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ABSTRACT

The complex system of gene expression is regulated
by the cell type-specific binding of transcription fac-
tors (TFs) to regulatory elements. Identifying variants
that disrupt TF binding and lead to human diseases
remains a great challenge. To address this, we im-
plement sequence-based deep learning models that
accurately predict the TF binding intensities to given
DNA sequences. In addition to accurately classifying
TF-DNA binding or unbinding, our models are capa-
ble of accurately predicting real-valued TF binding in-
tensities by leveraging large-scale TF ChIP-seq data.
The changes in the TF binding intensities between
the altered sequence and the reference sequence re-
flect the degree of functional impact for the variant.
This enables us to develop the tool DeFine (Deep
learning based Functional impact of non-coding vari-
ants evaluator, http://define.cbi.pku.edu.cn) with im-
proved performance for assessing the functional im-
pact of non-coding variants including SNPs and in-
dels. DeFine accurately identifies the causal func-
tional non-coding variants from disease-associated
variants in GWAS. DeFine is an effective and easy-
to-use tool that facilities systematic prioritization of
functional non-coding variants.

INTRODUCTION

The precise control of spatio-temporal gene expression is
regulated by the binding of cell type-specific transcription
factors (TFs) to regulatory elements, including promotors,
enhancers, silencers and insulators, across the vast non-
coding part of the genome (1–4). Large-scale expression

quantitative trait loci (eQTL) analysis and genome-wide as-
sociation studies (GWAS) have identified abundant vari-
ants that associate with diverse gene expression levels and
human diseases (5,6). Most of these variants reside in the
non-coding regions of the human genome, suggesting that
such non-coding variants play crucial roles in human dis-
orders by disrupting the cis-regulation of gene expression
(7). In particular, non-coding cis-regulatory variants have
been shown to be functional in transcriptional alterations
by affecting TF binding and leading to human diseases, in-
cluding Mendelian disorders, complex diseases and cancers
(8–11).

The genome-wide landscape of cis-regulatory sequences
and TF binding profiles could be decoded by high-
throughput sequencing-based methodologies such as chro-
matin immunoprecipitation followed by massive parallel se-
quencing (ChIP-seq) (12). Despite the rapid advancement
of functional genomic sequencing technologies, interpreta-
tion of the functional consequences of variants on regula-
tory elements remains a great challenge due to the com-
plexity of cell type-specific transcription regulation systems
(8,13). In addition, a limited number of non-coding variants
have been functionally validated by experiments (14). Pre-
vious efforts on interpreting genomic variants are mainly
concentrated on variants in the coding regions and have
achieved considerably high performance (15–17). How-
ever, as GWAS reveal that the non-coding variants also
play an important role in complex diseases, identifying the
pathogenic functional non-coding variants from the mas-
sive neutral ones is essential in genotype–phenotype rela-
tionship research and precision medicine.

The functional genomics high-throughput sequencing
data generated by the ENCODE project (18) and the NIH
Roadmap Epigenomics project (19) facilitates the system-
atic annotation of TF binding profiles, which makes it pos-
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sible to identify cell type-specific regulatory elements and to
study the TF binding intensities to various DNA sequences.
The high-throughput chromosome conformation capture
sequencing data helps to uncover genome-wide chromatin
organization and interactions (20), enabling the identifi-
cation of target genes for distal regulatory elements. The
recent rapid development and wide application of deep
learning technologies (21) have shown extraordinary per-
formance in variety of tasks including functional genomics
predictions (22,23). Deep learning is distinguished by its ca-
pability to automatically discover predictive signatures and
handle high-dimensional data. Deep learning-based frame-
works such as DeepBind (23), DeepSEA (24), Basset (25),
DanQ (26) and Basenji (BioRxiv: https://doi.org/10.1101/
161851) have shown remarkable advantages over conven-
tional machine-learning methods for predicting TF binding
and chromatin accessibility from DNA sequences.

However, very few in silico methods have been devel-
oped to assess the functional impact of non-coding vari-
ants, including CADD (27), GWAVA (28), FunSeq2 (29)
and DeepSEA (24). The prediction accuracies must be fur-
ther improved, and these tools suffer from various limita-
tions. Tools measuring evolutionary conservation such as
CADD have low performance for evaluating non-coding
variants because most of the regulatory variants are not
subjected to evolutionary constraints (30). Tools that rely
on known non-coding variants related to human disease
such as GWAVA and FunSeq2 are limited by the num-
ber of available training variants (14). In addition, most
of the known pathogenic non-coding variants reside in the
promoter regions or conserved sites, causing ascertainment
bias in the training set. Tools such as DeepSEA predict the
binding or unbinding binary outcome of TFs to a given
sequence, ignoring the binding affinity of TFs with dif-
ferent sequence preferences (2). Moreover, none of these
tools could indicate the target gene(s) possibly affected by
the predicted functional variants. Most regulatory elements
regulate distal rather than proximal genes in the primary
genome sequence (31,32). Discovering the affected gene(s)
is required for interpreting the functional consequence of
the non-coding variants.

In this paper, we present a method based on deep convo-
lutional neural networks (CNNs) (21) that predict the inten-
sities of cell type-specific DNA binding of TFs using large-
scale TF ChIP-seq data (18). The change in the predicted
binding signal value between the altered sequence and the
reference sequence reflects the extent of the functional im-
pact of the variant. The deep learning models depend solely
on genomic sequences, requiring no prior knowledge of the
variants on the sequences. We demonstrate that the deep
CNN models accurately predict the ChIP-seq signal val-
ues for different sequence-specific TFs in different cell types.
The deep CNN models accurately capture the binding mo-
tifs of TFs. Based on these deep CNN models, we develop
the tool DeFine (Deep learning-based Functional impact
of non-coding variants evaluator) to assess the functional
impact of all types of non-coding variants including SNPs
and indels in a cellular context with single base resolu-
tion. Performance evaluation and comparison show that
the classifiers based on DeFine functional scores outper-
form the state-of-the-art tools in three different test sets.

