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Abstract: Although small water clusters (SWCs) are important in many research fields, efficient
methods of preparing SWCs are still rarely reported, which is mainly due to the lack of related
materials and understanding of the molecular interaction mechanisms. In this study, a series of
functional molecules were added in water to obtain small water cluster systems. The decreasing rate
of the half-peak width in a sodium dodecyl sulfate (SDS)–water system reaches ≈20% at 0.05 mM
from 17O nuclear magnetic resonance (NMR) results. Based on density functional theory (DFT) and
molecular dynamics (MD) simulation calculation, it can be concluded that functional molecules
with stronger negative electrostatic potential (ESP) and higher hydrophilicity have a stronger ability
to destroy big water clusters. Notably, the concentrations of our selected molecule systems are
one to two magnitudes lower than that of previous reports. This study provides a promising way
to optimize aqueous systems in various fields such as oilfield development, protein stability, and
metal anti-corrosion.

Keywords: water cluster; functional molecule; molecular interaction

1. Introduction

Water clusters are widely studied for their central role in life, geophysics, biochemistry,
etc. [1–4]. The clusters assemble or aggregate from single water molecules via a discrete
hydrogen bond (HB), over a wide range of (H2O)n=2~28 evaluated by experimental and
theoretical approaches [5–12]. The lifespan of water clusters in liquid water is extremely
short of a few picoseconds, and hydrogen bonds can continuously form and disappear [13].
Therefore, one water molecule participates in the formation and disappearance of multiple
water clusters at a certain moment, leaving a grand challenge in preparing small water
clusters in a liquid water system. Studies on small water clusters (SWCs) are not only
fundamentally important for revealing the quantum dynamics in water droplet but also
practically valuable for applying in various areas, such as conformations of biological
macromolecules (particularly proteins and nucleic acids), suitable waterflooding in ultralow
permeability reservoirs, and the dissolution of ions in minerals [14–19].

Physical methods, such as the methods of magnetic field, electric field [20], tempera-
ture [21], and microwave radiation, can reduce the size of water clusters to some extent,
but it is still a challenge without external physical fields. Therefore, the effect of chemical
additive imposing on the structure of SWCs has attracted tremendous attention [22–26].
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For example, cations could increase the median water cluster size in common electrolyte
aqueous solution systems and anions decrease it, as revealed by the half-width of 17O
nuclear magnetic resonance (NMR). The radius of ions with equal ionic charge is bigger,
and the effect of the ions caused is stronger, as in the following order: Na+ <K+ < Mg2+

< Ca2+ < Al3+ < Fe3+ and CO3
2− < SO4

2− [22,23]. Similarly, halide anions with a larger
ion size could influence the long-range HB network and the local hydration number of
anions at a great degree through the measurement of liquid time-of-flight secondary ion
mass spectrometry (SIMS) [24]. The hydrophobic group of sodium dodecyl sulfate (SDS)
molecules was considered to cut off some HBs in the formation of more highly active
water clusters; it is shown in fluorescence studies that the ligand can form between water
molecules and SDS molecules in aqueous solution [25]. The addition of sodium formate
(SF) is able to influence the network structure of water HB from computational chemistry
simulations, presumably promoting the growth rate of the water clusters [26]. Although
the addition of chemical molecules suggests a promising way to break the HB network of
the water system and reduce the size of the water cluster, the type of chemicals and the
impact on disassembling water clusters are still limited.

With this in mind, we selected two series of functional molecules with different
hydrophobicity or electrostatic potential (ESP) and introduced them into water systems,
including the molecules with the same anion head group but different carbon chain lengths,
and those with the same carbon chain length but different anion head groups. The half-peak
width in 17O NMR measurements was used to compare the size of water clusters, and the
distribution of water cluster ions H(H2O)n

+ was investigated through in situ liquid SIMS
measurements, which have been indicated to be a powerful tool to provide direct molecular
evidence for the structure of various liquids [27]. Combined with density functional theory
(DFT) and molecular dynamics (MD) simulation calculations, the effects of hydrophobicity
and ESP of the molecules on destroying big water clusters, as well as the mechanisms of
molecular interactions, were revealed. This study aims to introduce a facile way to prepare
a small water system via interacting with functional molecules, shedding light on both
theoretical and practical fields.

