlington Agri-
cultural Research Station in the summers of 2013 and 2014, and the
University of Wisconsin West Madison Agricultural Research Station
in the summer of 2015. TL, SL, and BN were measured in all three
environments, while TW, TLp, SLp, BNp, and TWp were measured
only in 2015. Best linear unbiased predictors (BLUPs) for each inbred
line for all eight traits were calculated using random effects models to
account for environment, genotype-by-environment, and replication
effects (Gage et al. 2018).

TheWiDiv-942was genotyped at 899,784 SNPs discovered by RNA
sequencing (Mazaheri et al., unpublished data). SNP data contained
30% missing data, which were imputed using fastPHASE (Scheet and
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Stephens 2006). After imputation, 0.3% of SNP calls were missing, due
to inability of the imputation program to call all missing SNPs. The
remaining missing data at any given SNP were imputed to the mean
value for that SNP. SNPs with a minor allele frequency of,0.02 were
removed from the genotypic data, leaving 529,018 remaining SNPs.

Simulated phenotypes
Heritability (h2) is the ratio of genetic variability s2

g in a population to
overall phenotypic variability s2

p ¼ s2
g þ s2

e , where s
2
e is all variance

not attributed to differences between genotypes. Thus, h2 ¼ s2
g

s2
p
is a

measure of the strength of genetic signal in a particular population
for a particular phenotype. Two different measures of the same char-
acter, for instance, TL and TLp, can be thought of as correlated traits
with the same underlying genetic control but differing heritabilities.
The true value of the character for a particular individual cannot be
measured perfectly, but both the manual and image-based measure-
ments of the character represent a combination of true signal and some
(differing) amount of measurement error.

To simulate traits with similar behavior, effect sizes were randomly
drawn from a normal distribution for a set of randomly chosen SNPs
genotyped in the WiDiv-942, and the ‘true’ phenotypic value was cal-
culated for each of the 942 individuals. In a second step, noise was
added to each individual’s true value in order to attain a desired her-
itability. We varied both the number of causative loci (NCL), to sim-
ulate traits controlled by differing numbers of variants, and the
heritability of simulated traits. The NCL was set to 10, 100, and 1000,
and h2 ranged from 0.1 to 0.9 in increments of 0.1. The causative loci
were randomly selected a single time from all SNPs genotyped in the
WiDiv-942. The phenotype for an individual i for a trait controlled by
NCL = n SNPs and heritability h2 is yi ¼

Pn
l¼1 wilal þ ei. The stan-

dardized genotypic value, wil ¼ gil 2 2pffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð12 pÞ

p is the genotype gil of individ-

ual i at SNP l, expressed as 0, 1, or 2 copies of the major allele, centered
by twice the major allele frequency, p, and divided by the standard
deviation of the SNP. The allelic effect al was drawn from Nð0; 10Þ,
and ei fromNð0; s2

e Þwheres2
e ¼

s2
g

h2

� �
2 s2

g . The variance for allelic

effects was set arbitrarily, but could be any reasonable number as the
error variance is modified to ensure the desired heritability. Genotypic
variance s2

g was calculated simply as the sample variance of the pop-
ulation’s true phenotypic values. For each combination of n and h2,
phenotypes were simulated 10 times. The difference between each
simulation with the same set of parameters is simply the ei, representing
random draws from the same distribution each time. In total, 270 traits
were simulated: pairwise combinations of 3 levels of n and 9 levels of h2,
each replicated 10 times.

Genome-wide association studies
Genome-wide association studies (GWAS) were conducted with the
software GAPIT (Lipka et al. 2012), implemented in R (R Core Team
2016). The same kinship matrix, calculated from 10,000 randomly
selected SNPs by the VanRadenmethod in GAPIT (VanRaden 2008;
Lipka et al. 2012), was used for all GWAS and no other covariates
(e.g., principal component scores) were included in the model.
Compression was turned off by setting the group.to and group.from
parameters to 9999. GWAS was run separately for each of the
270 simulated traits.