When applied to prioritize candidate non-coding variants
associated with disease from GWAS, DeFine identifies the
causal functional non-coding variants with remarkable ac-
curacy. Furthermore, DeFine integrates cell type-specific
three-dimensional genome contact maps from in situ Hi-
C experiments (20). Thus, DeFine is able not only to de-
termine whether a non-coding variant has a functional im-
pact but also to indicate the potential gene(s) affected by
this variant. DeFine facilitates high-throughput prioritiza-
tion of non-coding variants on a large scale.

MATERIALS AND METHODS

Overview of the DeFine deep learning model

The deep CNN in DeFine consisted of a hierarchical archi-
tecture that used raw DNA sequence as input and predicted
the real-valued ChIP-seq signal value, which measured the
in vivo TF-DNA binding intensity (Figure 1A). The deep
CNN model in DeFine consisted of convolution layers, rec-
tification layers, pooling layers and fully connected layers.
Each input sequence was converted to a one-hot matrix with
4 rows and 300 columns. The four rows corresponded to the
four nucleotides A, G, T and C. For positions with N, the
whole corresponding column was filled with zeroes. As the
DNA is a double-helix, TFs could recognize either strand
of the DNA at a given position. Thus, both the forward
sequence and its reverse complementary sequence were si-
multaneously modeled in our deep CNN. The reverse com-
plementary sequence of each input sequence was also en-
coded by the one-hot matrix. Both the input matrixes for
the forward and reverse-complement sequences were simul-
taneously fed into the convolution layers. The convolution
layers for the forward sequence and its reverse-complement
sequence shared the same set of filters. This strategy of
reverse-complement parameter sharing is similar to the one
proposed by a parallel manuscript (BioRxiv: http://dx.doi.
org/10.1101/103663), which explicitly constrained the pre-
sentation of a reverse-complement filter for each learned fil-
ter, and illustrated the effectiveness of modeling both strand
of DNA sequences together. In our convolution layer, the
same set of filters was learned from both input sequence
and its reverse-complement sequence together in the single
end-to-end neural network, by sharing filters between the
forward part convolution and the reverse-complement part
convolution (Figure 1A). Sixteen filters were used in each
convolution layer. Each filter was a 4-by-24 matrix. These
filters automatically extracted predictive features from in-
put sequences during model training. After convolution, the
rectified linear units (ReLU) were used to output the filter
scanning results that were above the thresholds, which were
learned during model training. Both max pooling and av-
erage pooling were utilized in the pooling layer. Max pool-
ing was applied to find the most significant activation sig-
nal in a sequence for each filter. The average pooling consid-
ered the whole sequence context by averaging the filter scan-
ning results at each position of the sequence. All the pooling
results of both forward and reverse strand sequences were
combined in one vector, resulting in a vector with a size of
64. The vector was batch-normalized (33) before inputting
it into the fully connected layer. Two fully connected lay-
ers were employed in our model, each with 128 nodes. A
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Figure 1. The deep learning method for assessing the functional impact of non-coding variants. (A) The architecture of the CNN in DeFine for predicting
TF-DNA binding intensities from DNA sequences. (B) DeFine functional score for assessing the functional impact of non-coding variants. The DeFine
functional score of a variant for one TF is derived as the difference in TF binding intensities predicted by the deep learning model between the reference
sequence and the altered sequence centered at the variant.

dropout (34) layer with a probability of 0.5 was added be-
tween the two fully connected layers to improve the gener-
alization capability of the model and avoid overfitting. The
output layer was a regression layer, which outputted the pre-
dicted ChIP-seq signal intensity. The deep CNN was imple-
mented with Torch7 (http://torch.ch).

ChIP-seq data sources

The ChIP-seq data for the sequence-specific TFs in the
K562 and GM12878 cell lines from the ENCODE project
were employed. All the data were downloaded from https:
//www.encodeproject.org. To ensure the quality of the data
for reliable downstream analysis, datasets without biolog-
ical replicates were discarded. For the ChIP-seq datasets
of the same TF from different experiments, they were used
as biological replicates. The raw ChIP-seq short sequencing
reads of all biological replicates and the corresponding con-
trol library raw sequences for each TF were downloaded in
fastq format if available. When the raw reads in fastq for-
mat were not available for a TF, the mapped reads in bam
format were downloaded, and the sequences were extracted
and then converted into fastq format. ChIP-seq datasets of
TFs with <1000 peaks called by our analyzing pipeline were

discarded. The accession IDs for all the utilized TFs ChIP-
seq data of the K562 and GM12878 cell lines are provided
in Supplementary Tables S1 and 2, respectively.