2. Results and Discussion

The half-peak width of the 17O NMR line is used as an index to measure the average
relative size of the cluster of liquid water, as shown in Figure 1. The wider the spectral
line, the bigger the water cluster, and vice versa [23]. Upon comparing the half-peak
width values of these functional molecules to that of pure water (73.98 Hz), we found
that the average size of water clusters is smaller in the SDS–water and SF–water system
at the series of concentrations (All the abbreviations of functional molecules are defined
and listed in Table 1). From 0.5 mM to 0.005 mM, the decreasing ratio of the half-peak
width in the SF–water system reaches 16.9–19.3%, and that in the SDS–water system
reaches 19.3–20.1%. When the concentration is 0.005 mM, the decreasing of the half-
peak width in all the functional molecules reaches the range of 16.9–19.5%. Compared
with a previous report [28], the functional molecules in our study can reduce the size
of water clusters to a large extent, and the effective concentration of the molecules is
1–2 orders of magnitude lower.

For functional molecules with the same carboxyl head group but different carbon
chain lengths, the sequence in the level of decreasing mean water cluster size is: SF > SO
(or SB) > SL. The longer the carbon chain length is, the weaker the effect of functional
molecules on destroying the big water cluster, which is mainly due to the enhancement of
hydrophobic interactions. For those with the same carbon chain length but different anion
head groups, the sequence in the level of decreasing mean water cluster size is: SDS > SLS
> SDBS > SL. We speculate that the above decreasing sequence is mainly related to the
negative ESP of the functional molecules, which will be further discussed in the following.
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Figure 1. 17O NMR spectra of water systems including functional molecules at different concentrations of 0.5 mM (a1–a7), 
0.05 mM (b1–b7), and 0.005 mM (c1–c7). 
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ion head groups, the sequence in the level of decreasing mean water cluster size is: SDS > 
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situ liquid SIMS measurements, in which the distribution of water clusters can be de-
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Figure 1. 17O NMR spectra of water systems including functional molecules at different concentrations of 0.5 mM (a1–a7),
0.05 mM (b1–b7), and 0.005 mM (c1–c7).

Table 1. Introduction of functional molecules selected in this study.

Name Molecular Formula Chemical Formula

Sodium formate (SF) HCOONa
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The 17O NMR line-width of the water system in the case of different functional
molecules at the concentration of 0.05 mM within 80 days was tested, as shown in Figure S1.
In the pure water system, the half-peak width increases 73% after 80 days, indicating that
when pure water is placed, the size of water clusters is increasing. The results for SF–water,
SB–water, SL–water, SDBS–water, and SO–water systems exhibit that the half-peak width
increases 103%, 50%, 41%, 44%, and 20% after 80 days, respectively. In comparison, small
water clusters can be formed in the presence of amphiphilic functional molecules, especially
in the SLS–water and SDS–water systems, with the decrease in half-peak width of 11.5%
and 7.3%. It can be concluded that without hydrophobic groups in the molecules, taking
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the SF–water system as an example, the half-peak width increases sharply with time, as
shown in the functional molecule–water system.