Receiver operator characteristic curves
Receiveroperator characteristic (ROC)curves are typicallyusedtoassess
the ability of a particular method for identifying the true, binary status
(case or control) of an individual based on various threshold levels of a

continuous predictor variable. The roc() function in the R package
pROC (Robin et al. 2013) was used to construct ROC curves from
GWAS results by considering each SNP as an ‘individual’ and coding
the randomly selected causative SNPs as cases in the response, while all
other SNPs were considered controls. The –log10(p-value) of each SNP
was used as the predictor variable. A separate empirical ROC curve was
fitted to the GWAS results for each of the simulated traits. A represen-
tative ROC curve was estimated from all 10 replicates of each parameter
combination by calculating themean of the sensitivities and specificities
along the curve.

The ROC curves for different traits can be compared quantitatively
by testing for differences in their AUCs. The GWAS ROC curves
described in the preceding section are not independent of each other,
because for each comparison the causative and non-causative loci are
identical. Some of the original methods for testing differences between
non-independent ROC curves relied on the assumption that the pop-
ulations being compared by the ROC curve were both normally dis-
tributed (Metz et al. 1984).However, the assumption of normality is not
met by the distribution of –log10(p-values) from GWAS, so a nonpara-
metric approach is needed instead.

Fortunately, the empirical AUC of an ROC curve is equivalent to the
statistic generatedby aMann-Whitney test on thepredictor scoresof the
case and control groups (Bamber 1975). The Mann-Whitney test is a
nonparametric test of the null hypothesis that two samples have the
same distribution, because they were either drawn from the same pop-
ulation or from two populations with the same underlying distribution.
The test relies on the assumptions that the samples are random and
independent. With the additional assumption that the two sampled
populations have the same shaped distribution, theMann-Whitney test
becomes a test of the null hypothesis that both samples have the same
median (Upton and Cook 2008).

The Mann-Whitney statistic belongs to a class of unbiased statistics
called U-statistics. Because AUCs are equivalent toMann-Whitney test
statistics, generalU-statistic theorycanbeused tocompareAUCstoeach
other. DeLong et al. (1988) describe methods that leverage U-statistic
theory to test contrasts between correlated AUCs. This methodology
can be used to test the null hypothesis that the AUCs of two ROC
curves are equal. The test statistic described by DeLong et al. (1988),
under the null hypothesis and assumption of independence, is called ‘Z’
and is asymptotically normal with mean zero and variance that is a
function of the sample sizes.

In the context of the AUCs from our GWAS of simulated traits,
the AUC is theoretically equivalent to a Mann-Whitney statistic
where the two samples being compared are the p-values of causative
and non-causative loci. This equivalency holds even when the two
samples being compared are in violation of the assumption that they
follow the same distribution (which is the case for p-values of
causative and non-causative loci), as long as the sample sizes are
large enough (Bamber 1975). For AUCs that are not close to zero or
one, sample sizes in the high single digits to double digits appear
sufficient (Bamber 1975). One caveat associated with treating the
AUCs as Mann-Whitney statistics is that the GWAS p-values of
causative and non-causative loci are not independent between or
within samples; SNPs in LD with each other are likely to have
similar p-values. Because the GWAS results from this study violate
the assumptions of the Mann-Whitney test, we still calculate and
use the Z statistic to test for differences between AUCs, but do not
make the assumption that the distribution of Z is normal. Rather, we
assume that ROC curves created from GWAS results on traits with
the same parameters (i.e., NCL and heritability) should not have
significantly different AUCs. Therefore, the empirical distribution
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of Z when the difference in heritability (D) between two traits equals
zero is used as the distribution of Z under the null hypothesis that
the AUCs of two ROC curves are the same. Thresholds for significance
at a=0.05 were calculated empirically from the 2.5th and 97.5th percen-
tiles of the null distribution of Z.

Z-scores were calculated for tests of the difference between all
pairwise combinations of ROC curves with the same NCL using the
roc.test() function in pROC with the method argument set to ‘delong’
(Robin et al. 2013).