Unified processing pipeline for peak calling from ChIP-seq
raw reads

The raw short reads of all replicates and controls were first
cleaned to remove adaptor sequences and truncate low-
quality reads using Trimmomatic (35). If the trimmed reads
were <25 bp, then they were discarded. The reads qualities
before and after cleaning were assessed. Burrows-Wheeler
Aligner (BWA) (36) was used to map all the cleaned short
reads to the reference genome with default parameters.
As both K562 and GM12878 cell lines were derived from
female individuals, the GRCh37 reference genome with-
out the Y chromosome and random contigs was employed
as the reference genome during mapping. The mitochon-
drial sequence was included in the reference genome. Poly-
merase chain reaction duplicates were then removed us-
ing Picard (http://broadinstitute.github.io/picard), and the
uniquely mapped reads were retained. The processed bam
files for all the replicates were merged together to create
a pooled sample bam file. If there were multiple control
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libraries for one TF, all the processed bam files from all
the controls were merged and used as a single control bam
file. The pooled sample bam file was randomly separated
into two files with an equal number of sequences to create
two pseudo-replicates. Next, all the bam files of the orig-
inal replicates, the two pseudo-replicates and the pooled
sample bam file were used as the input for calling peaks
by SPP tool (37). The called peaks in each replicate were
ranked according to their signal values, and only peaks that
appeared in both replicates were retained. The final repro-
ducible peaks for each TF were derived using the IDR (irre-
producible discovery rate) framework (38) with a cutoff of
0.01. If multiple replicates were available, pairwise compar-
isons were performed. The maximum of the reproducible
peaks of original replicates and the two pseudo-replicates
were used as the final optimal number of peaks.

Training data generation

For each TF, the peak regions and corresponding signal
values were obtained from the peak calling results. By man-
ually examining the ChIP-seq peaks, we found that most
of the peaks with extremely high signal values located at
genomic regions with low complexity. Thus, to remove the
outliers with extremely high signal values, the peak regions
with the top 1% signal values for each TF were discarded.
The signal values were log-transformed and normalized by
min-max scaling between 0 and 1. The genomic sequences
of each peak were extracted from the reference genome
according to the peak regions. Each sequence was then
refined using a reference-guided local re-assembly based
on the whole genomes sequences of K562 and GM12878,
utilizing Pilon (39). This step corrected the cell type-specific
variants in the genome sequences of each cell line. The
K562 whole-genome sequencing reads were downloaded
from https://www.ncbi.nlm.nih.gov/sra/SRX118400.
The GM12878 whole-genome sequencing reads were
obtained at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/
data/NA12878/NIST NA12878 HG001 HiSeq 300x/
RMNISTHS 30xdownsample.bam. The peak sequences
were diverse in length, and most sequences were 300 bp.
We fixed the sequence length at 300 bp. For sequences
that were longer than 300 bp, they were cropped at the
5′ and 3′ ends, centering at the summit of each peak.
For sequences that were shorter than 300 bp, both ends
were padded with equal numbers of Ns to form 300-bp
sequences. For each TF, the corrected peak sequences
were used as the model inputs, and the corresponding
transformed ChIP-seq peak signal values were employed
as model output. Furthermore, to augment the training
set, we randomly selected sequences from genomic regions
that showed no binding of any known TFs, and they were
applied as training sequences with zero signal values. This
is a simple method to augment the data but not optimal
(40). More conservative method could be employed to
generate samples with zero signal values. The number of
randomly selected sequences with zero signal values were
the same as the number of ChIP-seq peaks for each TF.

The training sequences and corresponding ChIP-seq sig-
nal intensities of each TF were partitioned such that 70% of
the data were used for training, 15% were used for valida-

tion and 15% were used for model testing. The validation
dataset was used in the grid search process during model
training to determine the optimal hyper-parameters in the
model.

Training of deep CNN

The mean square error with L2 regularization (weight de-
cay) was employed as the loss function. The parameters in
the deep CNN model were randomly initialized using Gaus-
sian distribution with mean value 0 and standard deviation
1. We trained the deep CNN with a mini-batch stochas-
tic gradient decent algorithm. The mini-batch size was 128.
The gradients were calculated using backpropagation. All
the parameters in the model were updated based on the gra-
dients during each mini-batch training. After each epoch
of training, the loss in the validation set was assessed and
monitored. When the loss in the validation set did not de-
crease in 50 successive epochs of training, the model train-
ing process was stopped (early stopping). The model with
the smallest loss in the validation set was saved. The optimal
hyper parameters, including the learning rate and lambda
for weight decay, were determined by the grid search. All
the deep CNN models were trained on GPU.

Generating motifs learned by deep CNN

The learned motif of the deep CNN model for each TF were
revealed by extracting all the test sequences (15% total data
for each TF ChIP-seq) that were active in the rectification
layer (return a non-zero value) after filter scanning in the
convolution layer. For each sequence in the test dataset of
one TF, we sought the position that had the maximum con-
volution value among all the filters in both the forward and
reverse strands. The 24-bp (filter width) subsequence start-
ing at this position of the test sequence was extracted. All
of the 24-bp subsequences with the maximum convolution
value for each sequence in the test set were pooled together
and aligned. The frequencies of the four nucleotides at each
position were then calculated, and the position weight ma-
trix representing the TF motif was derived.

Compiling test variants

Three different types of test datasets were compiled
with functional non-coding variants and neutral vari-
ants: HGMD (Human Gene Mutation Database)-based,
GWAS (Genome Wide Association Study)-based and
eQTL-based variants dataset. For the functional variants
in the HGMD-based dataset, regulatory non-coding
variants from the HGMD professional database (release
2016.1) were employed. For the functional variants in
the GWAS-based dataset, intergenic variants that were
significantly associated with disease in the GWAS cat-
alog (6) (https://www.ebi.ac.uk/gwas/docs/downloads,
downloaded at 20160817) were utilized. For functional
variants in the eQTL-based dataset, the best associ-
ated eQTL in the lymphoblastoid cell lines (LCL) of
the EUR population (5) were used (downloaded from
http://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-
3/files/analysis results/). For the neutral variants in each
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of the three datasets, non-coding variants from the 1000
Genomes Project were randomly selected, with a matched
variant number and matched allele frequency distribution.
For each dataset, five neutral variant sets were composed,
and the performance of the five sets was averaged in
downstream analyses based on these datasets. Both SNPs
and indels were included in these datasets, and their ratio
was matched in each positive and negative set. The 1000
Genomes variants were downloaded from ftp://ftp-trace.
ncbi.nih.gov/1000genomes/ftp/release/20130502/ALL.
wgs.phase3 shapeit2 mvncall integrated v5b.20130502.
sites.vcf.gz. For the region-restricted analysis, the neutral
variants were randomly selected from the 1000 Genomes
variants within 5 kb of the positions around the functional
variants in each dataset.