SF–water and SDS–water systems at 0.05 mM were selected and tested through in situ
liquid SIMS measurements, in which the distribution of water clusters can be determined
with direct molecular evidence. H(H2O)n with n = 2–4 are considered to be the main
SWC types for the liquid water, in which H(H2O)3

+ is the most dominant one [29,30]. It
is notable that the percentage of the normalized signal intensity of SWCs (n < 5) to the
detected water cluster ions (n = 1–4) in SF–water and SDS–water systems is 71.9% and
73.4%, respectively, which is higher than 67.8% in the pure water system (Figure 2). The
presence of SF and SDS makes the amount of SWCs increase, indicating that these two
functional molecules can destroy big water clusters and facilitate the formation of SWCs,
supporting the conclusion from the 17O NMR results that they can turn big water clusters
into small and uniform water clusters. By contrast, halide anions were introduced to pure
water, but the total content of SWCs was not significantly increased in comparison with
that of pure water [24].
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HLB values of the functional molecules evaluated by the method of molecular struc-
ture [31] are shown in Table S1, indicating that a bigger HLB value represents stronger
hydrophilicity. Among the functional molecules, the sequence of hydrophilicity is SDS >
SF > SB > SO > SL > SLS > SDBS. ESP results are shown in Figure 3, where darker color
red represents more electrons gathering. Except for the SF molecule, the other functional
molecules all have relatively separated positive and negative ESPs due to the long distance
between anionic and cationic groups, leading to the electrostatic interaction [32]. Compar-
ing the four functional molecules with the same hydrophobic chain length but different
anion head groups, the decreasing order of negative ESP is SDS > SLS > SDB S > SL. The
presence of oxygen atoms in the molecular structure is the main prerequisite for negative
ESP and, consequently, the sequence of the ESP is determined by the number of oxygen
atoms in the head groups. It agrees with the results from NMR experiments that more
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SWCs can be formed under the regulation of functional molecules with stronger negative
ESP. Accordingly, SDS molecules, owning the strongest negative ESP and the strongest
hydrophilicity, facilitate the formation of the small water clusters.
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Figure 3. Molecule electrostatic potentials (ESP) of functional molecules selected in this study.

The energy of the hydrogen bond after adding functional molecules is depicted
in Figure 4. When adding one functional molecule, the energy of HBs in the system is
much lower than that in the pure water system (10,657 kcal/mol in Figure S2). It shows
that functional molecules greatly destroy large water clusters and facilitate them into
small water clusters or individual water molecules. The lower the energy of HBs, the
less the number of HBs in the system, and probably the smaller the average size of the
water clusters.

Among functional molecules with the same carboxyl head group but different carbon
chain lengths, the SO system shows the lowest energy of HBs and the SF system shows
the highest. The simulation calculation results also reveal that there is hardly any HB
interaction between the water molecules and the carbon chain. It shows that the functional
molecules with a longer carbon chain own a stronger ability to destroy big water clusters,
even if the carbon chains do not form HBs with water molecules.

Regarding the ability of functional molecules with the same hydrophobic chain length
but different anion head groups to destroy water clusters, SDS is the best. They have the
same carbon chain length, and therefore, the degree of water molecules repelling the carbon
chain is similar. The oxygen atom with negative ESP forms HB with the hydrogen atom
of the water molecule (with positive ESP), so the ability of the head group to break the
HB of water clusters is related to its negative ESP. SDS has a strong negative ESP, which is
attributed to the SDS system having low energy HBs from simulation calculation.
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Figure 4. The histograms of energy of the hydrogen bond after adding functional molecules (the
y-axis represents the number of times the hydrogen bond energy occurs in the simulation process).