Estimating Z scores and confidence intervals for
real phenotypes
Because the relationship between Z and D for pairs of simulated
traits was approximately linear, we fit a simple linear regression of Z
against D separately for each value of NCL. Using the differences
between estimated heritability for each pair of real traits (TL and
TLp; SL and SLp; BN and BNp; TW and TWp), we predicted the
value of Z for each character at different NCL using the fitted
regressions. Using the thresholds for significance derived from
the empirical distribution of Z when D = 0, we tested the null
hypothesis that the two traits, measured by different methods, have
the same AUC for each character at each NCL.

Data availability
Genotypic data are available from doi: 10.5061/dryad.6tg35t6. Pheno-
typicdata for tassel traits are available inSupplemental File S3 fromGage
et al. (2018). Scripts for analysis can be found at github.com/joegage/
GWAS_AUC. Supplemental material available at Figshare: https://
doi.org/10.25386/genetics.7097813.

RESULTS

Manual and image-based phenotypes are
highly correlated
Empirical phenotypic dataused in this study comes frommorphological
measurements of the male inflorescence of maize, known as the tassel.
Four tassel morphological characters were measured manually and by
image analysis in theWisconsin Diversity panel, a population of 942 di-
verse inbred maize lines (WiDiv-942). The manually measured traits
were tassel length (TL), spike length (SL), branch number (BN), and
tasselweight (TW), andtheir image-basedcounterparts are referred toas
TLp, SLp,BNp,andTWp, respectively.TL,SL, andBNweremeasured in
replicated experiments over three years, while the other five traits were
measured in a replicated experiment in one year. Best linear unbiased
predictors (BLUPs) for manually measured traits are highly correlated
with BLUPs for the corresponding image-based traits, with Pearson’s
correlation coefficients ranging from 0.81 to 0.9 (Figure 1) (Gage et al.
2018). Estimated heritability for the traits ranges from 0.95 to 0.97 for
manually measured traits and from 0.79 to 0.86 for image-based traits
(Table 1) (Gage et al. 2018). TL, SL, and BN were measured in three
environments, and all image-based traits as well as TW were measured
in a single environment. The smaller number of environments could
cause lower heritability estimates of the image-based traits, making it
reasonable to conclude that the image-based heritability estimates rep-
resent a lower bound for their true heritabilities.

Power in GWAS of simulated traits varies with
heritability and number of causal loci
To create a framework for comparing traits measured manually and by
image analysis, we first performed simulations to examine the impact

Figure 1 Correlations between manual and image-
based phenotypic values. Scatter plots of best linear
unbiased predictors (BLUPs) for manual vs. image-
based measurements of tassel length (TL; A), spike
length (SL; B), branch number (BN; C), and tassel
weight (TW; D). Manually measured BLUPs are along
the x-axis, while image-based measurements are on
the y-axis. Values in the upper left corner of each plot
are the Pearson correlation coefficients for each trait.
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of heritability and number of causative loci (NCL) on GWAS results.
Wefirst simulatedanumberof traitswithdifferentheritabilityandNCL.
Phenotypes were simulated as being controlled by single nucleotide
polymorphisms (SNPs) from the WiDiv-942, which was genotyped at
529,018 SNPs discovered by RNA sequencing. Simulated phenotypes
were controlled by varying NCL: 10, 100, or 1,000 randomly selected
SNPs were randomly assigned effect sizes drawn from a normal distri-
bution. For each of the three values for NCL, traits were simulated with
heritabilities ranging from 0.1 to 0.9 in increments of 0.1. Each com-
bination of NCL and heritability was simulated ten times. GWAS were
performedon all simulated phenotypes, and empirical ROCcurveswere
created with the results from each GWAS. ROC curves plot the pro-
portion of true positives (true positive rate; TPR) against the proportion
of falsepositives (falsepositive rate; FPR), as the threshold for labelingan
observation as positive moves from stringent to more liberal. The ROC
curve for a test with very good ability to identify true positives without
toomanyfalsepositiveswill rise steeply fromtheoriginandapproach the
point (0, 1), before flattening out and continuing on to the point (1,1),
producing an AUC close to 1. A test that is no better than randomly
guessing which observations are positives will yield an ROC curve that
follows a line with slope equal to one from the origin to (1,1), producing
an AUC of 0.5.