Training of the gradient boosting decision tree classifier

To investigate the capability of DeFine functional scores
in discriminating functional non-coding variants from
neutral ones, we trained the gradient boosting decision
tree (GBDT) classifier based on the functional scores
of all the TFs in one cell line for each of the three test
datasets compiled above. In addition to the DeFine func-
tional scores, we also leveraged four widely employed
conservation scores, namely, GERP NR (41), GERP RS
(41), PhyloP (42) and PhastCons (43), as input features
for the GBDT classifier. We built three classifiers for
each dataset. The classifier named DeFine-regression
utilized DeFine-predicted binding intensities as features.
The classifier named DeFine-classification was based on
the modified deep CNN model that predicted the binary
outcome of TF-DNA binding/unbinding. The classifier
named DeFine-combine employed both the regression
version and the classification version of the DeFine scores
as features. The GBDT was implemented using xgboost
(https://github.com/dmlc/xgboost). The maximum training
round was 1000. Early stopping was performed when train-
ing the classifiers. All the hyper parameters in the gradient
boosting tree, including the learning rate, maximum depth,
gramma, lambda, subsample rate and column sample
rate, were determined using the grid search. The GERP
scores for the whole genome sites were downloaded from
http://mendel.stanford.edu/SidowLab/downloads/gerp/.
The PhyloP scores could be accessed at http://hgdownload.
cse.ucsc.edu/goldenpath/hg19/phyloP100way/hg19.
100way.phyloP100way.bw. The PhastCons scores were
available at http://hgdownload.cse.ucsc.edu/goldenpath/
hg19/phastCons100way/hg19.100way.phastCons.bw.

Performance evaluation and comparison

The performance of the DeFine functional scores-based
classifiers was measured using 10-fold cross validation for
each of the three test datasets. Since all of the test datasets
were balanced, the receiver operating characteristic (ROC)
curves were generated using the three datasets to measure
the performance of the GBDT classifier (44). The area un-
der the curve (AUC) was compared with the other tools, in-
cluding CADD, DeepSEA and GWAVA. The CADD scores
were predicted at http://cadd.gs.washington.edu/score, and

the Phred scores were used. The DeepSEA scores for each
test variants were predicted at http://deepsea.princeton.
edu/job/analysis/create/, and the functional significance
scores were used to calculate its AUC on each test set.
GWAVA was installed and run locally. The source code
of GWAVA was downloaded from http://www.sanger.ac.uk/
science/tools/gwava.

Prioritizing candidate disease-related non-coding variants

The candidate non-coding variants associated with
Hirschsprung disease were from a family-based association
study (45). The 12 screened variants located in the 5′ RET
gene and the first intron of RET were included (Table 1 of
Emison et al. (45)). For the colorectal cancer risk-associated
variant list (46), all 13 common variants (Supplementary
Table S2 of Lubbe et al. (46)) in the 14q22.2 genomic region
screened in a large cohort from a targeted association
study were employed. The genomic coordinates of the
variants were converted to GRCh37-based positions. These
variants were ranked by scores given by DeFine, CADD
and DeepSEA. GWAVA was not used to prioritize these
variants because of the causal variants in the two lists
presented in the training variants of GWAVA.

Hi-C genome contact map integration

To find the target genes regulated by the functional non-
coding variants, we integrated cell type-specific three-
dimensional genome contact maps revealed by in situ Hi-C
experiments. The contact maps for the K562 and GM12878
cell lines were downloaded from GEO (https://www.ncbi.
nlm.nih.gov/geo/) under accession number GSE63525. For
the K562 cell line, maps with a 5-kb resolution derived from
reads with a mapping quality of at least 30 were used. For
GM12878, maps with 1-kb resolution derived from reads
with a mapping quality of at least 30 were integrated. To
reduce noise from the maps, raw contact metrics with val-
ues of <10 were discarded from the contact maps. The KR-
normalized metrics were then employed to build the final
contact maps.

For each input variant, all the genomic regions that in-
teracted with the variant position were searched through the
contact maps of the selected cell line. Genes with a promoter
located in these regions were then derived. The region from
1 kb upstream of the gene transcription start site (TSS) to
1 kb downstream of the TSS was considered the promoter
region for that gene. All the possible target genes for each
variant were sorted by their normalized contact metrics.