The optimized geometries between functional molecules and water clusters (H2O)n=3–5
are shown in Figure 5, the initial structures for which were built according to the electro-
static potential analysis of water clusters (Figure S3) and functional molecules (Figure 3).
Accordingly, the number and the length of HBs forming between functional molecules
and water molecules can be obtained. Hydrogen bonds in water clusters are continu-
ously forming and disappearing [13]; functional molecules interacting with more water
molecules, or in a looser interaction with water molecules, probably have a strong impact
on destroying pure water HB systems. Three or four HBs form between the interactions of
SDS and (H2O)n=3,4,5 more than the interactions of SF or SL and (H2O)n=3,4,5. For functional
molecules with the same carboxyl head group but different carbon chain lengths, such as
SL and SF, the SL and (H2O)n=3,4 system forms fewer HBs with shorter bond lengths than
that of SF–water, indicating that SL interacts strongly with water molecules. The strong
HBs that formed between SL and water limit SL molecules from joining in destroying other
water clusters. In comparison, the HBs in the SF–water system are long and weak; SF
molecules are more flexible in water to form HBs with other water molecules and break the
HBs of large water clusters. For functional molecules with the same hydrophobic chain
length but different anion head groups, such as SL and SDS, three HBs are formed between
(H2O)5 and SL, and four HBs are formed between (H2O)5 and SDS. The head group of
SDS more easily forms HBs with water molecules than that of SL. It can be concluded that
the ability of SDS molecules to interact with water molecules and disassemble the pure
water clusters is stronger than that of SL, which is consistent with the results from NMR.
Combined with Figure S4, it was found that in a SDS–water system, the HBs in SWCs are
relatively short.
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3. Materials and Methods

Materials. The functional molecules used in this study are shown in Table 1. SF (99.5%)
and sodium butyrate (SB; 99.5%) were obtained from Aladdin Chemical Co. Ltd. Sodium
octanoate (SO; 98%) was purchased from Adamas-beta (Shanghai, China). Sodium laurate
(SL; 99.8%), sodium lauryl sulfonate (SLS; 99.5%), sodium dodecyl sulfate (SDS; 99.8%),
and sodium dodecyl benzene sulfonate (SDBS; 99.8%) were purchased from Sinopharm
Chemical Reagent Co. Ltd. (Shanghai, China). All the above chemicals were recrystallized
three times before use and analyzed through elementary analysis (see Table S2). Deionized
water (resistivity = 18.2 MΩ·cm) from Milli-Q equipment was used in all experiments.

The critical micelle concentration (CMC) of four functional molecules including SDS,
SL, SLS, and SDBS was obtained by measuring the surface tension, as shown in Figure S5.
The concentrations selected in this paper were all below CMC.

Methods. 17O NMR. All 17O NMR chemical shifts and half width were mea-
sured via a Bruker AVIII 500WB superconductor spectrometer, which was obtained at
67.786 MHz using a zg pulse. Each free induction decay (FID) had 256 scans with a re-
cycle delay of 0.2s. 17O NMR chemical shifts and half width are expressed in Hz (not in
the usual ppm) on account of the ultralow concentrations leading to low chemical shifts.
The reproducibility of the chemical shifts was better than 2 Hz. The measurements
were carried out under 293.2 K (20 ◦C). The tested concentrations are 0.5 mmol/L (mM),
0.05 mM, and 0.005 mM, respectively.

In situ liquid SIMS. Water systems with a small amount of SF, SL, and SDS, respectively,
were tested on a ToF-SIMS V instrument (ION-ToF GmbH, Münster, Germany), which was
interfaced with a home-made vacuum-compatible microfluidic cell. The fabrication details
of the liquid device as well as the parameters of liquid SIMS experiments were according
to our previous method with minor adaptations [27,28]. In brief, a silicon frame (200 µm in
thickness) that modifies with a silicon nitride (SiN) membrane (100 nm in thickness) was
put on top of a pre-machined liquid chamber (3.0 mm in length, 3.0 mm in width, 0.3 mm
in height) on a poly (ether-ether-ketone) block and sealed with glue. Then, a liquid sample
was introduced into the liquid chamber through two liquid channels on both sides of the
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block. Afterwards, we sealed both of the channel ends and loaded the fabricated device
into the ToF-SIMS analysis chamber for liquid SIMS analysis. During the measurements,
we focused a pulsed 25 keV Bi3+ analysis beam to ≈350 nm. The beam pulse width was
≈150 ns, and the beam current at a pulse repeating frequency of 10 kHz was 0.289 pA. The
beam was scanned on a round area of ≈2 µm in diameter on the SiN membrane window,
the penetration of which was indicated by a sudden increase in the signal intensities of the
species in liquids. When the signals of liquids became relatively stable, the beam pulse
was narrowed to 50 ns for a relatively higher mass resolution. After collecting signals with
reasonable intensities, we could stop the measurements. The pressure in the main chamber
during the measurements was 5 × 10−7 mbar. Due to the limitation of the surface tension
by the test conditions, the proper concentration is selected to be 0.05 mM.