ROC curves are typically constructed by classifying a number of
individuals as either cases or controls, based on some continuous
predictor variable. The TPR and FPR are calculated at different levels
of the predictor variable to create the curve. To create ROC curves for
GWAS results each SNP is treated as an individual, the true status of

which is either causative (case) or non-causative (control). The contin-
uous predictor variable is the –log10(p-value) for each SNP from
GWAS.

Our empirical results show that for any given NCL, simulated traits
with higherheritability generally hadbetterROCcurves, asmeasuredby
AUC (Figure 2). This was expected, as greater heritability implies
greater genetic variance relative to error, which makes it easier to
identify associations between phenotypic values and genotypic groups
at causal loci. However, higher heritability does not guarantee better
ROC curves as there are ROC curves with different heritability that
intersect, particularly when the NCL is low (Figure 2).

For any given heritability, the NCL plays an even larger role in the
shape of theROCcurve,with traits controlled bymore loci havingworse
ROC curves than those with fewer loci (Figure 2). This result was also
expected. The effect sizes of individual loci become smaller as NCL
increases, making detection of true associations more difficult.

Heritability and number of causal loci influence ability to
detect differences between ROC curves
Inorder toevaluatewhether thedifference inheritability (D)betweentwo
traits has a significant effect on GWAS results, we used a nonparametric
method for testing the null hypothesis that two correlated ROC curves
have the same AUC (DeLong et al. 1988). We hypothesized that as D
between two traits increased so would the test statistic, Z, corresponding
to a difference between AUCs of the two traits. We tested all 90 AUCs
with the same NCL (10 replications times nine levels of heritability)
against each other, resulting in ð90 � 89Þ=2 ¼ 4; 005 test statistics
for each NCL (comparisons between each pair of traits were only made
once). The goal of this study is to assess how differing heritability of two
measurements of the same underlying character affects GWAS results.
Because manual and image-based measurements of a character have
equivalent underlying genetic structure, we limited our comparisons
to AUCs of simulated traits with the same NCL.

TheZscores for eachpairwise testof two traitswere regressedagainst
D (Figure 3). As expected, the Z values get more extreme as D gets
larger – this is a reflection of higher heritability traits generally having
larger AUCs than lower heritability traits. Note that the tests were
always done in a consistent direction; therefore we mostly observed
results with positive Z scores. The relationship betweenD andZ ismore
extreme for simulated traits with greater NCL. Practically, this indicates
that within the assumptions of these simulations, heritability plays a

n Table 1 Comparison of manual and image-based trait heritabilities

Trait Name (unit)

Abbreviation Heritability

Manual Image-Based Manual Image-Based

Tassel Length (cm) TL TLp 0.95 0.79
Spike Length (cm) SL SLp 0.95 0.79
Branch Number

(count)
BN BNp 0.97 0.82

Tassel Weight (g) TW TWp 0.96 0.86

Heritabilities for four different tassel morphological traits, measured both
manually and using image-based methods. TL, SL, and BN were measured in
three environments, whereas TW, TLp, SLp, BNp, and TWp were measured in
one environment.

Figure 2 Receiver operating characteristic curves for GWAS results of simulated traits controlled by 10 (A), 100 (B), or 1000 (C) causal loci. For
each number of causal loci, simulation of traits with heritabilities ranging from 0.1 to 0.9 were replicated 10 times each. Each curve represents the
average of the ten replications for each combination of causal loci and heritability. TPR: true positive rate; FPR: false positive rate; h2: heritability.
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smaller role in the ability to detect GWAS associations when the trait is
controlled by a small NCL. ROC curves for traits with more complex
genetic architectures, however, deteriorate more quickly as heritability
declines.