RESULTS

The TF binding intensities from ChIP-seq were accurately
predicted from DNA sequences by deep learning models

We built deep CNNs predicting the TF binding intensity
to a given sequence (Figure 1A), which was measured by
the signal value of the ChIP-seq peaks (47), in a cell type-
specific manner (12). We took advantage of the large-scale
ChIP-seq data generated by the ENCODE project (18),
leveraging the massive sequences of the ChIP-seq peaks and
the corresponding signal values as training data. We built
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deep CNN models for sequence-specific TFs that had ade-
quate ChIP-seq peaks in the K562 and GM12878 cell lines,
as abundant TF ChIP-seq data were available for these two
cell lines in the ENCODE project. ChIP-seq datasets of 79
sequence-specific TFs in K562 (Supplementary Table S1)
and 69 sequence-specific TFs in GM12878 (Supplementary
Table S2) were employed, and the CNN models were trained
for each of these TFs. We compiled the training data using
these ChIP-seq datasets, which were re-analyzed from raw
short sequencing reads, and reliable peaks were derived with
the IDR framework (48) using a unified pipeline developed
by our group (see ‘Materials and Methods’ section). The
peak sequences were refined based on the whole-genome se-
quence of each cell line, regarding the cell type-specific vari-
ants. The number of ChIP-seq peaks ranged from 1098 to
65 232 for TFs in K562 and from 1003 to 59 037 for TFs in
GM12878. To augment the training set, genomic sequences
that did not show binding of any TFs in each cell line were
randomly selected and incorporated into the training data
with zero signal values (see ‘Materials and Methods’ sec-
tion).

The model performance evaluation showed that the in
vivo ChIP-seq signal intensities were accurately predicted
by the in silico deep learning models. The correlations be-
tween the ChIP-seq experimental signal values and the pre-
dicted signal values were assessed in the testing set for each
TF in each cell line. The experimental signal values and the
predicted signal values were highly correlated. Examples for
TFs in GM12878 were shown in Figure 2A, and examples of
TFs in K562 were shown in Figure 2B. The ChIP-seq peak
signals are prone to noise, especially for positions with weak
binding of TFs. As shown in Figure 2A and B, the weak
TF binding signals were hard to predict accurately by the
model and the predicted signals got flat for these weak bind-
ing signals. For higher TF binding intensities, the predicted
signals correlated with the real signals very well. The Pear-
son and Spearman correlation coefficients for all the TFs in
the two cell lines were summarized in Figure 2C. For mod-
els of TFs in GM12878, the median Pearson correlation co-
efficient was 0.754, and the median Spearman correlation
coefficient was 0.793. For models of TFs in K562, the me-
dian Pearson correlation coefficient and Spearman correla-
tion coefficient were 0.793 and 0.805, respectively.

We investigated factors that may affect the model perfor-
mance. First, we evaluated the effect of the input sequence
length on the prediction accuracy. By default, all the mod-
els were trained and evaluated with input sequences with a
length of 300 bp. We trimmed the input sequences to 75 bp
centered at the summit of each ChIP-seq peak. Next, we re-
trained and evaluated all the deep learning models with 75-
bp input sequences. The results showed that the models with
300-bp input sequences outperformed those with 75-bp in-
put sequences in each cell line (Figure 2D), as measured by
both Pearson correlation and Spearman correlation. This
result suggested that the sequence context contributed to
the high performance for predicating TF binding intensities
from DNA sequences.

The impact of the ChIP-seq experiment quality on the
model prediction performance was assessed. The quality of
the ChIP-seq experiments was measured by strand cross-
correlation (37). The quality tag assigned to each ChIP-seq

dataset was based on the relative strand correlation, which
assessed the signal-to-noise ratio in the ChIP-seq experi-
ments (48). As expected, results showed that models trained
using ChIP-seq data with a higher experimental quality
tended to have higher prediction performances in both cell
lines (Supplementary Figure S1).

Unlike existing methods that solely predict the binary
outcome of TF-DNA binding or unbinding, our models
were able to accurately predict real-valued TF-DNA bind-
ing intensities from ChIP-seq experiments. Nevertheless, it
was worthwhile to evaluate the capability of our deep CNN
framework to classify TF-DNA binding or unbinding. To
achieve this goal, we modified the output layer of our deep
CNN to use the sigmoid function, kept the other structure
of the model unchanged and switched to employ the bi-
nary cross entropy function as the loss function. The clas-
sification model for each TF in each cell type was trained
using training sequences from ChIP-seq peaks as binding
sequences and the same number of randomly selected ge-
nomic sequences without any TF binding as unbinding se-
quences. The performance of the classification model for
each TF was assessed using ROC analysis with indepen-
dent test sequences for each TF. The results revealed that
our deep CNN framework was able to classify genomic se-
quences as bound or unbound by given TFs with very high
accuracies (Figure 3). The median AUC for classification
models of TFs in GM12878 was 0.979, and the median
AUC for classifiers of TFs in K562 was 0.992. These re-
sults demonstrated the high performance of our deep CNN
framework both for quantifying TF-DNA binding intensi-
ties and for classifying TF-DNA binding or unbinding.

The features learned by the deep learning models captured the
binding motifs of TFs

One of the distinctive advantages of the deep learning mod-
els is the ability to automatically extract predictive features
from inputs during the model training (21). We explored
features that were learned in our deep CNNs by investi-
gating the test sequences that activated the filters in the
convolution layer for each TF. These activation sequences
were aligned together to obtain the learned motif repre-
sented by the position weight matrix for each TF. The results
showed that for 25 TFs with a motif recorded in the JAS-
PAR database (49,50), the deep learning models revealed
almost identical motifs (Supplementary Table S3). The sim-
ilarities between motifs were compared by Tomtom (51) us-
ing the Pearson correlation coefficient. The median Tom-
tom P-value was 2.60e-6. Figure 4A illustrates several mo-
tifs that were learned by the deep CNN models and the cor-
responding motifs recorded in the JASPAR database. All
the filters in the convolution layer were randomly initial-
ized. Therefore, all the motifs were automatically learned
de novo during model training. We tried to re-initialize all
the model parameters randomly and re-trained all the mod-
els. Almost identical motifs were obtained as above for each
TF, in terms of motif similarity. These results demonstrated
that our models were robust and could accurately capture
the key signatures of each TF.