MD simulations. All the molecular dynamics simulations with different modules are
computed by Materials Studio 7.0 software. Simulation I was used to calculate the ESP
of different functional molecules. The potential energy surface is important in reflecting
the aggregation properties of molecules, which is with respect to the presence of water
molecules [29]. The Energy task was run along with the ESP in properties by the Dmol3
Calculation. We imported the Potentials and Electron density, respectively, and then
selected the electrostatic potential in the mapped field in order to display. The same scale
(−0.1~0.1 au) was selected for the scale bar of ESP calculated for different molecules.

The variation value of the HB energy, which resulted from adding functional molecules
in the water, was calculated and used to further determine the effect of functional molecules
on the energy. The interaction energies of one functional molecule with 200, 2000, or
20,000 water molecules, respectively, were calculated, and it was that the energy values
of 2000 and 20000 water molecules are very similar, so we selected 2000 water molecules
in one interaction for calculation convenience. Simulation II proceeds as follows: (i) The
water clusters box (contained 2000 water molecules) and the boxes contained functional
molecules, such as SL, SO, SB, and SF, respectively, were all constructed by the Amorphous
cell tool; (ii) Both the water clusters box and the box that contained functional molecules
were merged to the final cell through building a layered structure as a crystal; (iii) After the
optimization of the final box, molecular dynamics simulations were performed, in which
the Quench was selected. During the entire simulation process, Dreiding is selected for the
force field.

MD simulation experiments with 100 random initial positions were performed. The
histograms of energy of the hydrogen bond in every system were obtained, exhibited in
Figure 4, and the peak of statistics is attributed to the most stable configuration.

DFT Calculations. The interactions between SDS/SF/SL anion and water clusters
were investigated through DFT calculations by using the Gaussian 09 software [30]. We
used the second-order Møller–Plesset perturbation (MP2) method and 6-311++g (d,p)
basis set, which have been found to be accurate for water clusters calculations [31,32].
The geometries of all water clusters considered here were optimized by using an MP2/6-
311++g (d,p) level of theory. The interactions between water clusters and SDS/SF/SL anion
were calculated by the same method and basis set. Frequency analyses were conducted to
confirm that there is no imaginary frequency that optimizes structures. The ESP analyses
were conducted by GaussView 6.0 software.

4. Conclusions

Two series of functional molecules were introduced to water cluster systems, which
were investigated through the methods of 17O NMR, in situ liquid SIMS, MD simulation,
and DFT calculation in our study. For functional molecules with the same carboxyl head
group but different carbon chain lengths, the ability to break the HBs of water clusters is
the same as the molecular hydrophilicity: SF > SB > SO > SL. SF, without the carbon chain
and with the strongest hydrophilicity in the series of functional molecules, can interact
with more water molecules and destroy big water clusters into small ones. For those with
the same hydrophobic chain length but different anion head groups, the ability to break
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the HBs of water clusters is the same with the negative ESP: SDS > SLS > SDBS > SL, which
is in agreement with the conclusions of 17O NMR. The decreasing rate of the half-peak
width and the amount of H(H2O)3

+ in the SDS–water system can reach 20% and 5.6%,
respectively, compared with that of the pure water system. It is because SDS with a higher
negative ESP and better hydrophilicity can form more HBs with water molecules and break
the HBs interior of the water clusters. Furthermore, the HBs among water molecules are
relatively short in an SDS–water system, and the 17O NMR line-width of the water system
remains nearly unchanged for ≈80 days. Our work suggests a general strategy to prepare
small water clusters via interacting with functional molecules, providing new ideas to both
experimental and computational studies on SWCs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22158250/s1.
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