Alternative measurements of real phenotypes are not
predicted to have differing AUCs
Having established an empirical relationship between Z and D for
different NCL, we then used the results from our simulations to
predict whether there is a significant difference between the AUCs
of manual and image-based traits of a real character. We used the
estimated heritabilities of manual and image-based measurements
of TL, SL, BN, and TW to predict whether AUCs for the two
measurement methods will be significantly different. We fit a re-
gression between Z scores and D values for each different NCL and
used that regression to obtain a predicted value of Z for each trait
pair based on D estimates for manual measurements and image-
based measurements. The estimates of D for real trait pairs were 0.1
(TW), 0.14 (BN), 0.16 (TL), and 0.17 (SL), with the manually
measured trait always having higher heritability than the image-
based trait (Table 1). The predicted values of Z for each trait ranged
from 0.15 to 0.26 when NCL = 10, from 0.47 to 0.75 when NCL
= 100, and from 0.70 to 1.10 when NCL = 1,000 (Figure 3). For each
NCL we used the distribution of Z scores when D = 0 and set
the 2.5th and 97.5th percentiles as thresholds for significance to test
the null hypothesis that two traits have the same AUC at a=0.05.
The thresholds were (-1.26, 1.09) for NCL = 10, (-1.49, 1.25) for
NCL = 100, and (-1.44, 1.60) for NCL = 1,000. Regardless of NCL,
predictions of Z for all four tassel traits fall within the thresholds
for significance (Figure 3). Therefore, under the assumptions made

in these simulations the manual and image-based measurements
are expected to have AUCs that are not significantly different from
each other.

DISCUSSION
In this study, we use AUCs of ROC curves constructed from GWAS
results of simulated traits to test for significantdifferences in theability to
detect common genetic signal underlying traits with differing herita-
bility. Our results show that as D increases, the test for differences
between the traits’ AUCs becomes more significant. Though there is a
strong relationship betweenD and Z, there is also substantial variability
for Z scores at a given value of D. We predicted Z scores for real tassel
morphological traits using the relationship between D and Z of simu-
lated traits. Because each tassel trait was measured by manual and
image-based methods, we predicted Z using D from the estimated
heritabilities of the two measurement methods. Regardless of NCL,
the predicted values of Z for real tassel traits were within the thresholds
for significance that were calculated from the null distribution of Z.
Based on these results, we conclude that there is unlikely to be a sig-
nificant difference between AUCs of measurements made by different
methods for any of the four tassel morphological phenotypes studied.

This conclusion is highly dependent on the assumptionsmadewhen
creating simulated traits and performing subsequent GWAS. Here, we
assumed independent and randomly positioned causal SNPs, when in
fact quantitative traits can be controlled in part by numerous causal
variants clustered on the same locus (Lango Allen et al. 2010). Addi-
tionally, by choosing causal SNPs directly from the WiDiv-942 geno-
typic data, we are assuming that the causal variants are SNPs that are
part of our genotypic data. The 529,018 SNPs used in this study are a
small sample relative to the 60 million variants identified in the maize

Figure 3 Results of testing area under
the curve for simulated phenotypes.
The Z score for testing the difference
of two AUCs is plotted against the
absolute difference in heritability (D)
between the two traits. Traits are
controlled by 10 (A), 100 (B), or
1000 (C) causal loci. Small gray dots
represent the Z score from a single
pairwise test between simulated traits,
while horizontal gray bars represent
the median Z score for a given D.
Larger colored dots represent the D
estimates for real traits, plotted along
the line that best fits the Z scores of
the simulated data. Dashed lines rep-
resent the thresholds for significance
at a=0.05 (i.e., 2.5th and 97.5th per-
centiles), calculated from the empirical
distribution of Z when D = 0. BN:
branch number; SL: spike length; TL:
tassel length; TW: tassel weight.
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HapMap3 (Bukowski et al. 2015), and do not include other variant
types that can affect quantitative traits such as insertion/deletion and
copy number variants. By selecting causative SNPs from our genotyped
SNPs, we make the true associations easier to find by GWAS. In reality,
causative variants may not be genotyped and therefore can only be
identified by linkage disequilibrium with genotyped SNPs. For simplic-
ity’s sake, we drew the simulated effect sizes at each causal SNP from a
normal distribution. Previous work by Hayes and Goddard (2001) has
shown that quantitative traits in livestock appear to follow a gamma
distribution with a large number of very small effect loci; they posit that
there may be even more small effect loci than predicted by their dis-
tributions. This idea can be seen in its most extreme form in the
omnigenic model proposed by Boyle et al. (Boyle et al. 2017) which
is based on Fisher’s infinitesimal model (Fisher 1919). By drawing our
effect sizes from a normal distribution, we may be creating more large-
effect variants than is realistic, therefore increasing our ability to detect
causal variants by GWAS.