Furthermore, the deep learning models revealed the bind-
ing motifs for some TFs that are not annotated in the JAS-
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Figure 2. The in silico deep CNN models of DeFine accurately predicted the in vivo ChIP-seq signal intensities for the binding sequences of each TF in
the GM12878 and K562 cell lines. (A) Examples of the correlation between the normalized ChIP-seq experimental signal values (x-axis) and the predicted
signal values (y-axis) for TFs in the GM12878 cell line. rP––Pearson correlation coefficient, rS––Spearman correlation coefficient. (B) Examples of the
correlation between the normalized ChIP-seq experimental signal values (x-axis) and the predicted signal values (y-axis) for TFs in the K562 cell line. (C)
Summary of the performance of the deep CNN models for all collected sequence-specific TFs in the GM12878 and K562 cell lines. The performance was
measured by both Pearson correlation (green) and Spearman correlation (blue) on test sets for each TF. (D) Model performance comparison of different
input sequence lengths. The deep CNN models using 300-bp input sequences (y-axis) had higher performance than models using 75-bp input sequences
(x-axis), suggesting that the sequence context contributed to accurate prediction of the TF binding intensities. The performance was measured by both
Pearson correlation (green) and Spearman correlation (blue) on test sets for each TF in the GM12878 and K562 cell lines.

PAR database (Figure 4B). The de novo discovered motifs
of NR2F2, RCOR1, STAT5A and TAL1 were all matched
to the canonical GATA factor binding motif (Tomtom P-
value <1e-4), suggesting a cooperative binding or interfer-
ing binding of these factors and GATA factors. The motif
of SMAD1 matched the motif of the NFIC::TLX1 com-
plex (Tomtom P-value 3.59e-5), indicating cooperative or
interfering binding of these factors. The motif of CHD2
matched the motif of ZBTB33 (Tomtom P-value 9.50e-

7). Since CHD2 does not have a DNA binding domain,
this result suggested that CHD2 might be a cofactor of
ZBTB33 (52). The deep learning model incorporated all the
sequences from the ChIP-seq data to learn the binding motif
rather than simply utilizing the top hundreds of sequences
as traditional motif discovery methods which have very
high computational complexity. This capability enabled im-
proved detection of TF binding motifs and aided the discov-
ery of novel motifs.
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Figure 3. Performance evaluation of the deep CNN classification models to classify TF-DNA binding or unbinding. (A) AUCs of deep CNN classifiers
for each of the 69 TFs in the GM12878 cell line. (B) AUCs of deep CNN classifiers for each of the 79 TFs in the K562 cell line.

DeFine functional scores helped classify disease-related and
neutral non-coding variants

Based on the deep CNN model for each TF, the DeFine
functional score for a variant was derived as the change
between the predicted binding intensities of the altered se-
quence centered at the variant and that of the reference se-
quence (Figure 1B). We investigated the utility of DeFine
functional scores for discriminating disease-related non-
coding variants from neutral ones. To evaluate the per-
formance of the DeFine functional score-based method
and compare it with other tools developed for assessing
non-coding variants, three different types of datasets with
balanced positive and negative samples were compiled:
HGMD-based, GWAS-based and eQTL-based (see ‘Ma-
terials and Methods’ section). The HGMD-based dataset
was composed of 3360 pathogenic regulatory variants in
the HGMD professional database (14) as a positive set and
an equal number of randomly selected non-coding variants
from the 1000 Genomes Project (53,54) as a negative set.
The GWAS-based dataset consisted of 7602 GWAS catalog
(6) significant variants located in the intergenic region as
positive non-coding variants and an equal number of ran-
domly selected intergenic variants from the 1000 Genomes
project with an allele frequency distribution that was equiv-
alent to the neutral variants. The functional eQTL-based
dataset was compiled from the 13196 best-associated eQTL
in LCLs from the EUR population (5) and a correspond-
ing neutral set containing an equal number of randomly
selected variants from the 1000 Genomes project with a
matched allele frequency distribution. Both SNPs and in-
dels were included in the three datasets, and the number of
variants of the two variant types was matched in the positive
set and negative set.

Taking the DeFine functional scores for all the TFs in
each cell type as features, we trained GBDT-based classi-

fiers to predict each non-coding variant as functional or
neutral in these three datasets. The GERP NR, GERP RS
(41), PhyloP (42) and PhastCons (43) conservation scores
were also incorporated as predictive features in our GBDT
classifiers. The GBDT classifier based on the DeFine-
predicted binding intensities was named DeFine-regression
in the following analysis. The GBDT classifier based on
the modified deep CNN model that predicted the bi-
nary outcome of binding/unbinding was named DeFine-
classification. We also built a GBDT classifier that uti-
lized both the regression version and the classification ver-
sion of the DeFine scores, which was termed DeFine-
combine in the following analysis. The performance was
evaluated using 10-fold cross validation and compared to
CADD (27), DeepSEA (24) and GWAVA (28) (see ‘Materi-
als and Methods section’). For performance comparison in
HGMD, GWAVA was not included because it was trained
with HGMD regulatory variants.

ROC analysis showed that the classifiers based on DeFine
scores (DeFine-combine, DeFine-regression and DeFine-
classification) outperformed other tools in the three differ-
ent datasets in terms of the AUC (Figure 5 and Supple-
mentary Figure S2). DeFine-combine, DeFine-regression
and DeFine-classification showed almost identical perfor-
mance for all evaluations. The pathogenic regulatory vari-
ants in the HGMD database were genetically or experimen-
tally validated functional variants (14). For the HGMD-
based dataset, DeFine-combine achieved the highest AUC
of 0.847 using DeFine scores from the GM12878 cell line
(Figure 5A), and the AUC resulting from DeFine scores
from the K562 cell line was 0.851 (Supplementary Fig-
ure S2A). Precision-Recall curves also showed that clas-
sifiers based on DeFine scores outperformed CADD and
DeepSEA on the HGMD-based dataset (Supplementary
Figure S3). For GWAS-based and eQTL-based datasets,
DeFine-based classifiers also had higher AUCs than the
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(B) The motifs discovered de novo by the deep CNN models for TFs that were not annotated in the JASPAR database.

other tools. It is noteworthy that the positive variants in
GWAS and eQTL were disease and trait-associated and
thus probably not the causal variants (55,56). The real func-
tional and causal variants may be in linkage disequilibrium
with the associated variants. Thus, in these two datasets,
most of the positive variants were likely to be neutral vari-
ants. As expected, the AUCs of all the tools were rela-
tively low in the GWAS-based and eQTL-based datasets
compared with those in the HGMD-based dataset. This
phenomenon was further illustrated when employing the
region-restricted evaluation, which restricted the randomly
selected neutral variants in each dataset to be within 5 kb
of the positive variants (Supplementary Figure S4). Never-

theless, the classifier based on DeFine functional scores also
outperformed the other tools in all region-restricted evalu-
ations (Supplementary Figure S4).

To demonstrate that DeFine functional scores could
help improve the performance of classifying disease-related
non-coding variants from neutral ones, we trained GBDT-
based classifiers with only the four conservation scores
(GERP NR, GERP RS, PhyloP and PhastCons) on each
of the three datasets. The cross validation results on the
HGMD-based dataset revealed that the classifier with only
conservation scores achieved the AUC of 0.779, which was
much lower than the AUC of the classifier using DeFine
functional scores (AUC: 0.847) on this dataset. The AUCs
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Figure 5. Performance evaluation of GBDT classifiers based on DeFine scores for the GM12878 cell line and comparison with CADD, DeepSEA and
GWAVA. The DeFine-regression represented the GBDT classifier based on DeFine-predicted binding intensities. The DeFine-classification was the GBDT
classifier based on the modified deep CNN model that predicted the binary outcome of binding/unbinding. DeFine-combine was the GBDT classifier based
on both the regression version and the classification version of the DeFine scores. ROC analysis was performed on three different test sets: HGMD-based
(A), GWAS-based (B) and eQTL-based (C). For the evaluation on HGMD-based test set, GWAVA was not included because it was trained on HGMD.

evaluated on GWAS-based and eQTL-based datasets were
0.645 and 0.524 for the classifiers using only conservation
scores. These results showed that the classifiers integrating
DeFine functional scores outperformed the classifiers using
only conservation information.

Furthermore, we also evaluated the performance of the
GBDT classifiers trained using HGMD-based variants to
classify variants in the GWAS-based dataset. Overlapped
variants were removed from the GWAS-based dataset.
Comparison of the results showed that the classifier based
on DeFine scores and trained on HGMD variants also
outperformed the other tools in terms of AUCs in the
GWAS-based dataset (Supplementary Figure S5). This re-
sult demonstrated the generalizability of the classifiers. All
the above results revealed that DeFine functional scores
were able to help discriminate functional non-coding vari-
ants from neutral variants.

DeFine was capable of prioritizing disease-related functional
non-coding variants

We investigated whether DeFine functional scores could
help identify disease-related functional non-coding variants
from a list of candidates. We employed the list of non-
coding mutations screened in a family-based association
study of Hirschsprung disease (HSCR) (45). This list of can-
didate functional HSCR-associated variants consisted of 12
SNPs located in the 5′ RET gene and an enhancer element
in the first intron of RET, which included rs2435357. The
functional impact of rs2435357 on the expression level of
the RET gene was experimentally validated, and it has been
demonstrated to be the disease-causing mutation (45,57).
We prioritized this list using the DeFine functional score
together with CADD and DeepSEA. The results showed
that DeFine successfully predicted rs2435357 with the high-
est functional score compared with the other variants in the
list (Supplementary Table S4). In contrast, neither CADD
nor DeepSEA showed actual functional variants in the list
(Supplementary Table S4). rs2435357 was ranked sixth by
CADD and fourth by DeepSEA. Moreover, DeFine also

correctly indicated an impact of this causal mutation on the
RET gene based on the enhancer-gene interaction map in-
tegrated in DeFine.

We next leveraged DeFine, CADD and DeepSEA to rank
the common variants in the 14q22.2 genomic region that
were genotyped in a targeted association study of colorec-
tal cancer risk (46). Thirteen common variants, including
rs4444235, were screened in a large cohort in this study.
Among all the variants that were significantly associated
with colorectal cancer risk, rs4444235 was the only one that
was experimentally demonstrated to affect the enhancer ac-
tivity and showed cis-regulation of BMP4 gene expression
(46). These in silico tools were employed to predict the reg-
ulatory functional impact of the 13 variants in the screened
list. Prioritization results of DeFine revealed that rs4444235
had the greatest positive influence on the regulatory activ-
ity among the 13 variants, whereas CADD and DeepSEA
did not predict this to be the most likely functional vari-
ant (Supplementary Table S5). Again, DeFine identified the
correct target gene, BMP4 of rs4444235, which was located
∼12 Kb downstream of the BMP4 promoter. These results
illustrated the utility of DeFine for prioritizing functional
non-coding variants.