Thoughourchoices for locationandeffect sizeof causativeSNPsmay
be increasing the probability of detecting associations, we also assume
that only identifying an exact chosen causative SNP counts as a true
positive. In reality, identifying associationswithSNPs that arewithin the
same gene as, or a small distance away from, the true causative SNPmay
be close enough.GWASoften serves as an initial sweep tofindregionsof
interest for further study, and associations that lead to fruitful down-
stream analysis may still be considered a ‘success’. This is reflected in
software that calculate power of GWAS by considering associations
within a certain distance of the causative variant to be true positives
(Liu et al. 2016). By only considering the exact causative SNPs as true
positives we make the true positives more difficult to identify, partially
counteracting the assumptions above that make the detection of asso-
ciations easier.

By trying to predict the Z score for the difference between AUCs of
real traits, we also make some assumptions about the tassel morpho-
logical traits that we use. Our estimates of heritability are not exact; they
are population- and experiment-specific. Because the image-based traits
and TW were measured in one environment, whereas TL, SL, and BN
weremeasured in three, their estimates of heritabilitymayhavediffering
accuracy. By predicting Z scores for the real traits forNCL set to 10, 100,
and 1,000, we were able to predict how Z scores changed as NCL
changed. The trueNCL for tasselmorphological traits likely numbers in
the hundreds or higher, with an upper limit of the total number of
expressed genes (tens of thousands), as posited in the omnigenic model
(Boyle et al. 2017). If the trueNCL is greater than 1,000, the relationship
between Z and D will be even steeper, meaning that the small values of
D for the real tassel morphological traits may in fact result in signifi-
cantly different AUCs.

The use of AUC as a metric to quantify the success of GWAS is also
accompanied by assumptions about the goals of GWAS. ROC curves,
and thus theAUC, consider bothpower and type I error, asmeasuredby
true and false positive rates.Depending on the goals of theGWAS study,
power and type I error may not both be of equal importance. For
genomicpredictionormarkerassistedselection, ahigh type I error rate is
not particularly concerning as long as power is high and trait prediction
is accurate. On the other hand, studies usingGWAS to choose genes for
further molecular characterization have a large financial incentive
to minimize type I error.

Using AUC to quantify the effectiveness of GWAS assumes that the
entireROCcurve isof interest.WhenNCLis lowthis assumptionmaybe
true, but as NCL increases, it may be the case that only the beginning of
the ROC curve is of practical interest. The simulated ROC curves for
NCL = 1,000 (Figure 2C) are close to the 1:1 line that would be achieved

by randomly selecting SNPs as putatively causative. It is unlikely that a
researcher would want or expect to identify every single causative locus
when a trait is controlled by thousands of genes. Instead, the interest is
often in large-effect loci that are likely to be identified by a stringent
significance threshold. The ability to identify the most significant loci is
characterized by the portion of the ROC curve close to the origin. Thus,
for highly complex traits, the AUC of a partial ROC may be more
informative.

In this study, we use AUC of ROC curves to characterize and
quantitatively compare GWAS results from different traits. Overall,
our findings show an expected relationship between NCL, heritability,
and AUC of ROC curves. Greater NCL and lower heritability both
reduce the AUC, while lower NCL and higher heritability can increase
AUC. Results suggest that there is no significant difference between
AUCs from GWAS using manual and image-based measurements of
typical maize tassel characters. Creation of more nuanced simulation
models and consideration of partial ROC curves may enable improve-
ment upon the results presented in this study. Additionally, these results
are specific to additive traits in diversity panels of inbred lines. Further
studies are required to determine whether different population struc-
tures and/or incorporation of non-additive effects to the simulated traits
will change the relationship between heritability and AUC. The results
presented here provide a foundational framework that may facilitate
decision-making for researchers weighing the benefits of different
phenotyping methods.
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