DISCUSSION

In this paper, we demonstrated that real-valued in vivo
DNA binding intensities from TFs ChIP-seq were accu-
rately predicted from raw sequences by our deep learning
models, which allowed us to precisely measure the impact
of variants on TF binding intensities. The parallel work
Basenji (BioRxiv: https://doi.org/10.1101/161851) also pro-
posed using deep learning model to predict the fine reso-
lution quantitative genomic profiles rather than binary pro-
files, and showed better performance for predicting gene ex-
pression from DNA sequences. The high performance of
our deep learning model was based on its ability to auto-
matically extract sequence signatures, capture TF binding
motifs and integrate the sequence context. In addition, both
the forward sequence and the reverse complementary se-

https://doi.org/10.1101/161851
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quence were simultaneously considered in our deep learning
models with shared filters in the CNN layer. We corrected
the training sequences by incorporating cell type-specific ge-
nomic variants to reflect the actual genome sequences in
that cell line rather than using reference genome sequences
directly for training. This step was ignored by the available
sequence-based models. These features of our model en-
abled us to develop the new tool DeFine to assess the func-
tional impact of non-coding variants with increased accu-
racy. We showed that the deep CNN models in DeFine accu-
rately learned the known binding motifs of TFs de novo dur-
ing model training, suggesting that the high performance of
DeFine resulted from its ability to capture de facto sequence
features affecting TF binding intensities rather than learned
batch effects of the ChIP-seq experiments or other system-
atic differences in the ChIP-seq data.

The DeFine functional scores, which represent differ-
ences in the model-predicted TF binding intensities between
the reference sequence and the altered sequence, reflect the
degree of functional impact of the variants. The DeFine
functional scores can help discriminate disease-related non-
coding variants from neutral ones. The classifiers employ-
ing DeFine functional scores outperformed other state-of-
the-art tools in different test sets. The DeFine functional
scores could facilitate prioritization of disease-related func-
tional non-coding variants among a list of candidates. De-
Fine is capable of evaluating all kinds of variants, including
SNPs and indels, with single base resolution. Rather than
regulating nearby genes, regulatory elements commonly in-
teract with distal target gene(s) that may be kilobases or
megabases away (31,32). By integrating 3D genome contact
maps, DeFine is able to not only predict the functional non-
coding variants but also indicate the potential target genes
affected by the variants.

The complexity of the deep learning model makes it pre-
disposed to overfit (21). To avoid this phenomenon, we aug-
mented the training data by the addition of randomly se-
lected sequences from regions of the genome without TF
binding. In addition, we added batch normalization and
dropout layer in our models to improve their generaliza-
tion capability. Furthermore, weight decay (regularization)
and early stopping were performed during the model train-
ing process. These techniques together helped to eliminate
overfitting of our deep learning models. Moreover, we uti-
lized randomization to control for overfitting in our evalua-
tions by randomly composing multiple neutral variant sets
in each test set and averaged the performances in each eval-
uation.

Training the deep learning models in DeFine for one cell
type depends on the availability of high-throughput ChIP-
seq profiling of dozens of TFs in that cell type. Currently,
large-scale TF ChIP-seq experiments are available for a lim-
ited number of cell types. We trained deep learning models
for GM12878 and K562, which are tier 1 cell lines in the
ENCODE project, and large amounts of TF ChIP-seq data
are publicly available. The performance of the deep learning
models in DeFine depends on the quality of the ChIP-seq
experiments. When the experimental signal values are prone
to noise or are too weak to be measured precisely, accurately
prediction for the deep learning models are difficult. Train-
ing of the deep learning models requires many sequences.

For TFs that bind to only a few positions in the genome,
the deep learning models may not be reliably trained. The
DeFine functional score measures the impact of non-coding
variants on TF binding. The sequence context outside the
TF binding motif still plays an important role in determin-
ing the functionality of a variant, by affecting nucleosome
positioning, histone modification and chromosome confor-
mation etc. The DeFine functional score is not a direct
pathogenicity measurement for non-coding variants. Nev-
ertheless, as we showed in extensive evaluations, it could
help evaluate and discriminate disease-related non-coding
variants from neutral ones.

We used reference guided local reassembly to create
cell type personalized genome sequences to train our
deep learning models. We believe this step is necessary in
sequence-based models to train the models with actual se-
quences in each cell line, especially for models with single
base resolution. The quantitative measure of the impact on
the performance of functional variants prioritization when
using the cell type-specific genome sequences rather than
the reference genome is worth to explore with proper test
data in further research.

DeFine provides a framework for constructing cell type-
specific deep learning models to assess the functional im-
pact of abundant non-coding variants across the whole hu-
man genome. The deep CNN model in DeFine could be
trained on any TF ChIP-seq dataset in any cell/tissue type
with available data. With advances in functional genomics
technologies and the accumulation of genomic profiling
data, the deep learning models in DeFine would be available
for an increasing number of cell types. As a result, the per-
formance of DeFine will continue to improve. The high per-
formance of DeFine would contribute to solving the chal-
lenge of interpreting the large-scale non-coding variants
identified in genetics studies and clinical genetics. DeFine
would facilitate the high-throughput evaluation and priori-
tization of non-coding variants on a genome-wide scale.

DATA AVAILABILITY

DeFine is freely available at http://define.cbi.pku.edu.cn.
DeFine supports prediction through the online service, or
it can be installed and run locally. DeFine provides an easy-
to-use web interface and command line. The entire source
code can be downloaded at the DeFine website.
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